Biblio

Export 33 results:
Author Title Type [ Year(Desc)]
Filters: Keyword is Normalizing flows  [Clear All Filters]
2021
Ali Siahkoohi, Rafael Orozco, Gabrio Rizzuti, Philipp A. Witte, Mathias Louboutin, and Felix J. Herrmann, Fast and reliability-aware seismic imaging with conditional normalizing flows, in Intelligent illumination of the Earth, 2021.
Philipp A. Witte, Mathias Louboutin, Ali Siahkoohi, Gabrio Rizzuti, Bas Peters, and Felix J. Herrmann, InvertibleNetworks.jl - Memory efficient deep learning in Julia, in JuliaCon, 2021.
Felix J. Herrmann, Ali Siahkoohi, Rafael Orozco, Gabrio Rizzuti, Philipp A. Witte, and Mathias Louboutin, Learned wave-based imaging - variational inference at scale, in Delft, 2021.
Ali Siahkoohi and Felix J. Herrmann, Learning by example: fast reliability-aware seismic imaging with normalizing flows, in SEG Technical Program Expanded Abstracts, 2021, pp. 1580-1585.
Ali Siahkoohi, Rafael Orozco, Gabrio Rizzuti, Philipp A. Witte, Mathias Louboutin, and Felix J. Herrmann, Multifidelity conditional normalizing flows for physics-guided Bayesian inference, ML4SEISMIC Partners Meeting. 2021.
Ali Siahkoohi, Gabrio Rizzuti, Mathias Louboutin, Philipp A. Witte, and Felix J. Herrmann, Preconditioned training of normalizing flows for variational inference in inverse problems, in 3rd Symposium on Advances in Approximate Bayesian Inference, 2021.
Yuxiao Ren, Philipp A. Witte, Ali Siahkoohi, Mathias Louboutin, Ziyi Yin, and Felix J. Herrmann, Seismic Velocity Inversion and Uncertainty Quantification Using Conditional Normalizing Flows, in AGU Annual Meeting, 2021, p. U12A-03.
2023
Felix J. Herrmann, Act normal that's crazy enough — an overview of seismic inversion with normalizing flows and surrogate modeling, Scientific Computing, Applied and Industrial Mathematics (SCAIM) Seminar. 2023.
Rafael Orozco, Ali Siahkoohi, Gabrio Rizzuti, Tristan van Leeuwen, and Felix J. Herrmann, Adjoint operators enable fast and amortized machine learning based Bayesian uncertainty quantification, in SPIE Medical Imaging Conference, 2023.
Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, Amortized Bayesian Full Waveform Inversion and Experimental Design with Normalizing Flows, in International Meeting for Applied Geoscience and Energy, 2023.
Felix J. Herrmann, Digital twins in the era of generative AI, The Leading Edge, vol. 42, 2023.
Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, Fast neural FWI with amortized uncertainty quantification, in International Meeting for Applied Geoscience and Energy, 2023.
Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, Generative Seismic Kriging with Normalizing Flows, in International Meeting for Applied Geoscience and Energy, 2023.
Ziyi Yin, Introduction to Seismic Laboratory for Imaging and Modeling, CSE Student Recruiting Event. 2023.
Mathias Louboutin, Ziyi Yin, Rafael Orozco, Thomas J. Grady II, Ali Siahkoohi, Gabrio Rizzuti, Philipp A. Witte, Olav Møyner, Gerard J. Gorman, and Felix J. Herrmann, Learned multiphysics inversion with differentiable programming and machine learning, The Leading Edge, vol. 42, pp. 452-516, 2023.
Ali Siahkoohi, Gabrio Rizzuti, Rafael Orozco, and Felix J. Herrmann, Reliable amortized variational inference with physics-based latent distribution correction, Geophysics, vol. 88, 2023.
Ziyi Yin, Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, Solving multiphysics-based inverse problems with learned surrogates and constraints, Advanced Modeling and Simulation in Engineering Sciences, vol. 10, 2023.
Ziyi Yin, Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, Solving PDE-based inverse problems with learned surrogates and constraints, HotCSE Seminar. 2023.
Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, Towards generative seismic kriging with normalizing flows, ML4SEISMIC Partners Meeting. 2023.
Rafael Orozco, Mathias Louboutin, Peng Chen, and Felix J. Herrmann, Uncertainty quantification so what? Leveraging probabilistic seismic inversion for experimental design, ML4SEISMIC Partners Meeting. 2023.

Pages