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Focused recovery

Non-data-adaptive Curvelet Reconstruction with 
Sparsity-promoting Inversion (CRSI) derives from 
sparsity of seismic data.

Berkhout and Verschuur’s data-adaptive Focal 
transform derives from focusing of seismic data by 
the major primaries.

Both approaches entail the inversion of a linear 
operator.

Combination of the two yields

! improved focusing => more sparsity

! curvelet sparsity   => better focusing
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SPARSITY-PROMOTING INVERSION

Our solution strategy is built on the premise that seismic
data and images have a sparse representation, x0, in the
curvelet domain. To exploit this property, our forward
model reads

y = Ax0 + n (1)

with y a vector with noisy and possibly incomplete mea-
surements; A the modeling matrix that includes CT ; and
n, a zero-centered white Gaussian noise. Because of the
redundancy of C and/or the incompleteness of the data,
the matrix A can not readily be inverted. However, as
long as the data, y, permits a sparse vector, x0, the ma-
trix, A, can be inverted by a sparsity-promoting program
(Candès et al., 2006b; Donoho, 2006) of the following type:

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(2)

in which ε is a noise-dependent tolerance level, ST the
inverse transform and f̃ the solution calculated from the
vector x̃ (the symbol ˜ denotes a vector obtained by non-
linear optimization) that minimizes Pε.

Nonlinear programs such as Pε are not new to seismic
data processing and imaging. Refer, for instance, to the
extensive literature on spiky deconvolution (Taylor et al.,
1979) and transform-based interpolation techniques such
as Fourier-based reconstruction (Sacchi and Ulrych, 1996).
By virtue of curvelets’ high compression rates, the non-
linear program Pε can be expected to perform well when
CT is included in the modeling operator. Despite its large-
scale and nonlinearity, the solution of the convex problem
Pε can effectively be approximated with a limited (< 250)
number of iterations of a threshold-based cooling method
derived from work by Figueiredo and Nowak (2003) and
Elad et al. (2005). Each step involves a descent projection,
followed by a soft thresholding.

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-
sampled data with missing traces is a setting where a
curvelet-based method will perform well (see e.g. Herr-
mann, 2005; Hennenfent and Herrmann, 2006a, 2007). As
with other transform-based methods, sparsity is used to
reconstruct the wavefield by solving Pε. It is also shown
that the recovery performance can be increased when in-
formation on the major primary arrivals is included in the
modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete
data corresponds to the inversion of the picking operator
R. This operator models missing data by inserting zero
traces at source-receiver locations where the data is miss-
ing. The task of the recovery is to undo this operation
by filling in the zero traces. Since seismic data is sparse

in the curvelet domain, the missing data can be recovered
by compounding the picking operator with the curvelet
modeling operator, i.e., A := RCT . With this defini-
tion for the modeling operator, solving Pε corresponds to
seeking the sparsest curvelet vector whose inverse curvelet
transform, followed by the picking, matches the data at
the nonzero traces. Applying the inverse transform (with
S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in
Figure 1, where a real 3-D seismic data volume is recov-
ered from data with 80% traces missing (see Figure 1(b)).
The missing traces are selected at random according to a
discrete distribution, which favors recovery (see e.g. Hen-
nenfent and Herrmann, 2007), and corresponds to an av-
erage sampling interval of 125 m . Comparing the ’ground
truth’ in Figure 1(a) with the recovered data in Figure 1(c)
shows a successful recovery in case the high-frequencies
are removed (compare the time slices in Figure 1(a) and
1(c)). Aside from sparsity in the curvelet domain, no prior
information was used during the recovery, which is quite
remarkable. Part of the explanation lies in the curvelet’s
ability to locally exploit the 3-D structure of the data
and this suggests why curvelets are successful for complex
datasets where other methods may fail.

Focused recovery

In practice, additional information on the to-be-recovered
wavefield is often available. For instance, one may have
access to the predominant primary arrivals or to the ve-
locity model. In that case, the recently introduced focal
transform (Berkhout and Verschuur, 2006), which ’decon-
volves’ the data with the primaries, incorporates this addi-
tional information into the recovery process. Application
of this primary operator, ∆P, adds a wavefield interaction
with the surface, mapping primaries to first-order surface-
related multiples (see e.g. Verschuur and Berkhout, 1997;
Herrmann, 2007). Inversion of this operator, strips the
data off one interaction with the surface, focusing pri-
maries to (directional) sources, which leads to a sparser
curvelet representation.

