Biblio

Export 42 results:
Author Title Type [ Year(Desc)]
Filters: Author is Gabrio Rizzuti  [Clear All Filters]
2020
Ali Siahkoohi, Gabrio Rizzuti, and Felix J. Herrmann, A deep-learning based Bayesian approach to seismic imaging and uncertainty quantification, GT SEG Student Chapter. 2020.
Ali Siahkoohi, Gabrio Rizzuti, and Felix J. Herrmann, A deep-learning based Bayesian approach to seismic imaging and uncertainty quantification, in EAGE Annual Conference Proceedings, 2020.
Ziyi Yin, Rafael Orozco, Philipp A. Witte, Mathias Louboutin, Gabrio Rizzuti, and Felix J. Herrmann, Extended source imaging –- a unifying framework for seismic and medical imaging, in SEG Technical Program Expanded Abstracts, 2020, pp. 3502-3506.
Ali Siahkoohi, Gabrio Rizzuti, Philipp A. Witte, and Felix J. Herrmann, Faster Uncertainty Quantification for Inverse Problems with Conditional Normalizing Flows, Georgia Institute of Technology, TR-CSE-2020-2, 2020.
Gabrio Rizzuti, Ali Siahkoohi, Philipp A. Witte, and Felix J. Herrmann, Parameterizing uncertainty by deep invertible networks, an application to reservoir characterization, in SEG Technical Program Expanded Abstracts, 2020, pp. 1541-1545.
Ali Siahkoohi, Philipp A. Witte, Mathias Louboutin, Felix J. Herrmann, and Gabrio Rizzuti, Seismic Imaging with Uncertainty Quantification: Sampling from the Posterior with Generative Networks, in SIAM Conference on Imaging Science, 2020.
Gabrio Rizzuti, Mathias Louboutin, Rongrong Wang, and Felix J. Herrmann, Time-domain wavefield reconstruction inversion for large-scale seismics, in EAGE Annual Conference Proceedings, 2020.
Mathias Louboutin, Gabrio Rizzuti, and Felix J. Herrmann, Time-domain Wavefield Reconstruction Inversion in a TTI medium, Georgia Institute of Technology, TR-CSE-2020-1, 2020.
Mathias Louboutin, Gabrio Rizzuti, and Felix J. Herrmann, Time-Domain Wavefield Reconstruction Inversion In Tilted Transverse Isostropic Media, in SIAM Texas-Louisiana, 2020.
Ali Siahkoohi, Gabrio Rizzuti, and Felix J. Herrmann, Uncertainty quantification in imaging and automatic horizon tracking—a Bayesian deep-prior based approach, in SEG Technical Program Expanded Abstracts, 2020, pp. 1636-1640.
Ali Siahkoohi, Gabrio Rizzuti, Mathias Louboutin, and Felix J. Herrmann, Unsupervised data-guided uncertainty analysis in imaging and horizon tracking, in SIAM Texas-Louisiana, 2020.
Ali Siahkoohi, Gabrio Rizzuti, and Felix J. Herrmann, Weak deep priors for seismic imaging, in SEG Technical Program Expanded Abstracts, 2020, pp. 2998-3002.
2021
Ali Siahkoohi, Gabrio Rizzuti, Mathias Louboutin, Philipp A. Witte, and Felix J. Herrmann, Deep Bayesian Inference for Task-based Seismic Imaging, in KAUST, 2021.
Gabrio Rizzuti, Mathias Louboutin, Rongrong Wang, and Felix J. Herrmann, A dual formulation of wavefield reconstruction inversion for large-scale seismic inversion, Geophysics, vol. 86, p. 1ND-Z3, 2021.
Gabrio Rizzuti, Mathias Louboutin, Rongrong Wang, and Felix J. Herrmann, A dual formulation of wavefield reconstruction inversion for large-scale seismic inversion, ML4SEISMIC Partners Meeting. 2021.
Ali Siahkoohi, Rafael Orozco, Gabrio Rizzuti, Philipp A. Witte, Mathias Louboutin, and Felix J. Herrmann, Fast and reliability-aware seismic imaging with conditional normalizing flows, in Intelligent illumination of the Earth, 2021.
Philipp A. Witte, Mathias Louboutin, Ali Siahkoohi, Gabrio Rizzuti, Bas Peters, and Felix J. Herrmann, InvertibleNetworks.jl - Memory efficient deep learning in Julia, in JuliaCon, 2021.
Felix J. Herrmann, Ali Siahkoohi, Rafael Orozco, Gabrio Rizzuti, Philipp A. Witte, and Mathias Louboutin, Learned wave-based imaging - variational inference at scale, in Delft, 2021.
Ali Siahkoohi, Rafael Orozco, Gabrio Rizzuti, Philipp A. Witte, Mathias Louboutin, and Felix J. Herrmann, Multifidelity conditional normalizing flows for physics-guided Bayesian inference, ML4SEISMIC Partners Meeting. 2021.
Rafael Orozco, Ali Siahkoohi, Gabrio Rizzuti, Tristan van Leeuwen, and Felix J. Herrmann, Photoacoustic Imaging with Conditional Priors from Normalizing Flows, in Neural Information Processing Systems (NeurIPS), 2021.

Pages