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Research interests

• Develop techniques to obtain higher quality 
images from (incomplete) data <=> seismic 
imaging of transitions

• Characterization of reflectors <=> 
estimation of singularity orders of imaged 
reflectors

• Understand physical processes that generate 
singular transitions in the earth <=> 
Percolation phenomena

• Singularity-preserved upscaling



Today’s topics
Phase diagrams in the recovery of seismic data from 
incomplete measurements

• old ideas in geophysics reincarnated in the new 
field of  “compressive sampling”

• describes regions that favor recovery

Phase diagrams in the description of seismic 
reflectors

• mixture models with critical points <=> reflectors

• a first step towards singularity-preserved upscaling



Phase-transition 
behavior in 

compressive sampling
joint work with Gilles Hennenfent

“Non-parametric seismic data recovery 
with curvelet frames” in revision for GJI



Seismic Laboratory for Imaging and Modeling

Data

nominal spatial sampling ~ 112.5m



Seismic Laboratory for Imaging and Modeling

CRSI

spatial sampling ~ 12.5m



Fourier example
Consider n-random time samples from a signal with k-
sparse Fourier spectrum, i.e.

with                      the time restricted inverse Fourier 
transform. 
The signal

with the k-non-zero spectrum can exactly be recovered. 

signal =y

sparse representation of 
inverse extrapolated data

x0

A

A ∈ Cn×N

f0 = FHx0



Solve

Recovery for Gaussian matrices when [Donoho and Tanner ‘06]

For arbitrary measurement sparsity bases [Candes, Romberg 
& Tao ‘06]

for certain conditions on the matrix and sampling ....

P1 :






x̃ = arg minx∈RN ‖x‖1 =
∑N

i=1 |xi| s.t. y = Ax

f̃ = FH x̃.

data consistencysparsity
enhancement

Fourier example cont’d

When a traveler reaches a fork in the road, the l1 -norm tells him to take either one way or the other, 
but the l2 -norm instructs him to head off into the bushes.  [Claerbout and Muir, 1973] 

n = k × 2 log(N/k)

n = µ2k × log N
mutual coherence



Figure 5: Phase Diagram for !1 minimization. Shaded attribute is the number of coordinates of recon-
struction which differ from optimally sparse solution by more than 10−4. The diagram displays a rapid
transition from perfect reconstruction to perfect disagreement. Overlaid red curve is theoretical curve
ρ!1 .

4.2 Phase Diagram

A phase diagram depicts performance of an algorithm at a sequence of problem suites S(k, n,N). The
average value of some performance measure as displayed as a function of ρ = k/n and δ = n/N . Both of
these variables ρ, δ ∈ [0, 1], so the diagram occupies the unit square.

To illustrate such a phase diagram, consider a well-studied case where something interesting happens.
Let x1 solve the optimization problem:

(P1) min ‖x‖1 subject to y = Φx.

As mentioned earlier, if y = Φx0 where x0 has k nonzeros, we may find that x1 = x0 exactly when k
is small enough. Figure 5 displays a grid of δ − ρ values, with δ ranging through 50 equispaced points
in the interval [.05, .95] and ρ ranging through 50 equispaced points in [.05, .95]; here N = 800. Each
point on the grid shows the mean number of coordinates at which original and reconstruction differ by
more than 10−4, averaged over 100 independent realizations of the standard problem suite Sst(k, n,N).
The experimental setting just described, i.e. the δ − ρ grid setup, the values of N , and the number of
realizations, is used to generate phase diagrams later in this paper, although the problem suite being
used may change.

This diagram displays a phase transition. For small ρ, it seems that high-accuracy reconstruction is
obtained, while for large ρ reconstruction fails. The transition from success to failure occurs at different
ρ for different values of δ.

This empirical observation is explained by a theory that accurately predicts the location of the
observed phase transition and shows that, asymptotically for large n, this transition is perfectly sharp.
Suppose that problem (y, Φ) is drawn at random from the standard problem suite, and consider the event
Ek,n,N that x0 = x1 i.e. that !1 minimization exactly recovers x0. The paper [19] defines a function
ρ!1(δ) (called there ρW ) with the following property. Consider sequences of (kn), (Nn) obeying kn/n→ ρ
and n/Nn → δ. Suppose that ρ < ρ!1(δ). Then as n→∞

Prob(Ekn,n,Nn)→ 1.

On the other hand, suppose that ρ > ρ!1(δ). Then as n→∞

Prob(Ekn,n,Nn)→ 0.

The theoretical curve (δ, ρ!1(δ)) described there is overlaid on Figure 5, showing good agreement between
asymptotic theory and experimental results.
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Phase diagrams
l1 solver [from Donoho et al ‘06]

In the white region

recovers exactly.

measurement vector y ∈ Rn with y = Ax0, by solving the following optimization problem

P1 :






x̂ = argminx ‖x‖1 subject to Ax = y

f̂ = SH x̂.