By compounding the non-adaptive curvelet transform
with the data-adaptive focal transform, i.e., A := R∆PCT ,
the recovery can be improved by solving Pε. The solution
of Pε now entails the inversion of ∆P, yielding the spars-
est set of curvelet coefficients that matches the incomplete
data when ’convolved’ with the primaries. Applying the
inverse curvelet transform, followed by ’convolution’ with
∆P yields the interpolation, i.e. ST := ∆PCT. Compar-
ing the curvelet recovery with the focused curvelet recov-
ery (Fig ?? and ??) shows an overall improvement in the
recovered details.

SEISMIC SIGNAL SEPARATION

Predictive multiple suppression involves two steps, namely
multiple prediction and the primary-multiple separation.
In practice, the second step appears difficult and adap-

with
A := ∆PCT

S := C
y = P(:)
P = total data.

and ∆P := FHblock diag{∆}F

Total data
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SPARSITY-PROMOTING INVERSION

Our solution strategy is built on the premise that seismic
data and images have a sparse representation, x0, in the
curvelet domain. To exploit this property, our forward
model reads

y = Ax0 + n (1)

with y a vector with noisy and possibly incomplete mea-
surements; A the modeling matrix that includes CT ; and
n, a zero-centered white Gaussian noise. Because of the
redundancy of C and/or the incompleteness of the data,
the matrix A can not readily be inverted. However, as
long as the data, y, permits a sparse vector, x0, the ma-
trix, A, can be inverted by a sparsity-promoting program
(Candès et al., 2006b; Donoho, 2006) of the following type:

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(2)

in which ε is a noise-dependent tolerance level, ST the
inverse transform and f̃ the solution calculated from the
vector x̃ (the symbol ˜ denotes a vector obtained by non-
linear optimization) that minimizes Pε.

Nonlinear programs such as Pε are not new to seismic
data processing and imaging. Refer, for instance, to the
extensive literature on spiky deconvolution (Taylor et al.,
1979) and transform-based interpolation techniques such
as Fourier-based reconstruction (Sacchi and Ulrych, 1996).
By virtue of curvelets’ high compression rates, the non-
linear program Pε can be expected to perform well when
CT is included in the modeling operator. Despite its large-
scale and nonlinearity, the solution of the convex problem
Pε can effectively be approximated with a limited (< 250)
number of iterations of a threshold-based cooling method
derived from work by Figueiredo and Nowak (2003) and
Elad et al. (2005). Each step involves a descent projection,
followed by a soft thresholding.

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-
sampled data with missing traces is a setting where a
curvelet-based method will perform well (see e.g. Herr-
mann, 2005; Hennenfent and Herrmann, 2006a, 2007). As
with other transform-based methods, sparsity is used to
reconstruct the wavefield by solving Pε. It is also shown
that the recovery performance can be increased when in-
formation on the major primary arrivals is included in the
modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete
data corresponds to the inversion of the picking operator
R. This operator models missing data by inserting zero
traces at source-receiver locations where the data is miss-
ing. The task of the recovery is to undo this operation
by filling in the zero traces. Since seismic data is sparse

in the curvelet domain, the missing data can be recovered
by compounding the picking operator with the curvelet
modeling operator, i.e., A := RCT . With this defini-
tion for the modeling operator, solving Pε corresponds to
seeking the sparsest curvelet vector whose inverse curvelet
transform, followed by the picking, matches the data at
the nonzero traces. Applying the inverse transform (with
S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in
Figure 1, where a real 3-D seismic data volume is recov-
ered from data with 80% traces missing (see Figure 1(b)).
The missing traces are selected at random according to a
discrete distribution, which favors recovery (see e.g. Hen-
nenfent and Herrmann, 2007), and corresponds to an av-
erage sampling interval of 125 m . Comparing the ’ground
truth’ in Figure 1(a) with the recovered data in Figure 1(c)
shows a successful recovery in case the high-frequencies
are removed (compare the time slices in Figure 1(a) and
1(c)). Aside from sparsity in the curvelet domain, no prior
information was used during the recovery, which is quite
remarkable. Part of the explanation lies in the curvelet’s
ability to locally exploit the 3-D structure of the data
and this suggests why curvelets are successful for complex
datasets where other methods may fail.

