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Introduction

Concerned with explicit forms of wavefield
propagator . of the linearized forward model

®-> B8\ A

g > 0

Would like to find explicit . suitable for wave-
equation migration:

= simultaneously operates on sets of traces

= fully incorporates velocity information of medium

® no parabolic approximations
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Introduction

Goal: employ the complete 1-Way Helmholtz
operator for .

way operator on laterally varying media: Geophysics, 63, 995-1005.

. — e FiarH: H>; = H.:H,4

Problem: computation & storage complexity
= creating and storing H, is trivial
" however H, is not trivial to compute and store

N

Grimbergen, J., F. Dessing, and C. Wapenaar, 1998, Modal expansion of one-
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Introduction

In this case . is computed by eigenvalue
decomposition

H, = LAL' = ||H|| N
L A Lt
® requires, per frequency:
1 eigenvalue problem (O(n%))

—] \/_ACES LT
2 full matrix-vector for eigenspace transform (O(n?))
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Introduction

Band-diagonalization techniques like parabolic
approximation trades for speed with approximations

Is there another way?
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Our approach

Consider a related, but simpler problem: shifting (or
translating) signal

- A x
27TD

operatoris S =e¢’/ \
D is differential operator D = \
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Our approach

Computation requires similar approach to .

-~ [ e[A

However, for D, L = DFT, so computation trivial
with FFT —

J o7 A L1



Our approach

Pedagogically, suppose FFT does not exist

s(k)

[N

1

=

)

|I‘_|

|I‘_|

|

n

| [

|I‘_|

T

I

|

T

I

K

L
L
K

—

Fo=-1234. .



Our approach

what happens if some nodes didn’t finish their jobs
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s(k) Fo=14,.. s(z)



Our approach

mathematically, the system is incomplete

= Fo=14,..

s(x)

evidently some information of original s(x) is
invariably lost. Or is it?
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Compressed Sensing

states that given system of the form

measured o A <
signal Y= X
linear model of restricted sparse representation of
measurement process ‘ original data

(measurement basis)
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Compressed Sensing

states that given system of the form

measured o A <
signal Y= X
linear model of restricted sparse representation of
measurement process ‘ original data

(measurement basis)

can exactly “recover” x from y by solving L1 problem
N

X = argmin||x||, = X, |x] s.t. Ax =y,
X I = 1
Candes, E., J. RomEerg, and T. Tao, 2006b, Stable signal recovery from in-

complete and inaccurate measurements: Communications On Pure and L SLIwM
Applied Mathematics, 59, 1207-1223. I/ Seismic Laboratary for
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siFnaI in time domain
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siFnaI in time domain

recovered signal in time domain
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Compressed Sensing

X has to be sparse
A has to be Fourier transform

Compressed sensing theory gives us strict bounds on
regions of recoverability

Connection: Enables deterministic, deliberate
incomplete computations
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Compressed Seastre “Computation”

if we “shift” s(k) with e i gm A , What happens when
we recover s(X) using s’(k)?

— \ — Fw:1,4,...
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Compressed Seastag “Computation”

if we “shift” s(k) with e i gw A , What happens when
we recover s(X) using s’(k)?

— \ — Fw:1,4,...

Answer: we recover a shifted s(x)!
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Compressed Sensing

signal in space domain incomplete signal in Fourier signal in space domain
domain

Compressed Processing

signal in space domain incomplete and shifted signal

. . . shifted signal in space domain
in Fourier domain f 8 P

O SLIWV
Seismic Laboratory for
maging and Moedeling



Straightforward Computation

signal in space domain shifted signal in Fourier

domain shifted signal in space domain

Compressed Processing

U j V | | M\

‘ w“ Hv

signal in space domain mcomplete and shifted signal

. . . shifted signal in space domain
in Fourier domain f 8 P
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Compressed Seastag “Computation”

In a nutshell:

®" Trades the cost of L1 solvers for a compressed
operator that is cheaper to compute, store, and
synthesize

L1 solver research is currently a hot topic in applied
mathematics

Tibshirani, R., 1996, Least absolute shrinkage and selection operator, Soft-
ware: http://www-stat.stanford.edu/~tibs/lasso.html.

Candes, E. J., and J. Romberg, 2005, €,-magic. Software: http://www.acm.
caltech.edu/limagic/.

Donoho, D. L., I. Drori, V. Stodden, and Y. Tsaig, 2005, SparseLab, Soft-
ware: http://sparselab.stanford.edu/.

Figueiredo, M., R. D. Nowak, and S. J. Wright, 2007, Gradient projection for
sparse reconstruction, Software: http://www.Ix.it.pt/~mtf/GPSR/.

Koh, K., S. J. Kim, and S. Boyd, 2007, Simple matlab solver for 11-regular-
ized least squares problems, Software: http://www-stat.stanford.edu/ A SLIM
~tibs/lasso.html. V) Sttty



Compressed Wavetield Extrapolation

Recall the similarity between W* and S
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Compressed Wavetield Extrapolation

Structure of H;
= analytically
Ho = H1H4
Ho = k2 (ZB) -+ 8M6M

= discretely

Hy; = C + D

(

C1

)

H, — LAL?

