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SUMMARY

Solving inverse problems involves estimating unknown parameters of interest from in-

direct measurements. Specifically, geophysical inverse problems seek to determine various

Earth properties critical for geophysical exploration, carbon control, monitoring, and earth-

quake detection. These problems pose unique challenges: the parameters of interest are of-

ten high-dimensional, and the mapping from parameters to observables is computationally

demanding. Moreover, these problems are typically non-convex and ill-posed, meaning

that multiple sets of model parameters can adequately fit the observations, and inversion

algorithms depend on accurate initial model parameters.

This thesis introduces several innovative methods to tackle these challenges using sci-

entific machine learning techniques. It discusses algorithms and software frameworks that

utilize surrogate and generative models to achieve scalable and reliable inversion. It also

examines the integration of conditional generative models with physics for Bayesian vari-

ational inference and uncertainty quantification. These methods have been applied to two

critical inverse problems in geophysical applications: monitoring geological carbon storage

and full-waveform inversion, both of which are plagued by the aforementioned computa-

tional challenges.

The thesis consists of six papers. The first two papers present a scalable, interoperable,

and differentiable programming framework for learned multiphysics inversion, showcased

through realistic synthetic case studies in geological carbon storage monitoring. The third

paper introduces a computationally efficient and reliable algorithm that employs surrogate

models, particularly Fourier neural operators, to accelerate inversion. The reliability of

this algorithm is ensured by using normalizing flows as learned constraints to safeguard

the accuracy of the surrogate models throughout the inversion process. The subsequent

paper explores a joint inversion approach and an explainable deep neural classifier for

time-lapse seismic imaging and carbon dioxide leakage detection during geological carbon

xxiii



storage. The final two papers introduce amortized and semi-amortized variational infer-

ence approaches that employ information-preserving physics-informed summary statistics

and refinements to provide computationally feasible and reliable uncertainty quantification

in high-dimensional full-waveform inversion problems. They also assess the impact of the

inherent uncertainty in these ill-posed inversion problems on subsequent imaging tasks.
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CHAPTER 1

INTRODUCTION

This thesis aims to address the challenges associated with solving large-scale inverse prob-

lems with computationally expensive forward modeling operators, particularly in geophys-

ical applications. Solving an inverse problem involves estimating unknown parameters of

interest from a set of indirect measurements, which may be corrupted by noise [1]. Geo-

physical inversion, specifically, seeks to estimate certain properties of the Earth’s subsur-

face from measurements related to these properties [2]. The parameter-to-observable maps,

also known as forward modeling operators, often represent physical phenomena. Geophys-

ical inverse problems are crucial in earth science applications as they infer properties of

the Earth that cannot be directly observed. Estimating these Earth properties is essential

for geophysical exploration [3], geologic carbon storage monitoring [4], and earthquake

detection [5], to name a few.

Solving geophysical inverse problems presents multiple challenges, with the high com-

putational cost being the most significant. The Earth properties of interest are often parame-

ters of partial differential equations (PDEs), discretized using finite difference [6], finite el-

ement [7], or finite volume [8] schemes. Achieving high-resolution and high-fidelity imag-

ing of the subsurface requires fine discretization of the unknown Earth properties, leading to

computationally expensive PDE solves during the evaluation of the forward modeling op-

erators and the calculation of sensitivity with respect to model parameters. This problem is

exacerbated in inverse problems, which typically rely on optimization algorithms requiring

forward modeling and sensitivity calculations at each iteration. Additionally, PDE solvers

in some domains do not naturally offer the capability to calculate sensitivities with respect

to model parameters. In such cases, inverting for model parameters using derivative-free

optimization methods can be even more computationally demanding [9]. Beyond the com-
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putational cost of the modeling operators, the high dimensionality of the parameter space

also poses significant challenges for Bayesian inference algorithms. Sampling-based meth-

ods, such as Markov-chain Monte Carlo (MCMC, [10]), often suffer from the curse of di-

mensionality and struggle with high-dimensional parameter spaces in geophysical inverse

problems.

In addition to computational concerns, many geophysical inverse problems are non-

convex and ill-posed. Specifically, their forward modeling operators have a non-trivial

null space, leading to multiple model parameters that fit the observed data. Furthermore,

the non-convexity results in a high reliance on initial model parameters in geophysical

inversion algorithms. These challenges necessitate effective regularization techniques to

encourage desired Earth properties [11, 12, 13] or uncertainty quantification (UQ, [14])

schemes to identify a range of model parameters that are both physical and compatible

with the observed data.

1.1 Objective

The computational and numerical challenges of solving large-scale geophysical inverse

problems necessitate the development of scientific machine learning (SciML) techniques.

The aim of this thesis is to develop several SciML methods for solving two major geophys-

ical inverse problems:

• full-waveform inversion (FWI);

• and geological carbon storage (GCS) monitoring.

These SciML methods are designed to enhance the quality and interpretability of the so-

lutions, reduce the intensive computational cost, and accelerate the UQ workflows. The

rest of this chapter is organized as follows. First, I introduce the GCS monitoring and

FWI problems in detail. I discuss the forward problems associated with them, which rep-

resent the underlying physical phenomena in the Earth’s subsurface. Then, I illustrate the
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Figure 1.1: A schematic representation of a seismic survey, adapted from [16].

challenges of solving these two inverse problems. To meet these challenges, I outline my

contributions in this thesis to conclude this chapter.

1.2 Full-waveform inversion

Seismic imaging and inversion play a pivotal role in geophysical exploration, primarily fo-

cusing on estimating the wave properties in the Earth’s subsurface through observed seis-

mic data collected at sensors located at the surface [15]. Figure 1.1 shows a schematic

representation of a seismic survey. The seismic vessel, denoted in green, excites acoustic

waves by firing seismic sources (the red star). The wave propagates according to the wave

properties in the Earth’s subsurface. The reflected and scattered waves are recorded by the

receivers (yellow pentagons) as a function of time. A seismic survey involves many seismic

sources firing at different locations.