Focused recovery

In practice, additional information on the to-be-recovered
wavefield is often available. For instance, one may have
access to the predominant primary arrivals or to the ve-
locity model. In that case, the recently introduced focal
transform (Berkhout and Verschuur, 2006), which ’decon-
volves’ the data with the primaries, incorporates this addi-
tional information into the recovery process. Application
of this primary operator, ∆P, adds a wavefield interaction
with the surface, mapping primaries to first-order surface-
related multiples (see e.g. Verschuur and Berkhout, 1997;
Herrmann, 2007). Inversion of this operator, strips the
data off one interaction with the surface, focusing pri-
maries to (directional) sources, which leads to a sparser
curvelet representation.

By compounding the non-adaptive curvelet transform
with the data-adaptive focal transform, i.e., A := R∆PCT ,
the recovery can be improved by solving Pε. The solution
of Pε now entails the inversion of ∆P, yielding the spars-
est set of curvelet coefficients that matches the incomplete
data when ’convolved’ with the primaries. Applying the
inverse curvelet transform, followed by ’convolution’ with
∆P yields the interpolation, i.e. ST := ∆PCT. Compar-
ing the curvelet recovery with the focused curvelet recov-
ery (Fig ?? and ??) shows an overall improvement in the
recovered details.

SEISMIC SIGNAL SEPARATION

Predictive multiple suppression involves two steps, namely
multiple prediction and the primary-multiple separation.
In practice, the second step appears difficult and adap-

Recovery with focussing

with
A := R∆PCT

ST := ∆PCT

y = RP(:)
R = picking operator.
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SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-sampled data with missing traces

is a setting where a curvelet-based method will perform well (see e.g. Herrmann, 2005;

Hennenfent and Herrmann, 2006a, 2007). As with other transform-based methods, sparsity

is used to reconstruct the wavefield by solving Pε. It is also shown that the recovery

performance can be increased when information on the major primary arrivals is included

in the modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete data corresponds to the inversion

of the picking operator R. This operator models missing data by inserting zero traces at

source-receiver locations where the data is missing. The task of the recovery is to undo this

operation by filling in the zero traces. Since seismic data is sparse in the curvelet domain,

the missing data can be recovered by compounding the picking operator with the curvelet

modeling operator, i.e., A := RCT . With this definition for the modeling operator, solving

Pε corresponds to seeking the sparsest curvelet vector whose inverse curvelet transform,

followed by the picking, matches the data at the nonzero traces. Applying the inverse

transform (with S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in Figure 1, where a real 3-D seismic

data volume is recovered from data with 80 % traces missing (see Figure 1(b)). The missing

traces are selected at random according to a discrete distribution, which favors recovery (see

e.g. Hennenfent and Herrmann, 2007), and corresponds to an average sampling interval of

125 m . Comparing the ’ground truth’ in Figure 1(a) with the recovered data in Figure 1(c)
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SPARSITY-PROMOTING INVERSION

Our solution strategy is built on the premise that seismic
data and images have a sparse representation, x0, in the
curvelet domain. To exploit this property, our forward
model reads

y = Ax0 + n (1)

with y a vector with noisy and possibly incomplete mea-
surements; A the modeling matrix that includes CT ; and
n, a zero-centered white Gaussian noise. Because of the
redundancy of C and/or the incompleteness of the data,
the matrix A can not readily be inverted. However, as
long as the data, y, permits a sparse vector, x0, the ma-
trix, A, can be inverted by a sparsity-promoting program
(Candès et al., 2006b; Donoho, 2006) of the following type:

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(2)

in which ε is a noise-dependent tolerance level, ST the
inverse transform and f̃ the solution calculated from the
vector x̃ (the symbol ˜ denotes a vector obtained by non-
linear optimization) that minimizes Pε.

