Biblio

Export 143 results:
Author Title Type [ Year(Desc)]
Filters: First Letter Of Last Name is S  [Clear All Filters]
2020
Ali Siahkoohi, Gabrio Rizzuti, and Felix J. Herrmann, A deep-learning based Bayesian approach to seismic imaging and uncertainty quantification, GT SEG Student Chapter. 2020.
Ali Siahkoohi, Gabrio Rizzuti, and Felix J. Herrmann, A deep-learning based Bayesian approach to seismic imaging and uncertainty quantification, in EAGE Annual Conference Proceedings, 2020.
Philipp A. Witte, Mathias Louboutin, Henryk Modzelewski, Charles Jones, James Selvage, and Felix J. Herrmann, An Event-Driven Approach to Serverless Seismic Imaging in the Cloud, IEEE Transactions on Parallel and Distributed Systems, vol. 31, pp. 2032-2049, 2020.
Ali Siahkoohi, Gabrio Rizzuti, Philipp A. Witte, and Felix J. Herrmann, Faster Uncertainty Quantification for Inverse Problems with Conditional Normalizing Flows, Georgia Institute of Technology, TR-CSE-2020-2, 2020.
Shashin Sharan, Large scale high-frequency seismic wavefield reconstruction, acquisition via rank minimization and sparsity-promoting source estimation, Georgia Institute of Technology, Atlanta, 2020.
Shashin Sharan, Yijun Zhang, Oscar Lopez, and Felix J. Herrmann, Large scale high-frequency wavefield reconstruction with recursively weighted matrix factorizations, TR-CSE-2020-4, 2020.
Gabrio Rizzuti, Ali Siahkoohi, Philipp A. Witte, and Felix J. Herrmann, Parameterizing uncertainty by deep invertible networks, an application to reservoir characterization, in SEG Technical Program Expanded Abstracts, 2020, pp. 1541-1545.
Ali Siahkoohi, Philipp A. Witte, Mathias Louboutin, Felix J. Herrmann, and Gabrio Rizzuti, Seismic Imaging with Uncertainty Quantification: Sampling from the Posterior with Generative Networks, in SIAM Conference on Imaging Science, 2020.
Mi Zhang, Ali Siahkoohi, and Felix J. Herrmann, Transfer learning in large-scale ocean bottom seismic wavefield reconstruction, in SEG Technical Program Expanded Abstracts, 2020, pp. 1666-1670.
Ali Siahkoohi, Gabrio Rizzuti, and Felix J. Herrmann, Uncertainty quantification in imaging and automatic horizon tracking—a Bayesian deep-prior based approach, in SEG Technical Program Expanded Abstracts, 2020, pp. 1636-1640.
Ali Siahkoohi, Gabrio Rizzuti, Mathias Louboutin, and Felix J. Herrmann, Unsupervised data-guided uncertainty analysis in imaging and horizon tracking, in SIAM Texas-Louisiana, 2020.
Yijun Zhang, Shashin Sharan, Oscar Lopez, and Felix J. Herrmann, Wavefield recovery with limited-subspace weighted matrix factorizations, in SEG Technical Program Expanded Abstracts, 2020, pp. 2858-2862.
Ali Siahkoohi, Gabrio Rizzuti, and Felix J. Herrmann, Weak deep priors for seismic imaging, in SEG Technical Program Expanded Abstracts, 2020, pp. 2998-3002.
2021
Ali Siahkoohi, Gabrio Rizzuti, Mathias Louboutin, Philipp A. Witte, and Felix J. Herrmann, Deep Bayesian Inference for Task-based Seismic Imaging, in KAUST, 2021.
Rajiv Kumar, Maria Kotsi, Ali Siahkoohi, and Alison Malcolm, Enabling uncertainty quantification for seismic data pre-processing using normalizing flows (NF)—an interpolation example, in SEG Technical Program Expanded Abstracts, 2021, pp. 1515-1519.
Ali Siahkoohi, Rafael Orozco, Gabrio Rizzuti, Philipp A. Witte, Mathias Louboutin, and Felix J. Herrmann, Fast and reliability-aware seismic imaging with conditional normalizing flows, in Intelligent illumination of the Earth, 2021.
Philipp A. Witte, Mathias Louboutin, Ali Siahkoohi, Gabrio Rizzuti, Bas Peters, and Felix J. Herrmann, InvertibleNetworks.jl - Memory efficient deep learning in Julia, in JuliaCon, 2021.
Felix J. Herrmann, Ali Siahkoohi, Rafael Orozco, Gabrio Rizzuti, Philipp A. Witte, and Mathias Louboutin, Learned wave-based imaging - variational inference at scale, in Delft, 2021.
Ali Siahkoohi and Felix J. Herrmann, Learning by example: fast reliability-aware seismic imaging with normalizing flows, in SEG Technical Program Expanded Abstracts, 2021, pp. 1580-1585.
Mathias Louboutin, Ali Siahkoohi, Rongrong Wang, and Felix J. Herrmann, Low-memory stochastic backpropagation with multi-channel randomized trace estimation, TR-CSE-2021-1, 2021.
Felix J. Herrmann, Mathias Louboutin, and Ali Siahkoohi, ML@scale using randomized linear algebra, in Microsoft, 2021.

Pages