Biblio

Export 74 results:
Author Title Type [ Year(Desc)]
Filters: Keyword is Uncertainty quantification  [Clear All Filters]
2020
Ali Siahkoohi, Gabrio Rizzuti, and Felix J. Herrmann, A deep-learning based Bayesian approach to seismic imaging and uncertainty quantification, in EAGE Annual Conference Proceedings, 2020.
Ali Siahkoohi, Gabrio Rizzuti, and Felix J. Herrmann, A deep-learning based Bayesian approach to seismic imaging and uncertainty quantification, GT SEG Student Chapter. 2020.
Ali Siahkoohi, Gabrio Rizzuti, Philipp A. Witte, and Felix J. Herrmann, Faster Uncertainty Quantification for Inverse Problems with Conditional Normalizing Flows, Georgia Institute of Technology, TR-CSE-2020-2, 2020.
Gabrio Rizzuti, Ali Siahkoohi, Philipp A. Witte, and Felix J. Herrmann, Parameterizing uncertainty by deep invertible networks, an application to reservoir characterization, in SEG Technical Program Expanded Abstracts, 2020, pp. 1541-1545.
Ali Siahkoohi, Philipp A. Witte, Mathias Louboutin, Felix J. Herrmann, and Gabrio Rizzuti, Seismic Imaging with Uncertainty Quantification: Sampling from the Posterior with Generative Networks, in SIAM Conference on Imaging Science, 2020.
Ali Siahkoohi, Gabrio Rizzuti, and Felix J. Herrmann, Uncertainty quantification in imaging and automatic horizon tracking—a Bayesian deep-prior based approach, in SEG Technical Program Expanded Abstracts, 2020, pp. 1636-1640.
Ali Siahkoohi, Gabrio Rizzuti, Mathias Louboutin, and Felix J. Herrmann, Unsupervised data-guided uncertainty analysis in imaging and horizon tracking, in SIAM Texas-Louisiana, 2020.
2022
Mathias Louboutin, Ali Siahkoohi, Ziyi Yin, Rafael Orozco, Thomas J. Grady II, Yijun Zhang, Philipp A. Witte, Gabrio Rizzuti, and Felix J. Herrmann, Abstractions for at-scale seismic inversion, in Rice Oil and Gas High Performance Computing Conference 2022, 2022, p. Thursday Workshop: Devito Training and Hackathon.
Mathias Louboutin, Philipp A. Witte, Ali Siahkoohi, Gabrio Rizzuti, Ziyi Yin, Rafael Orozco, and Felix J. Herrmann, Accelerating innovation with software abstractions for scalable computational geophysics, in International Meeting for Applied Geoscience and Energy Expanded Abstracts, 2022.
Rafael Orozco, Mathias Louboutin, Ali Siahkoohi, Gabrio Rizzuti, and Felix J. Herrmann, Adjoint operators as summary functions in amortized Bayesian inference frameworks, ML4SEISMIC Partners Meeting. 2022.
Ali Siahkoohi, Ziyi Yin, Mathias Louboutin, and Felix J. Herrmann, Amortized velocity continuation with Fourier neural operators, ML4SEISMIC Partners Meeting. 2022.
Ali Siahkoohi, Thomas J. Grady II, Abhinav Prakash Gahlot, Huseyin Tuna Erdinc, and Felix J. Herrmann, Capturing velocity-model uncertainty and two-phase flow with Fourier Neural Operators, in EAGE Annual Conference Proceedings, 2022, p. AI in Geoscience and Geophysics: Current Trends and Future Prospects (Dedicated Session).
Ali Siahkoohi, Gabrio Rizzuti, and Felix J. Herrmann, Deep Bayesian inference for seismic imaging with tasks, Geophysics, vol. 87, pp. 281-302, 2022.

Pages