Nonlinear programs such as Pε are not new to seismic
data processing and imaging. Refer, for instance, to the
extensive literature on spiky deconvolution (Taylor et al.,
1979) and transform-based interpolation techniques such
as Fourier-based reconstruction (Sacchi and Ulrych, 1996).
By virtue of curvelets’ high compression rates, the non-
linear program Pε can be expected to perform well when
CT is included in the modeling operator. Despite its large-
scale and nonlinearity, the solution of the convex problem
Pε can effectively be approximated with a limited (< 250)
number of iterations of a threshold-based cooling method
derived from work by Figueiredo and Nowak (2003) and
Elad et al. (2005). Each step involves a descent projection,
followed by a soft thresholding.

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-
sampled data with missing traces is a setting where a
curvelet-based method will perform well (see e.g. Herr-
mann, 2005; Hennenfent and Herrmann, 2006a, 2007). As
with other transform-based methods, sparsity is used to
reconstruct the wavefield by solving Pε. It is also shown
that the recovery performance can be increased when in-
formation on the major primary arrivals is included in the
modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete
data corresponds to the inversion of the picking operator
R. This operator models missing data by inserting zero
traces at source-receiver locations where the data is miss-
ing. The task of the recovery is to undo this operation
by filling in the zero traces. Since seismic data is sparse

in the curvelet domain, the missing data can be recovered
by compounding the picking operator with the curvelet
modeling operator, i.e., A := RCT . With this defini-
tion for the modeling operator, solving Pε corresponds to
seeking the sparsest curvelet vector whose inverse curvelet
transform, followed by the picking, matches the data at
the nonzero traces. Applying the inverse transform (with
S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in
Figure 1, where a real 3-D seismic data volume is recov-
ered from data with 80% traces missing (see Figure 1(b)).
The missing traces are selected at random according to a
discrete distribution, which favors recovery (see e.g. Hen-
nenfent and Herrmann, 2007), and corresponds to an av-
erage sampling interval of 125 m . Comparing the ’ground
truth’ in Figure 1(a) with the recovered data in Figure 1(c)
shows a successful recovery in case the high-frequencies
are removed (compare the time slices in Figure 1(a) and
1(c)). Aside from sparsity in the curvelet domain, no prior
information was used during the recovery, which is quite
remarkable. Part of the explanation lies in the curvelet’s
ability to locally exploit the 3-D structure of the data
and this suggests why curvelets are successful for complex
datasets where other methods may fail.

Focused recovery

In practice, additional information on the to-be-recovered
wavefield is often available. For instance, one may have
access to the predominant primary arrivals or to the ve-
locity model. In that case, the recently introduced focal
transform (Berkhout and Verschuur, 2006), which ’decon-
volves’ the data with the primaries, incorporates this addi-
tional information into the recovery process. Application
of this primary operator, ∆P, adds a wavefield interaction
with the surface, mapping primaries to first-order surface-
related multiples (see e.g. Verschuur and Berkhout, 1997;
Herrmann, 2007). Inversion of this operator, strips the
data off one interaction with the surface, focusing pri-
maries to (directional) sources, which leads to a sparser
curvelet representation.

By compounding the non-adaptive curvelet transform
with the data-adaptive focal transform, i.e., A := R∆PCT ,
the recovery can be improved by solving Pε. The solution
of Pε now entails the inversion of ∆P, yielding the spars-
est set of curvelet coefficients that matches the incomplete
data when ’convolved’ with the primaries. Applying the
inverse curvelet transform, followed by ’convolution’ with
∆P yields the interpolation, i.e. ST := ∆PCT. Compar-
ing the curvelet recovery with the focused curvelet recov-
ery (Fig ?? and ??) shows an overall improvement in the
recovered details.