(9)

The synthesis matrix A ∈ Cn×N is composed of three matrices, namely, A := RMSH with SH the

sparsity matrix S := F with f the Fourier analysis or decomposition matrix; M := I the Dirac mea-

surement basis with I the idendity matrix and R a restriction matrix. This restriction matrix extracts

k rows from the N×N Fourier matrix since MSH = F. During the restriction, the columns of A are

normalized such that ‖ai}‖= 1 for i = 1 · · ·N.

The mathematical criteria for exact recovery, such as the !0-norm of the difference between the

original and the recovered sparsity vectors ‖x̂−x0‖0, is are unfortunately impossible because of the

finite precision in floating point arithmetic. Instead, we either call a recovery successful when an

entry is to within a small constant equal to the corresponding entry in x0 or we call the recovery

successful when the relative !2-error is smaller then some threshold, ‖x̂−x‖2/‖x0‖2 ≤ ε .

The main results of compressed sensing is that it predicts the number of measurements n that are

required to ’exacly’ recover an arbitrary sparsity vector x0 with k non-zero entries given a certain

choice for the measurement and sparsity matrices. For individual realizations of the sparsity and

measurement vector, these conditions are sharp. For instance, the recovery of a sinusiodal function

of length N = 1024 with k =? non-zero entries in x0 is succesful for a measurement vector y con-

sisting of n =??? elements and fails for n =???− 2 measurements. This behavior is numerically

illustrated in Fig. 1 and has also been observed by (35) for the spiky deconvolution.

Strong recovery conditions: An important result from the literature on compressed sensing states

that exact recovery from incomplete measurements is possible as long as the synthesis matrix A
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Phase transition
Has a second-order phase transition at a oversampling of 5

 transition becomes sharper for
 conceptual but unexplored ‘link’ with percolation theory
 k-neighborhoodness of polytopes undergoes a phase 

transition 
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Figure 8: Empirical Transition Behaviors, varying n. (a) Fraction of cases with termination before stage
S. (b) Fraction of missed detections. Averages of 1000 trials with n = 400, 800, 1600 and k = !ρn",
N = !n/δ", δ = 1/4 and ρ varying. Sharpness of each transition seems to be increasing with n.

To make the comparison still more vivid, we point ahead to an imaging example from Section 9.1
below. There an image of dimensions d× d is viewed as a vector x of length N = d2. Again the system
y = Φx where Φ is made from only n = δN rows of the Fourier matrix. One matrix-vector product costs
V = 4N log N = 8d2 log d.

How do the three algorithms compare in this setting? Plugging-in S = 10, ν = 10, and V as above, we
see that the leading term in the complexity bound for StOMP is 960 · d2 log d. In contrast, for OMP the
leading term in the worst-case bound becomes 4δ3

3 d6 + 16δd4 log d, and for $1 minimization the leading
term is 16d4 log d. The computational gains from StOMP are indeed substantial. Moreover, to run OMP
in this setting, we may need up to δ2

2 d4 memory elements to store the Cholesky factorization, which
renders it unusable for anything but the smallest d. In Section 9.1, we present actual running times of
the different algorithms.

6 The Large-System Limit

Figures 6 and 7 suggest phase transitions in the behavior of StOMP , which would imply a certain
well-defined asymptotic ‘system capacity’ below which StOMPsuccessfully finds a sparse solution, and
above which it fails. In this section, we review the empirical evidence for a phase transition in the
large-system limit and develop theory that rigorously establishes it. We consider the problem suite
S(k, n,N ;USE,±1) defined by random Φ sampled from the USE, and with y generated as y = Φx0,
where x0 has k nonzero coefficients in random positions having entries ±1. This ensemble generates a
slightly ‘lower’ transition than the ensemble used for Figures 6 and 7 where the nonzeros in x0 had iid
Gaussian N(0, 1) entries.

6.1 Evidence for Phase Transition

Figure 8 presents results of simulations at fixed ratios δ = n/N but increasing n. Three different
quantities are considered: in panel (a), the probability of early termination, i.e. termination before stage
S = 10 because the residual has been driven nearly to zero; in panel (b) the missed detection rate, i.e.
the fraction of nonzeros in x0 that are not supported in the reconstruction x̂S . Both quantities undergo
transitions in behavior near ρ = .2.

Significantly, the transitions become more sharply defined with increasing n. As n increases, the
early termination probability behaves increasingly like a raw discontinuity 1{k/n≥ρF AR(n/N)} as n →∞,
while the fraction of missed detections properties behave increasingly like a discontinuity in derivative
(k/n−ρFAR(n/N))+. In statistical physics such limiting behaviors are called first-order and second-order
phase transitions, respectively.
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n→∞



2-D curvelets

curvelets are of rapid decay 
in space

curvelets are strictly localized 
in frequency

x-t f-k
Oscillatory in one direction and smooth in the others!