3



1.2.1 The inverse problem

FWI aims to solve for the spatial distribution of the acoustic velocity in the subsurface

from measured data collected at the receiver locations. This is achieved by minimizing the

misfit between the observed seismic data of a seismic survey and its numerically modeled

counterpart. The relationship between the model parameters and the observed data can be

represented by:

y = F(x) + ϵ, (1.1)

where the velocity model, x, and the observed data, y (corrupted by measurement noise,

ϵ), are linked via the nonlinear modeling operator, F . The operator, F , encodes the source

signature and receiver positions. More details about the wave physics can be found in

Chapter A. An example of the model parameter, x, is shown in Figure 1.2a. The corre-

sponding noise-free seismic data generated by the operator, F , is shown in Figure 1.2b,

for three distinct source locations. Each column represents a recorded time trace for the

corresponding receiver location.

1.2.2 Computational and numerical challenges

The forward modeling operator in FWI is computationally expensive because every eval-

uation of the forward modeling operator, F , requires solving the wave equation for all

sources. For high-resolution imaging of the Earth’s subsurface, the unknown parameter

of interest, x, needs to be finely discretized, leading to a high degree of freedom for this

inverse problem. Consequently, the evaluation of the forward modeling operator, which in-

volves solving the wave equation multiple times, becomes time-consuming. Additionally,

the high dimensionality of the parameter spaces poses challenges for Bayesian statistical

inference [18].

Apart from the generic challenges associated with high-dimensional Bayesian infer-
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(a)

(b)

Figure 1.2: (a) Example of a 2D velocity model. (b) Synthetic seismic data generated by
the acoustic wave modeling operator at three different source locations. The simulation is
carried out using JUDI.jl [17].
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ence, FWI is further complicated by its sensitivity to the initial models. When the initial

velocity model is poor, FWI is likely to fall into local minima. This is known as the “cycle

skipping” problem [19]. Moreover, a nontrivial null space of the forward modeling opera-

tor, F , may result in non-unique solutions where different velocity models fit the observed

data adequately well [20].

1.3 Geological carbon storage and time-lapse monitoring

The aforementioned FWI problem aims to estimate the subsurface properties through a sin-

gle seismic survey. Time-lapse seismic monitoring extends this goal to estimate subsurface

properties over time, delineating temporal changes in the Earth’s subsurface. In this the-

sis, I primarily focus on using time-lapse seismic monitoring for an application to combat

climate change.

Carbon capture and storage (CCS) is among the very few, if not the only, scalable

technologies capable of rapidly reducing emissions in industrial sectors that have limited

options for decarbonization [21, 22]. The concept of CCS was first introduced in 1977

[23]. It involves capturing CO2 emissions from industrial processes, such as steel and

cement production, or burning fossil fuels, and then injecting the captured CO2 into suitable

geological formations (including depleted oil reservoirs [24] and saline aquifers [25]) in the

Earth’s subsurface. This process, known as GCS [26, 27], has been pioneered by projects

like the Sleipner CO2 injection project in Norway [4].

While GCS technology has the potential to scale, its success depends on our ability

to mitigate risks, particularly CO2 leakage through faults, fractures, and abandoned wells

[28]. An essential aspect of risk mitigation involves ensuring that the injected CO2 remains

within the storage complex. To minimize potential risks associated with GCS, it is crucial

for practitioners to monitor the CO2 dynamics over time. In GCS projects, various types

of time-lapse data can be collected to monitor CO2 plumes. These data modalities include

measurements in wells [29, 30], and the collection of gravity [31, 32], electromagnetic
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[33, 34], and seismic data [35, 36]. Among these modalities, time-lapse seismic data is the

most commonly used and stands out for its ability to attain high-resolution and high-fidelity

images of the Earth’s subsurface. Additionally, CO2 is typically in a supercritical state at

the injection depth, providing a sonic velocity contrast to the initially brine-filled reservoir,

making time-lapse seismic data ideal for containment monitoring [37]. Next, I introduce

several types of physics involved in GCS and time-lapse monitoring and define the inverse

problem associated with GCS monitoring.

1.3.1 Multiphase flow in porous media

During GCS projects, supercritical CO2 injected into the Earth’s subsurface replaces brine

in the porous rocks [28]. This process, called multiphase flow in porous media, involves

the two phases of CO2 and brine. This is a slow-time dynamic flow process that occurs

over a long time range (years), which can be mathematically represented as follows:

c = S(K) where c = [c1, c2, . . . , cnk
]. (1.2)

In this expression, the nonlinear operator S represents the multiphase flow modeling

operator, which takes the gridded spatially varying permeability in the reservoir, K, as

input and produces nk time-varying CO2 saturation snapshots, encapsulated in c. The for-

ward modeling of S involves solving time-dependent partial differential equations (PDEs)

using implicit timestepping scheme [38, 39, 40], where permeability K is the PDE param-

eter. The governing equations for the multiphase flow involve Darcy’s equation and the

mass conservation law in the leading order. Detailed information on the governing equa-

tions, initial and boundary conditions, and numerical solution schemes can be found in [39,

41] and the references therein. Figure 1.3 demonstrates a numerical simulation of CO2

injection into a saline aquifer. Figure 1.3a shows the spatial distributinon of the horizon-

tal permeability model, K, in millidarcies (md). An injection well is set at around 1.7 km

depth and 2.3 km lateral position, which keeps injecting supercritical CO2 in a constant rate
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(a)

(b)