SEISMIC SIGNAL SEPARATION

Predictive multiple suppression involves two steps, namely
multiple prediction and the primary-multiple separation.
In practice, the second step appears difficult and adap-
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SPARSITY-PROMOTING INVERSION

Our solution strategy is built on the premise that seismic
data and images have a sparse representation, x0, in the
curvelet domain. To exploit this property, our forward
model reads

y = Ax0 + n (1)

with y a vector with noisy and possibly incomplete mea-
surements; A the modeling matrix that includes CT ; and
n, a zero-centered white Gaussian noise. Because of the
redundancy of C and/or the incompleteness of the data,
the matrix A can not readily be inverted. However, as
long as the data, y, permits a sparse vector, x0, the ma-
trix, A, can be inverted by a sparsity-promoting program
(Candès et al., 2006b; Donoho, 2006) of the following type:

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(2)

in which ε is a noise-dependent tolerance level, ST the
inverse transform and f̃ the solution calculated from the
vector x̃ (the symbol ˜ denotes a vector obtained by non-
linear optimization) that minimizes Pε.

Nonlinear programs such as Pε are not new to seismic
data processing and imaging. Refer, for instance, to the
extensive literature on spiky deconvolution (Taylor et al.,
1979) and transform-based interpolation techniques such
as Fourier-based reconstruction (Sacchi and Ulrych, 1996).
By virtue of curvelets’ high compression rates, the non-
linear program Pε can be expected to perform well when
CT is included in the modeling operator. Despite its large-
scale and nonlinearity, the solution of the convex problem
Pε can effectively be approximated with a limited (< 250)
number of iterations of a threshold-based cooling method
derived from work by Figueiredo and Nowak (2003) and
Elad et al. (2005). Each step involves a descent projection,
followed by a soft thresholding.

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-
sampled data with missing traces is a setting where a
curvelet-based method will perform well (see e.g. Herr-
mann, 2005; Hennenfent and Herrmann, 2006a, 2007). As
with other transform-based methods, sparsity is used to
reconstruct the wavefield by solving Pε. It is also shown
that the recovery performance can be increased when in-
formation on the major primary arrivals is included in the
modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete
data corresponds to the inversion of the picking operator
R. This operator models missing data by inserting zero
traces at source-receiver locations where the data is miss-
ing. The task of the recovery is to undo this operation
by filling in the zero traces. Since seismic data is sparse

in the curvelet domain, the missing data can be recovered
by compounding the picking operator with the curvelet
modeling operator, i.e., A := RCT . With this defini-
tion for the modeling operator, solving Pε corresponds to
seeking the sparsest curvelet vector whose inverse curvelet
transform, followed by the picking, matches the data at
the nonzero traces. Applying the inverse transform (with
S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in
Figure 1, where a real 3-D seismic data volume is recov-
ered from data with 80% traces missing (see Figure 1(b)).
The missing traces are selected at random according to a
discrete distribution, which favors recovery (see e.g. Hen-
nenfent and Herrmann, 2007), and corresponds to an av-
erage sampling interval of 125 m . Comparing the ’ground
truth’ in Figure 1(a) with the recovered data in Figure 1(c)
shows a successful recovery in case the high-frequencies
are removed (compare the time slices in Figure 1(a) and
1(c)). Aside from sparsity in the curvelet domain, no prior
information was used during the recovery, which is quite
remarkable. Part of the explanation lies in the curvelet’s
ability to locally exploit the 3-D structure of the data
and this suggests why curvelets are successful for complex
datasets where other methods may fail.

Focused recovery

In practice, additional information on the to-be-recovered
wavefield is often available. For instance, one may have
access to the predominant primary arrivals or to the ve-
locity model. In that case, the recently introduced focal
transform (Berkhout and Verschuur, 2006), which ’decon-
volves’ the data with the primaries, incorporates this addi-
tional information into the recovery process. Application
of this primary operator, ∆P, adds a wavefield interaction
with the surface, mapping primaries to first-order surface-
related multiples (see e.g. Verschuur and Berkhout, 1997;
Herrmann, 2007). Inversion of this operator, strips the
data off one interaction with the surface, focusing pri-
maries to (directional) sources, which leads to a sparser
curvelet representation.

