Biblio
Export 87 results:
Author Title Type [ Year
Filters: Author is Felix J. Herrmann and Keyword is Uncertainty quantification [Clear All Filters]
“Fast neural FWI with amortized uncertainty quantification”, in International Meeting for Applied Geoscience and Energy, 2023.
, “Generative Seismic Kriging with Normalizing Flows”, in International Meeting for Applied Geoscience and Energy, 2023.
, “Monitoring subsurface CO2 plumes with learned sequential Bayesian inference”, ML4SEISMIC Partners Meeting. 2023.
, “Monitoring Subsurface CO2 Plumes with Sequential Bayesian Inference”, in International Meeting for Applied Geoscience and Energy, 2023.
, “Reliable amortized variational inference with physics-based latent distribution correction”, Geophysics, vol. 88, 2023.
, “Towards generative seismic kriging with normalizing flows”, ML4SEISMIC Partners Meeting. 2023.
, “Uncertainty quantification so what? Leveraging probabilistic seismic inversion for experimental design”, ML4SEISMIC Partners Meeting. 2023.
, “Abstractions for at-scale seismic inversion”, in Rice Oil and Gas High Performance Computing Conference 2022, 2022, p. Thursday Workshop: Devito Training and Hackathon.
, “Accelerating innovation with software abstractions for scalable computational geophysics”, in International Meeting for Applied Geoscience and Energy Expanded Abstracts, 2022.
, “Adjoint operators as summary functions in amortized Bayesian inference frameworks”, ML4SEISMIC Partners Meeting. 2022.
, “Amortized velocity continuation with Fourier neural operators”, ML4SEISMIC Partners Meeting. 2022.
, “Capturing velocity-model uncertainty and two-phase flow with Fourier Neural Operators”, in EAGE Annual Conference Proceedings, 2022, p. AI in Geoscience and Geophysics: Current Trends and Future Prospects (Dedicated Session).
, “Deep Bayesian inference for seismic imaging with tasks”, Geophysics, vol. 87, pp. 281-302, 2022.
, “Low-cost uncertainty quantification for large-scale inverse problems”, ML4SEISMIC Partners Meeting. 2022.
, “Monitoring with sequential Bayesian inference”, ML4SEISMIC Partners Meeting. 2022.
, “Normalizing flows for regularization of 3D seismic inverse problems”, ML4SEISMIC Partners Meeting. 2022.
, “Reliable amortized variational inference with conditional normalizing flows via physics-based latent distribution correction”, in IMAGE Workshop on Subsurface Uncertainty Description and Estimation - Moving Away from Single Prediction with Distribution Learning, 2022.
, “Velocity continuation with Fourier neural operators for accelerated uncertainty quantification”, in International Meeting for Applied Geoscience and Energy Expanded Abstracts, 2022.
, “Deep Bayesian Inference for Task-based Seismic Imaging”, in KAUST, 2021.
, “Fast and reliability-aware seismic imaging with conditional normalizing flows”, in Intelligent illumination of the Earth, 2021.
, “Learned wave-based imaging - variational inference at scale”, in Delft, 2021.
, “ML@scale using randomized linear algebra”, in Microsoft, 2021.
, “Preconditioned training of normalizing flows for variational inference in inverse problems”, in 3rd Symposium on Advances in Approximate Bayesian Inference, 2021.
, “Seismic Velocity Inversion and Uncertainty Quantification Using Conditional Normalizing Flows”, in AGU Annual Meeting, 2021, p. U12A-03.
, “Uncertainty quantification in imaging and automatic horizon tracking—a Bayesian deep-prior based approach”, ML4SEISMIC Partners Meeting. 2021.
,