Figure 1.3: Multiphase fluid-flow modeling. (a) Spatial distribution of subsurface perme-
ability. (b) CO2 saturation snapshots at year 5, 15, 25, 45, 65. The simulation is carried out
using JutulDarcyRules.jl [43], which utilizes the high-performant simulators implemented
in JutulDarcy.jl [44].

in the first 25 years and shuts down after the 25th year. Figure 1.3b shows the CO2 satura-

tion snapshots, c at year 5, 15, 25, 45, 65, where the white curves enclose the boundaries

of the CO2 plumes. During the first 25 years, CO2 plume grows up due to the injection

well and follows the high permeability channels in the model. After the 25th year, the mass

of the CO2 remains constant in the storage complex. Due to the buoyancy effect, the CO2

plume starts to migrate upwards, while a portion (approximately 10%) remains trapped in

the pore spaces, indicated in purple. This phenomenon, known as residual trapping [42], is

a critical factor in assessing the long-term storage capabilities of GCS projects.

1.3.2 Rock physics

The CO2 saturation in the porous rocks and pressure change during CO2 injection affects

the compressibility of the rocks [45]. While other choices can be made, we follow the

Patchy saturation model [46] for simplicity to mathematically describe the conversion from
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CO2 saturation to the decrease in the compressional wavespeed of the rock. This model fol-

lows the Gassmann’s fluid substitution law and assumes that the medium as a mixture of

CO2 and brine is isotropic [47], which implies that the effective compressional modulus

can be computed as a harmonic average of the CO2-filled modulus and brine-filled mod-

ulus. This rock physics modeling does not involve any PDEs, and practically describes

an elementwise relationship between CO2 saturation and compressional wavespeed in the

following form:

vi = R(cp, ci) for i = 1, 2, · · · , nk. (1.3)

Here, the nonlinear modeling operator R converts the brine-filled (pre-injection) com-

pressional wavespeed, cp, and the CO2 saturation snapshots, ci, to the altered wavespeed

vi at time step i. Practically, this results in up to a few hundreds of meters per second

decrease in compressional wavespeed of the rock due to CO2 saturation. Figure 1.4b shows

the decrease in compressional wavespeed according to the CO2 saturation snapshot shown

as the third plot in Figure 1.3b, where Figure 1.4a shows the brine-filled wavespeed model

before CO2 injection.

1.3.3 Wave physics

During GCS monitoring, multiple seismic surveys are collected to estimate the velocity

model of the Earth subsurface and monitor the time-lapse changes. The CO2-induced

changes in compressional wavespeed of the rocks can be detected by time-lapse seismic

data according to the seismic wave modeling in the following expression:

di = Fi(vi) for i = 1, 2, · · · , nk. (1.4)

whereFi represents the nonlinear seismic modeling operator (mentioned in Section 1.1)

that simulates the seismic data at the i-th survey using wavespeed model vi.
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(a)

(b)

Figure 1.4: (a) Brine-filled (pre-injection) wavespeed model. (b) Decrease in wavespeed
induced by the CO2 saturation at 25th year shown as third plot in Figure 1.3b.
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1.3.4 The inverse problem

The primary goal of time-lapse monitoring is to estimate the past, current, and future be-

havior of CO2 plume from available time-lapse seismic data. Mathematically, this involves

solving an inverse problem. We observe the time-lapse seismic data, collected in {di}nk
i=1,

with some measurement noise {ϵi}nk
i=1. We aim to recover time-varying changes of the

subsurface properties, either wavespeed models at each survey, {vi}nk
i=1, or CO2 saturation

snapshots, {ci}nk
i=1, or the instrinsic permeability model of the Earth, K, such that the mea-

surements modeled by these subsurface properties fit the observed ones. By comparing

these properties at different time steps, we understand the dynamics of CO2 during GCS

projects.

1.3.5 Computational and numerical challenges

GCS monitoring shares many computational challenges with the FWI problem mentioned

in Section 1.2.2: the parameter of interest is high-dimensional, and the parameter-to-

observable map is computationally intensive. The solution space of this ill-posed inverse

problem can be multimodal. In addition, it requires integration of different physics model-

ing operators. For example, estimation of the CO2 saturation snapshots needs coupling of

rock physics and wave physics. Estimation of the intrinsic permeability model of the Earth

needs coupling between fluid-flow physics, rock physics, and wave physics. These cou-

plings require not only propagating the parameter of interests to the observed time-lapse

seismic data, but also calculating sensitivities of the observation with respect to the param-

eter of interests. In the field of geophysics imaging, however, software packages for model-

ing and inversion are typically based on monolithic low-level (C/Fortran) implementations.

While these lead to performant codes for specific problems, maintaining the codebases and

especially transporting the codebase to a different computing facility (i.e., cluster to cloud

and vice versa), poses significant challenges. Consequently, coupling of different physics

modeling units, which requires seamless integration of different software stacks including
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seismic modeling and reservoir simulators, is considered challenging and costly. These

intricacies are further compounded by the fact that few of open-source reservoir simulators

support differentiation of the simulator’s output (time-varying CO2 saturation) with respect

to its input (permeability), with Jutul.jl [48] as one of the rare exceptions. These chal-

lenges call for a scalable, interoperable, and differentiable framework based on high-level

software abstractions.

1.4 Contributions

This thesis consists of six papers, each of which partially addresses the challenges asso-

ciated with solving large-scale geophysical inverse problems. Each chapter follows the

general structure of a technical journal article and begins with a summary, followed by an

introduction into the respective topic, and then describes the main contribution and pro-

vides numerical examples. Below I outline these chapters by summarizing the problem

and my contribution.