By compounding the non-adaptive curvelet transform
with the data-adaptive focal transform, i.e., A := R∆PCT ,
the recovery can be improved by solving Pε. The solution
of Pε now entails the inversion of ∆P, yielding the spars-
est set of curvelet coefficients that matches the incomplete
data when ’convolved’ with the primaries. Applying the
inverse curvelet transform, followed by ’convolution’ with
∆P yields the interpolation, i.e. ST := ∆PCT. Compar-
ing the curvelet recovery with the focused curvelet recov-
ery (Fig ?? and ??) shows an overall improvement in the
recovered details.

SEISMIC SIGNAL SEPARATION

Predictive multiple suppression involves two steps, namely
multiple prediction and the primary-multiple separation.
In practice, the second step appears difficult and adap-

with
A := ∆PCT

S := C
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P = total data
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SPARSITY-PROMOTING INVERSION

Our solution strategy is built on the premise that seismic
data and images have a sparse representation, x0, in the
curvelet domain. To exploit this property, our forward
model reads

y = Ax0 + n (1)

with y a vector with noisy and possibly incomplete mea-
surements; A the modeling matrix that includes CT ; and
n, a zero-centered white Gaussian noise. Because of the
redundancy of C and/or the incompleteness of the data,
the matrix A can not readily be inverted. However, as
long as the data, y, permits a sparse vector, x0, the ma-
trix, A, can be inverted by a sparsity-promoting program
(Candès et al., 2006b; Donoho, 2006) of the following type:

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(2)

in which ε is a noise-dependent tolerance level, ST the
inverse transform and f̃ the solution calculated from the
vector x̃ (the symbol ˜ denotes a vector obtained by non-
linear optimization) that minimizes Pε.

Nonlinear programs such as Pε are not new to seismic
data processing and imaging. Refer, for instance, to the
extensive literature on spiky deconvolution (Taylor et al.,
1979) and transform-based interpolation techniques such
as Fourier-based reconstruction (Sacchi and Ulrych, 1996).
By virtue of curvelets’ high compression rates, the non-
linear program Pε can be expected to perform well when
CT is included in the modeling operator. Despite its large-
scale and nonlinearity, the solution of the convex problem
Pε can effectively be approximated with a limited (< 250)
number of iterations of a threshold-based cooling method
derived from work by Figueiredo and Nowak (2003) and
Elad et al. (2005). Each step involves a descent projection,
followed by a soft thresholding.

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-
sampled data with missing traces is a setting where a
curvelet-based method will perform well (see e.g. Herr-
mann, 2005; Hennenfent and Herrmann, 2006a, 2007). As
with other transform-based methods, sparsity is used to
reconstruct the wavefield by solving Pε. It is also shown
that the recovery performance can be increased when in-
formation on the major primary arrivals is included in the
modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete
data corresponds to the inversion of the picking operator
R. This operator models missing data by inserting zero
traces at source-receiver locations where the data is miss-
ing. The task of the recovery is to undo this operation
by filling in the zero traces. Since seismic data is sparse

in the curvelet domain, the missing data can be recovered
by compounding the picking operator with the curvelet
modeling operator, i.e., A := RCT . With this defini-
tion for the modeling operator, solving Pε corresponds to
seeking the sparsest curvelet vector whose inverse curvelet
transform, followed by the picking, matches the data at
the nonzero traces. Applying the inverse transform (with
S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in
Figure 1, where a real 3-D seismic data volume is recov-
ered from data with 80% traces missing (see Figure 1(b)).
The missing traces are selected at random according to a
discrete distribution, which favors recovery (see e.g. Hen-
nenfent and Herrmann, 2007), and corresponds to an av-
erage sampling interval of 125 m . Comparing the ’ground
truth’ in Figure 1(a) with the recovered data in Figure 1(c)
shows a successful recovery in case the high-frequencies
are removed (compare the time slices in Figure 1(a) and
1(c)). Aside from sparsity in the curvelet domain, no prior
information was used during the recovery, which is quite
remarkable. Part of the explanation lies in the curvelet’s
ability to locally exploit the 3-D structure of the data
and this suggests why curvelets are successful for complex
datasets where other methods may fail.

