Simply denoise: wavefield reconstruction via jittered undersampling
Next:
About this document ...
Up:
Hennenfent and Herrmann: Jittered
Previous:
Acknowledgments
Bibliography
Abma, R. and N. Kabir, 2006, 3D interpolation of irregular data with a POCS algorithm: Geophysics,
71
, E91 - E97.
Bednar, J. B., 1996, Coarse is coarse of course unless...: The Leading Edge,
15
, 763 - 764.
Biondi, B., S. Fomel, and N. Chemingui, 1998, Azimuth moveout for 3D prestack imaging: Geophysics,
63
, 1177 - 1183.
Candès, E. J., L. Demanet, D. L. Donoho, and L. Ying, 2005a, Fast discrete curvelet transforms: Multiscale Modeling and Simulation,
5
, 861-899.
Candès, E. J. and J. Romberg, 2006, Quantitative robust uncertainty principles and optimally sparse decompositions: Foundations of Computational Mathematics,
6
, 227 - 254.
Candès, E. J., J. Romberg, and T. Tao, 2005b, Stable signal recovery from incomplete and inaccurate measurements: Communications on Pure and Applied Math,
99
, 1207 - 1223.
----, 2006, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information: IEEE Transactions on Information Theory,
52
, 489 - 509.
Canning, A. and G. H. Gardner, 1996, Regularizing 3D data-sets with DMO: Geophysics,
61
, 1103 - 1114.
Claerbout, J. F., 1971, Towards a unified theory of reflector mapping: Geophysics,
36
, 467 - 481.
Daubechies, I., M. Defrise, and C. De Mol, 2004, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint: Communications on Pure and Applied Mathematics,
LVII
, 1413 - 1457.
Dippe, M. and E. Wold, 1992, Stochastic sampling: theory and application: Progress in Computer Graphics,
1
, 1 - 54.
Donoho, D. L., 2006, Compressed sensing: IEEE Transactions on Information Theory,
52
, 1289 - 1306.
Donoho, D. L. and X. Huo, 2001, Uncertainty principles and ideal atomic decomposition: IEEE Transactions on Information Theory,
47
, 2845-2862.
Donoho, D. L., Y. Tsaig, I. Drori, and J.-L. Starck, 2006, Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit: Technical report, Stanford Statistics Department.
(TR-2006-2.
http://stat.stanford.edu/~idrori/StOMP.pdf
).
Figueiredo, M. A. T., R. D. Nowak, and S. J. Wright, 2007, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems: Technical report, Instituto de Telecomunicacoes.
(
http://www.lx.it.pt/~mtf/GPSR/Figueiredo_Nowak_Wright_twocolumn.pdf
).
Frigo, M. and S. G. Johnson, 1998, FFTW: An adaptive software architecture for the FFT: International Conference on Acoustics, Speech and Signal Processing, 1381 - 1384, IEEE.
Gersztenkorn, A., J. B. Bednar, and L. Lines, 1986, Robust iterative inversion for the one-dimensional acoustic wave equation: Geophysics,
51
, 357 - 369.
Hennenfent, G. and F. J. Herrmann, 2005, Sparseness-constrained data continuation with frames: Applications to missing traces and aliased signals in 2/3-D: SEG International Exposition and 75
Annual Meeting, 2162 - 2165.
----, 2006, Seismic denoising with non-uniformly sampled curvelets: Computing in Science and Engineering,
8
, 16 - 25.
Herrmann, F. J. and G. Hennenfent, 2007, Non-parametric seismic data recovery with curvelet frames: Technical report, UBC Earth & Ocean Sciences Department.
(TR-2007-1.
http://slim.eos.ubc.ca/Publications/Public/Journals/CRSI.pdf
).
Herrmann, F. J., D. Wang, G. Hennenfent, and P. P. Moghaddam, 2007, Curvelet-based seismic data processing: a multiscale and nonlinear approach.
(Accepted for publication in Geophysics.
http://slim.eos.ubc.ca/Publications/Public/Journals/curveletter.pdf
).
Leneman, O., 1966, Random sampling of random processes: Impulse response: Information and Control,
9
, 347 - 363.
Lustig, M., D. L. Donoho, and J. M. Pauly, 2007, Sparse MRI: The application of compressed sensing for rapid MR imaging: Magnetic Resonance in Medicine.
(In press.
http://www.stanford.edu/~mlustig/SparseMRI.pdf
).
Sacchi, M. D., T. J. Ulrych, and C. J. Walker, 1998, Interpolation and extrapolation using a high-resolution discrete Fourier transform: IEEE Transactions on Signal Processing,
46
, 31 - 38.
Spitz, S., 1991, Seismic trace interpolation in the F-X domain: Geophysics,
67
, 890 - 794.
Stolt, R. H., 2002, Seismic data mapping and reconstruction: Geophysics,
67
, 890 - 908.
Sun, Y., G. T. Schuster, and K. Sikorski, 1997, A Quasi-Monte Carlo approach to 3-D migration: Theory: Geophysics,
62
, 918 - 928.
Tibshirani, R., 1996, Regression shrinkage and selection via the Lasso: Journal of the Royal Statistical Society,
58
, 267 - 288.
Trad, D. O., J. Deere, and S. Cheadle, 2005, Challenges for land data interpolation: Presented at the CSEG National Convention.
Trad, D. O. and T. J. Ulrych, 1999, Radon transform: beyond aliasing with irregular sampling: Presented at the Sixth International Congress of the Brazilian Geophysical Society.
Trad, D. O., T. J. Ulrych, and M. D. Sacchi, 2003, Latest view of sparse Radon transforms: Geophysics,
68
, 386-399.
van den Berg, E. and M. P. Friedlander, 2007, In pursuit of a root: Technical report, UBC Computer Science Department.
(TR-2007-16.
http://www.optimization-online.org/DB_FILE/2007/06/1708.pdf
).
Verdu, S., 1998, Multiuser detection: Cambridge University Press.
Verschuur, D. J., A. J. Berkhout, and C. P. A. Wapenaar, 1992, Adaptive surface-related multiple elimination: Geophysics,
57
, 1166 - 1177.
Wang, J. and M. D. Sacchi, 2007, High-resolution wave-equation amplitude-variation-with-ray-parameter (AVP) imaging with sparseness constraints: Geophysics,
72
, S11 - S18.
Xu, S., Y. Zhang, D. Pham, and G. Lambare, 2005, Antileakage Fourier transform for seismic data regularization: Geophysics,
70
, V87 - V95.
Zhou, C. and G. T. Schuster, 1995, Quasi-random migration of 3-D field data: SEG Technical Program Expanded Abstracts, 1145 - 1148.
Zwartjes, P. M. and M. D. Sacchi, 2007, Fourier reconstruction of nonuniformly sampled, aliased data: Geophysics,
72
, V21-V32.
2007-11-27