• Chapter 2 (published in [49]) proposes a math-inspired differentiable programming

framework based on software abstraction. At its core, this framework utilizes cus-

tomized automatic differentiation (AD) rules to couple numerical simulators and

deep neural networks for solving geophysical inversion problems at scale. My con-

tribution includes design and implementation of this programming framework for

multiphysics inversion. While the customized AD rules are already implemented

for wave modeling operators in JUDI4Flux.jl [50] (integrated in JUDI.jl later), I ex-

tend this framework by implementing differentiation rules for reservoir simulators

in JutulDarcy.jl [44], and develop the JutulDarcyRules.jl package [43]. Using this

extension as an essential module, I implement an end-to-end permeability inversion

workflow by integrating two independent state-of-the-art numerical modeling soft-

ware libraries. In addition, I propose to use FNOs as a surrogate modeling operator

for reservoir simulator, and to replace the numerical simulator by the trained FNOs. I
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demonstrate the efficacy of this differentiable programming framework by designing

and conducting a synthetic case study for geological carbon storage monitoring.

• Chapter 3 (accepted for publication in [51]) presents a feasibility study for time-lapse

full-waveform permeability inversion using the differentiable programming frame-

work in Chapter 2. My contributions include illustrating the framework of using

time-lapse seismic data to invert for reservoir permeability in a GCS setting, and

fully examining the sensitivity of the end-to-end inversion framework with respect to

initial models, modeling errors, and potential crosstalk during multiparameter inver-

sion. The case study also investigates the potential of the framework for forecasting

long-term CO2 storage under residual trapping mechanism, which is crucial for GCS

monitoring and verification.

• Chapter 4 (published in [52]) proposes a data-driven algorithm to solve multiphysics-

based inverse problems. My contributions include a constrained optimization method

that combines computationally cheap learned surrogates with learned constraints.

This method not only allows for computationally efficient inversion thanks to the

orders of magnitude speed-up from learned surrogates (FNOs), the accuracy of the

surrogates is also safeguarded via inclusion of a trained normalizing flow (NF) that

forces the model iterates to remain in-distribution. I support this method with a syn-

thetic case study in which the accuracy curves of the FNO surrogates under different

inversion methods are compared, illustrating the importance of the NF-based con-

straints during inversion.

• Chapter 5 (published in [53]) introduces an integrated workflow for GCS monitor-

ing, which is generally designed for scenarios where CO2 dynamics is not assumed

to adhere exactly to the multiphase flow equations. My contributions include a joint

inversion algorithm for time-lapse seismic imaging and integration of a deep neural

classifier for CO2 leakage detection. I exploit the fact that the Earth models at dif-
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ferent surveys, as the unknown parameters of interest, share a common component.

Therefore, I reparameterize the unknown Earth models accordingly and derive an al-

gorithm based on linearized Bregman methods to jointly invert for time-lapse seismic

images. Through hundreds of inversion experiments performed on time-lapse seis-

mic datasets, I demonstrate that this approach effectively produces images in higher

quality without costly replication of seismic surveys. A deep neural classifier is fur-

ther trained to automatically detect CO2 leakage.

• Chapter 6 (published in [54]) proposes an amortized variational inference framework

(called WISE) for solving the FWI problem. My contributions include a system-

atic approach to utilize the extended gradient (common-image gathers) as a suitable

physics-informed summary statistics for FWI thanks to their capability to encapsu-

late the observed data. In this approach, I integrate generative artificial intelligence

techniques with the physics-informed common-image gathers to quantify uncertainty

in the velocity models and its impact on imaging. Considered case studies juxtapose

the inference results when the standard gradient and the extended gradient are used

as summary statistics, and demonstrate the necessity of using extended gradient for

variational inference when the initial model is poor. I further translate the uncertainty

in the velocity models to the uncertainty in imaged reflectors in the downstream tasks.

• Chapter 7 (preprint at [55]) builds on top of Chapter 6 to introduce a semi-amortized

variational inference framework (called WISER) for solving the FWI problem. My

contributions include a refinement approach with frugal use of the wave physics to

mitigate the amortization gap existing in the WISE framework in Chapter 6. I verify

the efficacy of this framework by juxtaposing the inference results from WISE and

WISER, and further demonstrate the robustness of WISER with respect to potential

out-of-distribution scenarios at inference.

Chapter 8 presents the conclusion of this thesis and discuss future research directions.
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CHAPTER 2

LEARNED MULTIPHYSICS INVERSION WITH DIFFERENTIABLE

PROGRAMMING AND MACHINE LEARNING

2.1 Summary

This chapter presents a differentiable programming software framework for computational

geophysics and, more generally, inverse problems involving the wave-equation (e.g., seis-

mic and medical ultrasound), regularization with learned priors, and learned neural surro-

gates for multiphase flow simulations. By integrating multiple layers of abstraction, our

software is designed to be both readable and scalable. This allows researchers to easily

formulate their problems in an abstract fashion while exploiting the latest developments in

high-performance computing. We illustrate and demonstrate our design principles and their

benefits by means of building a scalable prototype for permeability inversion from time-

lapse crosswell seismic data, which aside from coupling of wave physics and multiphase

flow, involves machine learning.