Focused recovery

In practice, additional information on the to-be-recovered
wavefield is often available. For instance, one may have
access to the predominant primary arrivals or to the ve-
locity model. In that case, the recently introduced focal
transform (Berkhout and Verschuur, 2006), which ’decon-
volves’ the data with the primaries, incorporates this addi-
tional information into the recovery process. Application
of this primary operator, ∆P, adds a wavefield interaction
with the surface, mapping primaries to first-order surface-
related multiples (see e.g. Verschuur and Berkhout, 1997;
Herrmann, 2007). Inversion of this operator, strips the
data off one interaction with the surface, focusing pri-
maries to (directional) sources, which leads to a sparser
curvelet representation.

By compounding the non-adaptive curvelet transform
with the data-adaptive focal transform, i.e., A := R∆PCT ,
the recovery can be improved by solving Pε. The solution
of Pε now entails the inversion of ∆P, yielding the spars-
est set of curvelet coefficients that matches the incomplete
data when ’convolved’ with the primaries. Applying the
inverse curvelet transform, followed by ’convolution’ with
∆P yields the interpolation, i.e. ST := ∆PCT. Compar-
ing the curvelet recovery with the focused curvelet recov-
ery (Fig ?? and ??) shows an overall improvement in the
recovered details.

SEISMIC SIGNAL SEPARATION

Predictive multiple suppression involves two steps, namely
multiple prediction and the primary-multiple separation.
In practice, the second step appears difficult and adap-

with
A := ∆PT CT

S := C
y = P(:)
P = total data
f̃ = defocussed data.

SRME predicted multiples

(PP)P̂ = PP

Original data

(P)P



Multiple estimate by dfCRSI

f̃

SRME predicted multiples

(PP)P̂ = PP

Original data

(P)P

Original data

P



SRME predicted multiples

P̂ = PP

Multiple estimate by dfCRSI

f̃

Observations

Daisy-chaining CRSI with fCRSI leads to an 
improved recovery.

Focused multiples are “deconvolved” w.r.t. source 
signature and directivity pattern.

Multiple prediction obtained by inverting the 
“correlation” with the primaries operator 

! have a broader frequency band & better 

amplitudes

! suffer from cross terms due to remnant multiples 

in the primary operator

Extensions

part of SINBAD II



CRSI

Quantitatively determine

! how random is random enough

! acquisition strategies that favor successful 

recovery

! predictions for accuracy for the recovery error 

given an acquisitions

! design of acquisition strategies given a desired 

resolution and recovery accuracy

Impose reciprocity on the recovered matrix

! exploit symmetry relations

! use

P =
1
2
(
P + PT )

+
1
2
(
P−PT )

Motivation

Focal transform is like a migration towards the 
sources.

The same as imaging a point reflector with a 
directivity pattern.

Use the redundancy in prestack imaged data.

Migration and differential semblance imaging 
conditions that penalize

! defocusing

! non-smoothness in angle/ray-parameter

Combine these two focusing in the curvelet 
domain => multiscale & multidirectional 
focussing ...

Example

unfocused

Focusing in phase space

! penalize distance away from focal point (0,0)

! penalize smoothness along line (0,p)

h

∂p

Example

focused

Minimize

∂p

h=0

smooth

Jh(f̃) = ‖hf̃‖2 Jθ(
˜̂f) = ‖∂p

˜̂f‖2and



Focusing
Curvelet domain is parameterized by           .

Joint focusing in space and angle can be 
implemented in the curvelet domain.

where W penalizes defocusing ...

Alternative to curvelet domain matched filtering.

Applications

! primary-multiple separation in the focal or inverse 

data domain (multiples do not focus ...)

! focusing as part of imaging 

(x, y, θ)

P :






x̃ = minx ‖Wx‖1 subject to ‖y −Ax‖2 ≤ ε

A := R∆PCT

f̃ = ∆PCT x̃

Focal transform 

! allows for incorporation of a priori information

! leads to an improved recovery

DeFocal transform 

! enhances frequency content of the multiples

! contains Xterms related to remnant multiples

Focusing

! combined with wavefield extrapolation will 

enhance the recovery

! will lead to an alternative non-adaptive primary-

multiple separation scheme

Outlook

! Restriction <=> compression of the operators

! Opens the way to migration-based recovery

! or a more “blue sky” approach of compressive 

wavefield extrapolation