+ Do

H, = LAY?LT
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Compressed Wavetield extrapolation

eigenfunctions of Hs at 30 Hz for constant velocity medium
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Eigenvalue Index

Asymptotically identical to the Cosine transform
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Compressed Wavetield extrapolation

eigenfunctions of Hy at 30 Hz for Marmousi velocity medium
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Compressed Wavetield extrapolation

\

\VAVAVAVA

IVAVAVAV/

NAVAVAVAY

VAVAVAVAY/

NAVAVRVAVAVAVEVAVAVAVEVAVAY

NAVAVAVINAVAVLYANAVAVAVINAY

JAVEVAVAVAVAVEVAVAVAVAVAVAY

JAVEVAY

I\

AVIAVAAVIVARIVAVNAVEVAVINAVIV

VAVAVAVIYAVAVAREVAVEVAVEN AVN AVIN AVVAY,

JAVAVIYAVIYAVNAVINAVIV AVIN AVAV AV AVAVAVAVAVAVAVAVRVAREYAN

VAN NN VA NN Y.

VARYAVIVIVAYVATARNAVAWINAVIVIVAVAWATAVIVAVASRVAVAVAVAVANAVAM VAV AV A YAV AV VAV VAV AV SV AV AT AV AVA WY AV AYAWNAY

AAAANITANRVATAVIONAYAY

A AT A VAV A AV Y AV AV A A AT AV NV A A VAN AT AV A AV RN AV AV AV AV ANV A A VAN AV IRV AV AVAWNA AV AV AV AV AVAVIWVAVA VYA,

ALY

VAV,

VY.

A

20 25

15

Eigenvalue Index

fairly close to the Cosine transform

10

[Te]

SLIM

A




Straightforward 1-Way inverse Wavefield Extrapolation

wavefield in space-time back-extrapolated wavefield back-extrapolated to impulse
domain in H2 domain source in space-time domain

Compressed 1-Way Wavefield Extrapolation

wavefield in space-time incomplete back- back-extrapolated to impulse
domain extrapolated wavefield in H2 source in space-time domain
domain
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Compressed wavetield extrapolation

simple 1-D space/time propagation example with point scatters
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Compressed wavetield extrapolation

simple 1-D space/time propagation example with point scatters
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propagated 1.5km down recovered though L1 inverson

Restricted L transform to ~0.01 of original coefficients

Sl sSLIM

| Seismic Laboratary for
Imaging and Modeling



Sparsity through curvelets

for extrapolation to reflectivity, we first transform
signal into a sparsifies reflectivity

we know reflectivity are sparse in curvelets

Candes, E. J., and L. Demanet, 2005, The curvelet representation of wave
propagators 1s optimally sparse: Communications on Pure and Applied

Mathematics, 58, 1472—-1528.
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Example (Canadian overthrust)

Offset (km) Offset (km)
400 402 404 406 408 410 0 1 2 3 4 5 6 7 8 9 10

original reflectivity downward extrapolated 50m

Offset (km)
0 1 2 3 4 5 6 7 8 9 10

inverse extrapolated explicitly AL \SLIM
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Example (Canadian overthrust)

Offset (km)
1 2 3 4 5 6 7 8 9 10

Inverse extrapolated explicitly

Offset (km)
0 1 2 3 4 5 6 7 8 9 10

~ inverse extrapolated with
compressed computation

~15% coefficients used
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Discussions

Bottom line: synthesis, operation, and storage cost
savings versus L1-solver cost

require good sparsity-promoting basis (ie Curvelets)

potential to apply same technique to a variety of
different operators
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Conclusions

1) Take linear operator with suitable structure for
compressed sensing, having a diagonalizing basis
which is incoherent with the signal basis

2) Compressed sensing theory tells us how much
computation we can throw away while still
recovering full signal with L1 solver

3) Then we can take advantage of results in
compressed sampling for compressed computation

Summary:

® Fxploit compressed sensing theory for gains in
scientific computation sLim



More information

Check-out the full paper at:

Lin, T'T.Y. and E Herrmann, 2007, Compressed wavetield extrapolation:
Geophysics, 72, SM77-SM93
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Compressed wavetield extrapolation

y = Re_jw\/KA“”S L'u

%X =argming ||x|i st. RL'x=y
g =x
Randomly subsample in the Modal domain
Recover by norm-one minimization
Capitalize on

® the incoherence between modal functions and
impulse sources

" reduced explicit matrix size
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Compressed wavetield extrapolation
with curvelets

_ Re—iwV ALz TETy,

y
% =argming |[x||; st. RL'C'x=y
u =x

Original and reconstructed signals remain in the
curvelet domain

Original curvelet transform must be done outside of
the algorithm
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