2.2 Motivation

Thanks to major advancements in high-performance computing (HPC) techniques, com-

putational (exploration) geophysics has made giant leaps over the past decades. These de-

velopments have, for instance, led to the adoption of wave-equation-based inversion tech-

nologies such as full-waveform inversion (FWI) and reverse-time migration (RTM) that,

thanks to their adherence to wave physics, have resulted in superior imaging in complex

geologies. While these techniques certainly rank amongst the most sophisticated imag-

ing technologies, their implementation relies with few exceptions—most notably iWave++

[1], Julia Devito Inversion framework (JUDI.jl, [2]), COFII framework [3]—on monolithic

20

https://github.com/slimgroup/JUDI.jl
https://github.com/ChevronETC/Examples


low-level (C/Fortran) implementations. As a consequence, due to their lack of abstrac-

tion and modern programming constructs, these low-level implementations are difficult and

very costly to maintain, especially when performance considerations prevail over best soft-

ware practices. A noteworthy attempt at modernizing wave-equation inversion frameworks

is deepwave [4], which implements FWI using pytorch [5]. Despite state-of-the-art exam-

ples and applications for 2D inversion, this work is limited by the aforementioned pitfalls

as it relies on handwritten low level C/Cuda code reducing the flexibility and extensibility

to new physics and three dimensional problems. It also does not integrate machine learn-

ing with full-waveform inversion as advocated in this chapter. While these implementation

design choices lead to performant code for specific problems, such as FWI, they often hin-

der the implementation of new algorithms, e.g., based on different objective functions or

constraints, as well as coupling existing code bases with external software libraries. For

instance, combining wave-equation-based inversion with machine learning frameworks or

coupling wave-physics with multiphase fluid-flow solvers are considered challenging and

costly. These hurdles pose challenges on the geophysical researchers to innovate new algo-

rithms and workflows. In this chapter, we present a flexible and agile software framework

that aims to resolve these challenges and is designed to be scalable, differentiable, and inter-

operable. We first introduce the design principles of our software framework, followed by

a concrete usage scenario for time-lapse seismic monitoring of geological carbon storage.

This illustrative and didactic example involves the integration of multiple software mod-

ules for different types of physics with machine-learning techniques such as learned deep

priors and neural surrogates. For each module, we explain the choices we made and how

these modules are connected through software abstractions and overarching high-level pro-

gramming language constructs. The advocacy of our proposed framework is demonstrated

on a preliminary 2D case study involving the realistic Compass model. We conclude by

discussing remaining challenges and future work directions.
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2.3 Design principles

To address these important shortcomings of current software implementations that impede

progress, we adopt contemporary software design practices that include high-level abstrac-

tions, software design principles, and the utilization of modern programming languages,

such as Python [6] and Julia [7]. We also make extensive use of abstractions provided by

domain-specific languages (DSLs), such as the Rice Vector Library [RVL, 8] and the Uni-

fied Form Language [UFL, 9, 10], and adopt reproducible research practices introduced

by the trailblazing open-source initiative Madagascar [11], which successfully made use of

version control and an abstraction based on the software construction tool SCons.

In an effort to meet the challenges of modern software design in a performance-critical

environment, we adhere to three key principles—in addition to the fundamental principle of

separation of concerns. First, we adopt mathematical language to inform our abstractions.

Mathematics is concise, unambiguous, well understood, and leads to natural abstractions

for the

• wave physics, through partial differential equations as put to practice by Devito,

which relies on Symbolic Python (SymPy) [12] to define partial differential equa-

tions. Given the symbolic expressions, Devito automatically generates highly-optimized,

possibly domain-decomposed, parallel C code that targets the available hardware

with near-optimal performance for 3D acoustic, tilted-transverse-isotropic, or elastic

wave-equations;

• linear algebra, through matrix-free linear operators, as in JUDI.jl [2]—a high-level

linear algebra DSL for wave-equation-based modeling and inversion. These ideas

date back to SPOT [13] with more recent implementations JOLI.jl [14] in Julia and

PyLops in Python [15];

• optimization, through definition of objective functions, also known as loss func-

tions, that need to be minimized—via SlimOptim.jl [16]—subject to mathematical
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constraints, which can be imposed through SetIntersectionProjection.jl [17, 18].

Second, we exploit hierarchy within wave-equation-based inversion problems that nat-

urally leads to a separation of concerns. At the highest level, we deal with linear operators,

specifically matrix-free Jacobians of wave-based inversion, with JUDI.jl and parallel file

input/output with SegyIO.jl [19] on premise, or in the Cloud (Azure) via JUDI4Cloud.jl

[20] and CloudSegyIO.jl [21]. At the intermediate and lower level, we make extensive use

of Devito [22, 23]—a just-in-time compiler for stencil-based time-domain finite-difference

calculations.

Third, we build on the principles of differentiable programming as advocated by [24]

and intrusive automatic differentiation introduced by [25] to integrate wave-physics with

machine learning frameworks and multiphase flow. Specifically, we employ automatic

differentiation (AD) through the use of the chain rule, including abstractions that allow the

user to add derivative rules, as in ChainRules.jl [26, 27].

Aside from developing software for wave-equation-based inversion, we have more re-

cently also been involved in the development of scalable machine learning solutions, in-

cluding the Julia package InvertibleNetworks.jl [28], which implements memory-efficient

invertible deep neural networks such as (conditional) normalizing flows [NFs, 29], and

scalable distributed Fourier neural operators [FNOs, 30] in the dfno package [31, 32]. All

of these will be described in more detail below.

To illustrate how these design principles can lead to solutions of complex learned cou-

pled inversions, we consider in the ensuing sections end-to-end inversion of time-lapse

seismic data for the spatial permeability distribution [25]. As can be seen from Figure 2.1,

this inversion problem is rather complex and whose solution arguably benefits from our

three design principles listed above. In this formulation, the latent representation for the

permeability is taken via a series of nonlinear operations all the way to the time-lapse seis-

mic data. In the remainder of this exposition, we will detail how the different components

in this learned inversion problem are implemented so that the coupled inversion can be car-
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Figure 2.1: The multiphysics forward model. The permeability, K, is generated from
Gaussian noise with a pretrained NF, G, followed by two-phase flow simulations through
S, rock physics denoted by R, and time-lapse seismic data simulations via wave physics,
F .

ried out. The results presented are preliminary representing a snapshot on how research is

conducted according to the design principles.