Curvelets live in wedges in the 3 D Fourier plane...

3-D curvelets



Seismic Laboratory for Imaging and Modeling

Model

spatial sampling:  12.5 m



Seismic Laboratory for Imaging and Modeling

avg. spatial sampling:  62.5 m

Data
20% traces
remaining



Seismic Laboratory for Imaging and Modeling

spatial sampling:  12.5 m

SNR = 9.26 dB

Interpolated result
using CRSI



Seismic Laboratory for Imaging and Modeling

Difference

spatial sampling:  12.5 m

(no minimum velocity constraint)

SNR = 9.26 dB



New paradigm

Traditional data collection & compression paradigm
 ‘over emphasis’ on data collection
 extract essential features
 throw away the rest ....

New paradigm compression during sampling
 project onto measurements that breaks aliases
 recover with sparsity promotion

Exploration seismology
 ‘random’ sampling of seismic wavefields [Hennenfent & 

F.J.H ‘06]
 compressive wavefield extrapolation where 

eigenfunctions of the Helmholtz operator are used as the 
measurement basis [Lin & F.J.H ‘07]



Characterizing 
singularities

joint work Mohammad Maysami

“Seismic reflector characterization by a multiscale 
detection-estimation method” ‘07



Problem
• Delineate the stratigraphy from seismic images.

• Parameterize seismic transitions

• beyond simplistic reflector models

• consistent with observed intermittent behavior of 
sedimentary records

• Estimate the parameters from seismic images:

• location

• singularity order

• instantaneous phase



Singularity characterization
through waveforms

[F.J.H ’98, ’00, ’03, ‘07]

• generalization of zero- & first-order 
discontinuities

• measures wigglyness / # oscilations / 
sharpness



Singularity characterization
through waveforms

[F.J.H ’98, ’00, ’03, ‘07]

1st order

• generalization of zero- & first-order 
discontinuities

• measures wigglyness / # oscilations / 
sharpness



Singularity characterization
through waveforms

[F.J.H ’98, ’00, ’03, ‘07]

1st order

0-order

• generalization of zero- & first-order 
discontinuities

• measures wigglyness / # oscilations / 
sharpness



Approach
[Wakin et al ‘05-’-07, M&H ‘07]

• Use a detection-estimation technique

• multiscale detection => segmentation

• multiscale Newton technique to estimate 
the parameterization

• Overlay the image with the parameterization



CWT

Seismic trace



Singularity map
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Observations
• Stratigraphy is detected

• Parameterization provides information on the 
lithology

• evidence of changes in exponents along clinoforms

• Method suffers from curvature in the imaged 
reflectors

• Extension to higher dimensions necessary

• Model that explains different types of transitions

• A step beyond the zero-& first-order discontinuities



Modeling seismic 
singularities

Joint work with Yves Bernabe (MIT)

“Seismic singularities at upper-mantle phase 
transitions: a site percolation model” GJI ‘04



Problem
Earth subsurface is highly heterogeneous

• sedimentary crust, upper-mantle transition zone & 
core-mantle boundary

Smooth relation volume fractions and the transport 
properties.

Homogenization/equivalent medium (EM) theory smoothes 
the singularities during upscaling

• relatively easy for volumetric properties (density)

• notoriously difficult for transport  properties (velocity)

Q: How to preserve singularities in effective properties?



Our approach
Include connectivity in models for the effective properties 
of bi-compositional mixtures <=> SWITCH

Start with binary mixtures, e.g.

• sand-shale

• gas-hydrate, Opal-Opal CT

• upper-mantle mineralogy

Studied two cases:

• elastic properties upper mantle (H & B ‘04)

• fluid-flow properties synthetic rock (B & H ‘04)



Mixture laws for binary 
mixtures

Elastic case:

• Controlled by connectivity of stiffest phase

Fluid-flow case:

• Controlled by connectivity of high-
conductivity phase

Note: Stiff phase = low porosity, low 
conductivity phase

No obvious link elastic-fluid flow 
properties ...



Singularity modeling
binary mixtures

HP

LP olivine

β-spinel

Site percolation

volume fraction

elastic properties

random 
process

Text



Singularity modeling
binary mixtures

HP

LP olivine

β-spinel

Site percolation

volume fraction

elastic properties

random 
process

Text



Singularity modeling
binary mixtures

HP

LP olivine

β-spinel

Site percolation

volume fraction

elastic properties

random 
process

Text



Mixing model

Homogeneous mixing (e.g., solid solution) of two phases 
(LP weak and HP strong) can only produce gradually 
varying elastic properties. 

If Heterogeneous (e.g. emerging random macroscopic 
inclusions) mixing, then a singularity in the elastic 
properties must arise at the depth where the strong, HP 
phase becomes connected (observed in binary alloys).



