Phase transitions in explorations seismology: statistical mechanics meets information theory
Title | Phase transitions in explorations seismology: statistical mechanics meets information theory |
Publication Type | Conference |
Year of Publication | 2007 |
Authors | Felix J. Herrmann |
Conference Name | COIP |
Keywords | Presentation, SLIM |
Abstract | In this paper, two different applications of phase transitions to exploration seismology will be discussed. The first application concerns a phase diagram ruling the recovery conditions for seismic data volumes from incomplete and noisy data while the second phase transition describes the behavior of bi-compositional mixtures as a function of the volume fraction. In both cases, the phase transitions are the result of randomness in large system of equations in combination with nonlinearity. The seismic recovery problem from incomplete data involves the inversion of a rectangular matrix. Recent results from the field of "compressive sensing" provide the conditions for a successful recovery of functions that are sparse in some basis (wavelet) or frame (curvelet) representation, by means of a sparsity ($\ell_1$-norm) promoting nonlinear program. The conditions for a successful recovery depend on a certain randomness of the matrix and on two parameters that express the matrix’ aspect ratio and the ratio of the number of nonzero entries in the coefficient vector for the sparse signal representation over the number of measurements. It appears that the ensemble average for the success rate for the recovery of the sparse transformed data vector by a nonlinear sparsity promoting program, can be described by a phase transition, demarcating the regions for the two ratios for which recovery of the sparse entries is likely to be successful or likely to fail. Consistent with other phase transition phenomena, the larger the system the sharper the transition. The randomness in this example is related to the construction of the matrix, which for the recovery of spike trains corresponds to the randomly restricted Fourier matrix. It is shown, that these ideas can be extended to the curvelet recovery by sparsity-promoting inversion (CRSI). The second application of phase transitions in exploration seismology concerns the upscaling problem. To counter the intrinsic smoothing of singularities by conventional equivalent medium upscaling theory, a percolation-based nonlinear switch model is proposed. In this model, the transport properties of bi-compositional mixture models for rocks undergo a sudden change in the macroscopic transport properties as soon as the volume fraction of the stronger material reaches a critical point. At this critical point, the stronger material forms a connected cluster, which leads to the creation of a cusp-like singularity in the elastic moduli, which in turn give rise to specular reflections. In this model, the reflectivity is no longer explicitly due to singularities in the rocks composition. Instead, singularities are created whenever the volume fraction exceeds the critical point. We will show that this concept can be used for a singularity-preserved lithological upscaling. |
Presentation | |
Citation Key | herrmann2007COIPpti |