2.4 Learned time-lapse end-to-end permeability inversion

Combating climate change and dealing with the energy transition call for solutions to prob-

lems of increasing complexity. Building seismic monitoring systems for geological CO2

and/or H2 storage falls in this category. To demonstrate how math-inspired abstractions can

help, we consider inversion of permeability from crosswell time-lapse data (see Figure 2.2

for experimental setup) involving (i) coupling of wave physics with two-phase (brine/CO2)

flow using Jutul.jl [33], state-of-the-art reservoir modeling software in Julia; (ii) learned

regularization with NFs with InvertibleNetworks.jl; (iii) learned surrogates for the fluid-

flow simulations with FNOs. This type of inversion problem is especially challenging

because it involves different types of physics to estimate the past, current, and future satu-

ration and pressure distributions of CO2 plumes from crosswell data in saline aquifers. In

the subsequent sections, we demonstrate how we invert time-lapse data using the separate

software packages listed in Figure 2.1.
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Figure 2.2: Experimental setup. The black × symbol in the middle of the model indicates
the CO2 injection location. The seismic sources are on the left-hand side of the model
(shown as yellow × symbols) and receivers are on the right-hand side of the model (shown
as red dots). In grey color, we overlay the compressional wavespeed with simulated CO2

saturation modeled for 18 years.

2.4.1 Wave-equation-based inversion

Thanks to its unmatched ability to resolve CO2 plumes, active-source time-lapse seismic

is arguably the preferred imaging modality when monitoring geological storage [34]. In

its simplest form for a single time-lapse vintage, FWI involves minimizing the ℓ2-norm

misfit/loss function between observed and synthetic data—i.e., we have

minimize
m

1

2
∥F(m)q− d∥22 where F(m) = PrA(m)−1P⊤

s . (2.1)

In this formulation, the symbol F(m) represents the forward modeling operator (wave

physics), parameterized by the squared slowness, m. This forward operator acting on the

sources consists of the composition of source injection operator, P⊤
s with ⊤ denoting the

transpose operator, solution of the discretized wave equation via A(m)−1, and restriction to

the receivers via the linear operator Pr. The vector q represents the seismic sources and the

vector d contains single-vintage seismic data, collected at the receiver locations. Thanks to

our adherence to the math, the corresponding Julia code to invert for the unknown squared
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slowness m with JUDI.jl reads

# Forward modeling to generate seismic data.

Pr = judiProjection(recGeometry) # setup receiver

Ps = judiProjection(srcGeometry) # setup sources

Ainv = judiModeling(model) # setup wave-equation solver

F = Pr * Ainv * Ps' # forward modeling operator

d = F(m_true) * q # generate observed data

# Gradient descent to invert for the unknown squared slowness.

for it = 1:maxiter

d0 = F(m) * q # generate synthetic data

J = judiJacobian(F(m), q) # setup the Jacobian operator of F

g = J' * (d0 - d) # gradient w.r.t. squared slowness

m = m - t * g # gradient descent with steplength t

end

To obtain this concise and abstract formulation for FWI, we utilized hierarchical ab-

stractions for propagators in Devito and linear algebra tools in JUDI.jl, including matrix-

free implementations for F and its Jacobian J. While the above stand-alone implementation

allows for (sparsity-promoting) seismic [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46] and

medical [47, 48, 49, 50] inversions, it relies on hand-derived implementations for the ad-

joint of the Jacobian J' and for the derivative of the loss function. Although this approach

is viable, relying solely on hand-derived derivatives can become cumbersome when we

want to utilize machine learning models or when we need to couple the wave equation to

the multiphase flow equation.

To allow for this situation, we make use of Julia’s differentiable programming ecosys-

tem that includes tools to use AD and to add differentiation rules via ChainRules.jl. Using

this tool, the AD system can be taught how to differentiate JUDI.jl via the following differ-

entiation rule for the forward propagator

# Custom AD rule for wave modeling operator.
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function rrule(::typeof(*), F::judiModeling, q)

y = F * q # forward modeling

# The pullback function for gradient calculations.

pullback(dy) = NoTangent(), judiJacobian(F, q)' * dy, F' * dy

return y, pullback

end

In this rule, the pullback function takes as input the data residual, dy, and outputs the

gradient of F * q with respect to the operator * (no gradient), the model parameters, and

the source distribution. With this differentiation rule, the above gradient descent algorithm

can be implemented as follows:

# Define the loss function.

loss(m) = .5f0 * norm(F(m) * q - d)ˆ2f0

# Gradient descent to invert for the squared slowness.

for it = 1:maxiter

g = gradient(loss, m)[1] # gradient computation via AD

m = m - t * g # gradient descent with steplength t

end

Compared to the original implementation, this code only needs F(m) and the function

loss(m). With the help of the above rrule, Julia’s AD system1 is capable of com-

puting the gradients (line 5). Aside from remaining performant, i.e., we still make use of

the adjoint-state method to compute the gradients, the advantage of this approach is that it

allows for much more flexibility, e.g., in situations where the squared slowness is parame-

terized in terms of a pretrained neural network or in terms of the output of multiphase flow

simulations. In the next section, we show how trained NFs can serve as priors to improve

the quality of FWI.

1In this case, we used reverse AD provided by Zygote.jl, the AD system provided by Julia machine
learning package Flux.jl. Because ChainRules.jl is AD system agnostic, another choice could have been
made.
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2.4.2 Deep priors and normalizing flows

Normalizing Flows are generative models that take advantage of invertible deep neural

network architectures to learn complex distributions from training examples [51]. The term,

“flow” refers to the transformation of data from a complex distribution to a simple one. The

term “normalizing” refers to the standard Gaussian (Normal) target distribution the network

learns to map images to. For example, in seismic inversion applications, we are interested

in approximating the distribution of Earth models to use as priors in downstream tasks.

