Biblio

Export 33 results:
Author Title [ Type(Desc)] Year
Filters: Keyword is Normalizing flows  [Clear All Filters]
Conference
Rafael Orozco, Ali Siahkoohi, Gabrio Rizzuti, Tristan van Leeuwen, and Felix J. Herrmann, Adjoint operators enable fast and amortized machine learning based Bayesian uncertainty quantification, in SPIE Medical Imaging Conference, 2023.
Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, Amortized Bayesian Full Waveform Inversion and Experimental Design with Normalizing Flows, in International Meeting for Applied Geoscience and Energy, 2023.
Ali Siahkoohi, Rafael Orozco, Gabrio Rizzuti, Philipp A. Witte, Mathias Louboutin, and Felix J. Herrmann, Fast and reliability-aware seismic imaging with conditional normalizing flows, in Intelligent illumination of the Earth, 2021.
Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, Fast neural FWI with amortized uncertainty quantification, in International Meeting for Applied Geoscience and Energy, 2023.
Rafael Orozco, Mathias Louboutin, and Felix J. Herrmann, Generative Seismic Kriging with Normalizing Flows, in International Meeting for Applied Geoscience and Energy, 2023.
Philipp A. Witte, Mathias Louboutin, Ali Siahkoohi, Gabrio Rizzuti, Bas Peters, and Felix J. Herrmann, InvertibleNetworks.jl - Memory efficient deep learning in Julia, in JuliaCon, 2021.
Felix J. Herrmann, Ali Siahkoohi, Rafael Orozco, Gabrio Rizzuti, Philipp A. Witte, and Mathias Louboutin, Learned wave-based imaging - variational inference at scale, in Delft, 2021.
Ali Siahkoohi and Felix J. Herrmann, Learning by example: fast reliability-aware seismic imaging with normalizing flows, in SEG Technical Program Expanded Abstracts, 2021, pp. 1580-1585.
Rafael Orozco, Abhinav Prakash Gahlot, Peng Chen, Mathias Louboutin, and Felix J. Herrmann, Normalizing Flows for Bayesian Experimental Design in Imaging Applications, in SIAM Conference on Uncertainty Quantification, 2024.
Rafael Orozco, Abhinav Prakash Gahlot, Peng Chen, Mathias Louboutin, and Felix J. Herrmann, Normalizing Flows for Bayesian Experimental Design in Imaging Applications, in EAGE Annual Conference Proceedings, 2024.
Ali Siahkoohi, Gabrio Rizzuti, Mathias Louboutin, Philipp A. Witte, and Felix J. Herrmann, Preconditioned training of normalizing flows for variational inference in inverse problems, in 3rd Symposium on Advances in Approximate Bayesian Inference, 2021.
Yuxiao Ren, Philipp A. Witte, Ali Siahkoohi, Mathias Louboutin, Ziyi Yin, and Felix J. Herrmann, Seismic Velocity Inversion and Uncertainty Quantification Using Conditional Normalizing Flows, in AGU Annual Meeting, 2021, p. U12A-03.
Ziyi Yin, Rafael Orozco, Mathias Louboutin, Ali Siahkoohi, and Felix J. Herrmann, Uncertainty-aware time-lapse monitoring of geological carbon storage with learned surrogates, in Engineering Mechanics Institute Conference, 2023.
Ali Siahkoohi, Rafael Orozco, Gabrio Rizzuti, and Felix J. Herrmann, Wave-equation based inversion with amortized variational Bayesian inference, in EAGE Annual Conference Proceedings, 2022, p. Session 2: Velocity model building and imaging (different domains).

Pages