Site-percolation model

Assume volume fractions p and q =1–p, are 
linear functions of depth z.

At a critical depth zc, which corresponds to the 
percolation threshold pc = p(zc), an "infinite", 
connected HP cluster is formed.

For z ≥ zc

• not all HP inclusions belong to the infinite cluster.

• isolated HP inclusions can still be found, embedded in 
the remaining LP material and forming with it a 
mixture (M). 



Site-percolation model

Above zc we have a weak LP matrix containing 
randomly distributed, non-percolating, strong HP 
inclusions. 

Below zc, a strong HP skeleton is intertwined 
with the weaker, mixed material M. 



Site-percolation model

Volume fraction p* of HP material that belongs 
to the infinite cluster 

• is zero for p < pc (i.e., above zc) 

• has a power-law dependence on (p - pc) for 

    p ≥ pc. 

Hence, p* is given by:

		 	 	 	 	
p∗ = p

(
p− pc

1− pc

)β



Site-percolation model

Mixed M is given by q* = (1 - p*). 

For M, we need the volume fractions of its LP 
and HP parts,

 qM = (1 - p)/{(1 - p) + (p - p*)} 

 pM = (1 - qM), 

yielding

pM = 1− q

1− p
(

p−pc

1−pc

)β



Site-percolation model
Binary mixture:

• Strong when its strong component is connected.

• Weak otherwise.

Assume locally isotropic

• Bin. mixtures bounded by Hashin-Shtrikman (HS).

• upper HS bound when strong component connects, the 
lower one applies otherwise.

Bulk modulus K of the co-existence region above 
zc is given by the lower HS bound:



Site-percolation model

Below zc we must switch to the higher HS bound: 

Since the HP inclusions in M are isolated, KM is 
calculated using the lower HS bound:



Site-percolation model

Major consequence of this model is that it 
predicts:

• a β-order, cusp-like singularity in the 
elastic moduli as the critical depth zc is 
approached from below (instead of a first-/
zero-order discontinuity). 

• Singularities that persist for vanishing 
contrasts.

• Density that does not behave singularly.



Site-percolation model

Elastic contrasts between LP and HP are small:

• Nearly coincident HS bounds.

• Excessively small contrasts.

Discard isotropy assumption:

•Horizontally-oriented oblate ellipsoidal inclusions which 
coalesce below zc into long, vertical dendrites, leaving 
prolate M inclusions between them.

•Transversely isotropic structure.



Site-percolation model
Near normal incidence, VP and VS approach limiting 
values as the aspect ratio is goes to zero.

Same as replacing lower and higher HS bounds by 
Reuss and Voigt averages:



Singularity model



Singularity model
upper-mantle transitions



Modeled data vs seismic



Singularity-preserved 
upscaling

Joint work with Yves Bernabe (MIT)



The problem

• Equivalent medium based upscaling washes out the 
singularities

• Reflection seismology lives by virtue of singularities in 
the elastic moduli (transport properties)

• Propose a singularity preserving upscaling method:

• upscales the lithology rather than the velocities

• Singularities can be due to sharp changes in composition 
or due to the switch ...



Volume fraction
synthetic well
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Switch vs no switch
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EM-upscaled reflectivity

!1 0 1 2 3 4 5 6 7 8 9 10

0

500

1000

1500

2000

2500

3000

3500

4000

Reflectivity for the Equivalen medium model

lost
singularities



Perco.-upscaled reflectivity
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Relation to fluid flow
& 

open problems
joint work with Yves Bernabe (MIT)



Sedimentary crust

What does this model buy us? Some insight in 

• the complexity of transitions

• the creation of a singularity for smooth varying 
composition, e.g. when clay lenses connect ...

• the morphology at transitions

• linking elastic and fluid properties remains a 
challenge ....



Fluid flow

• difficult to model

• difficult to measure

[B&H ‘04]

Connectivity of the high conductive phase

measured modeled



numerical simulations
kHP/kLP from ~1 to 106  

Steady-state flow equation:

Grid up to 50 X 50 X 50



Sand-clay model
according HB model [HB ‘04]
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Elastic versus Fluid

• singularities in elastic properties 
are small

• singularities in fluid properties are 
large

• waves are way more sensitive to 
singularities then diffusion driven 
fluid flow

• models for fluid and elastic transport 
are not integrated

• incorporate in Biot?
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Conclusions
• Multiscale compressible signal representations that 

exploit higher-dim. geometry are indispensable for 
acquiring accurate information on the imaged 
waveforms.

• Imaged waveforms carry information on the fine 
structure of the reflectors.

• Percolation model provides an interesting perspective

• on linking the micro-connectivity to singularities 
detected by waves

• on providing an upscaling that preserves features = 
singularities that matter .... 
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