NFs learn to map samples from the target distribution (i.e., Earth models) to zero-mean

unit standard deviation Gaussian noise using a sequence of trainable nonlinear invertible

layers. Once trained, one can resample new Gaussian noise and pass it through the inverse

sequence of layers to obtain new generative samples from the target distribution. NFs are

an attractive choice for generative models in seismic applications [52, 53, 54, 55, 56, 57,

58] because they provide fast sampling and allow for memory-efficient training due to their

intrinsic invertibility, which eliminates the need to store intermediate activations during

backpropagation. Memory efficiency is particularly important for seismic applications due

to the 3D volumetric nature of the seismic models. Thus, our methods need to scale well

in this regime.

To illustrate the practical use of NFs as priors in seismic inverse problems, we trained

an NF on slices from the Compass model [59]. The training of a normalizing flow is laid

out in Figure 2.3, where for illustrative purposes, we demonstrate a training run on small

(64 × 64) slices of the Compass model. Each rows shows the normalization (image m

transformed to Zm intended to be white zero-mean standard deviation one Gaussian noise)

during training and its generative inverse (white noise z ∼ N (0, 1) to image m̃) during

each epoch. From Figure 2.5, we clearly observe the intended behavior. As the training

proceeds, the NFs transform the true model better towards white noise while it’s inverse

progressively generates more realistic looking generative velocity models. To perform a

comparison with traditional FWI, we train an NF on full model size slices (512x256 grid
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Figure 2.3: Demonstration of Gaussinazation of Compass slices during training of normal-
izing flow. The data used for this didactic example is openly available and this figure fully
in the InvertibleNetworks.jl repository.

Figure 2.4: Examples of Compass 2D slices used to train a normalizing flow prior.

points). In Figure 2.5, we compare generative samples from the NF with the slices used to

train the model shown in Figure 2.4. Although there are still irregularities, the model has

learned important qualitative aspects of the model that will be useful in inverse problems.

To demonstrate this usefulness, we test our prior on an FWI inverse problem. Because

our NF prior is trained independently, it is flexible and can easily be plugged into different

inverse problems.

Our FWI experiment includes: ocean bottom nodes, Ricker wavelet with no energy

below 4Hz, additive colored Gaussian noise that has the same bandwidth as the noise-free
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Figure 2.5: Generative samples from our trained prior. Their similarity to the training
samples in Figure 2.4 suggests that our normalizing flow has learned a useful prior..

data. For FWI with our learned prior, we minimize

minimize
z

1

2
∥F(Gθ∗(z))q− d∥22 +

λ

2
∥z∥22, (2.2)

where Gθ∗ is a pretrained NF with weights θ∗. After training, the inverse of the NF maps

realistic Compass-like Earth samples to white noise—i.e., G−1
θ∗ (m) = z ∼ N (0, I). Since

the NFs are designed to be invertible, the action of the pretrained NF, Gθ∗ , on Gaussian

noise z produces realistic samples of Earth models (see Figure 2.5). We use this capability

in the above equation where the unknown model parameters in m are reparameterized

by Gθ∗(z). The regularization term, λ
2
∥z∥22, penalizes the latent variable z with large ℓ2

norm, where λ balances the misfit and regularization terms. Consequently, this learned

regularizer encourages FWI results that are more likely to be realistic Earth models [60].

However, notice that the optimization routine now requires differentiation through both the

physical operator (wave physics, F) and the pretrained NF (Gθ∗), and only a true invertible

implementation like ours, with minimal memory imprint for both training and inference,

can provide scalability.

Thanks to the JUDI.jl’s rrule for F and InvertibleNetworks.jl’s rrule for G, inte-

gration of machine learning with FWI becomes straightforward involving replacement of

m by G(z) on line 6. Minimizing the objective function in 2.2 now translates to

# Load the pretrained NF and weights.

G = NetworkGlow(nc, nc_hidden, depth, nscales)

set_params!(G, theta)
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# Set up the ADAM optimizer.

opt = ADAM()

# Define the reparameterized loss function including penalty term.

loss(z) = .5f0 * norm(F(G(z)) * q - d)ˆ2f0 + .5f0 * lambda * norm(z)ˆ2f0

# ADAM iterations.

for it = 1:maxiter

g = gradient(loss, z)[1] # gradient computation with AD

update!(opt, z, g) # update z with ADAM

end

# Convert latent variable to squared slowness.

m = G(z)

In Figure 2.6, we compare the results of FWI with our learned prior against unregu-

larized FWI. Since our prior regularizes the solution towards realistic models, we obtain

a velocity estimate that is closer to the ground truth. To measure the performance of our

method, we use Peak Signal to Noise Ratio (PSNR) and see an increase from 12.98 dB

with traditional FWI to 14.77 dB with the learned prior.

Through this simple example, we demonstrated the ability to easily integrate our state-

of-the-art wave-equation propagators with the Julia’s differentiable programming system.

By applying these design principles to other components of the end-to-end inversion, we

design a seismic monitoring framework for real-world applications in subsurface reservoirs.

2.4.3 Fluid-flow simulation and permeability inversion

As stated earlier, our goal is to estimate the permeability from time-lapse crosswell mon-

itoring data collected at a CO2 injection site (cf. Figure 2.2). Compared to conventional

seismic imaging, time-lapse monitoring of geological storage differs because it aims to

image time-lapse changes in the CO2 plume while obtaining estimates for the reservoir’s

fluid-flow properties. This involves coupling wave modeling operators to fluid-flow physics

to track the CO2 plumes underground. The fluid-flow physics models the slow process of

CO2 partly replacing brine in the pore space of the reservoir, which involves solving the
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(a)

(b)

(c)

Figure 2.6: Results from using our normalizing flow learned prior in FWI. (a) Ground
truth. (b) Traditional FWI without prior resulting in 12.98 dB PSNR. (c) Our FWI result
with learned prior resulting in 14.77 dB PSNR.
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multiphase flow equations. For this purpose, we need access to reservoir simulation soft-

ware capable of modeling two-phase (brine/CO2) flow. While a number of proprietary

and open-source reservoir simulators exist, including MRST [61], GEOSX [62] and Open

Porous Media (OPM) [63], few support differentiation of the simulator’s output (CO2 sat-

uration) with respect to its input (the spatial permeability distribution K in Figure 2.1). We

use the recently developed external Julia package JutulDarcy.jl that supports Darcy flow

and serves as a front-end to Jutul.jl [33], which provides accurate Jacobians with respect

to K. Jutul.jl is an implicit solver for finite-volume discretizations that internally uses AD

to calculate the Jacobian. It has a performance and feature set comparable to commercial

multiphase flow simulators and accounts for realistic effects (e.g., dissolution, inter-phase

mass exchange, compressibility, capillary effects) and residual trapping mechanisms. It

also provides accurate sensitivities through an adjoint formulation of the subsurface mul-

tiphase flow equations. To integrate the Jacobian of this software package into Julia’s dif-

ferentiable programming system, we wrote the light “wrapper package” JutulDarcyRules.jl

[64] that adds an rrule for the nonlinear operator S(K), which maps the permeability

distribution, K, to the spatially-varying CO2 concentration snapshots, c = {ci}nv
i=1, over nv

monitoring time-steps (cf. Figure 2.1). Addition of this rrule allows these packages to

interoperate with other packages in Julia’s AD ecosystem. Below, we show a basic example

where ADAM algorithm is used to invert for subsurface permeability given the full history

of CO2 concentration snapshots:

# Generate CO2 concentration.

c = S(K_true)

# Set up ADAM optimizer.

opt = ADAM()

# Define the loss function.

loss(K) = .5f0 * norm(S(K) - c)ˆ2f0

# ADAM iterations.

for it = 1:maxiter
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g = gradient(loss, K)[1] # gradient computed with AD

update!(opt, K, g) # update K with ADAM

end

During each iteration of the loop above, Julia’s machine learning package Flux.jl [65,

66] uses the custom gradient defined by the aforementioned rrule, calling the high-

performance adjoint code from JutulDarcy.jl. Our adaptable software framework also fa-

cilitates effortless substitution of deep learning models in lieu of the numerical fluid-flow

simulator. In the next section, we introduce distributed Fourier neural operators (dfno) and

discuss how this neural surrogate contributes to our inversion framework.

2.4.4 Fourier neural operator surrogates

While the integration of multiphase flow modeling into Julia differentiable programming

ecosystem opens the way to carry out end-to-end inversions (as explained below), fluid-

flow simulations are computationally expensive—a notion compounded by the fact that

these simulations have to be done many times during inversion. For this reason, we switch

to a data-driven approach where a neural operator is first trained on simulation examples,

pairs {K, S(K)}, to learn the mapping from permeability models, K, to the correspond-

ing CO2 snapshots, c := S(K). After incurring initial offline training costs, this neural

surrogate provides a fast alternative to numerical solvers with acceptable accuracy. Fourier

neural operators [FNOs, 30], a recently introduced neural network architecture based on

spectral convolutions that capture the long range correlations rather than localized spatial

convolutions, has recently been introduced as a surrogate for elliptic partial differential

equations such as the Darcy or Burgers equation. This spectral architecture has been ap-

plied successfully to simulate two-phase flow during geological CO2 storage projects [67].

Independently, [68] used a trained FNO to replace the fluid-flow simulations as part of end-

to-end inversion and showed that AD of Julia’s machine learning package can be used to

compute gradients with respect to the permeability using Flux.jl’s reverse-mode AD sys-
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tem Zygote.jl [69]. After training, the above permeability inversion from concentration

snapshots, c, is carried out by simply replacing S by Sw∗ with w∗ being the weights of

the pretrained FNO. Thanks to the AD system, the gradient with respect to K is computed

automatically. Thus, after loading the trained FNO and redefining the operator S, the above

code remains exactly the same. For implementation details on the FNO and its training, we

refer to [68] and [31].

2.5 Putting it all together

As a final step in our end-to-end permeability inversion, we introduce a nonlinear rock

physics model, denoted by R. Based on the patchy saturation model [70], this model

nonlinearly maps the time-lapse CO2 saturations to decreases in the seismic properties

(compressional wavespeeds, v = {vi}nv
i=1) within the reservoir with the Julia code

# Patchy saturation function.

# Input: CO2 saturation, velocity, density, porosity.

# Optional: bulk modulus of mineral, brine, CO2; density of CO2, brine.

# Output: velocity, density.

function Patchy(sw, vp, rho, phi;

bulk_min=36.6f9, bulk_fl1=2.735f9, bulk_fl2=0.125f9,

rhow=7f2, rhoo=1f3) where T

# Relate vp to vs, set modulus properties.

vs = vp ./ sqrt(3f0)

bulk_sat1 = rho .* (vp.ˆ2f0 .- 4f0/3f0 .* vs.ˆ2f0)

shear_sat1 = rho .* (vs.ˆ2f0)

# Calculate bulk modulus if filled with 100% CO2.

patch_temp = bulk_sat1 ./ (bulk_min .- bulk_sat1)

.- bulk_fl1 ./ phi ./ (bulk_min .- bulk_fl1)

.+ bulk_fl2 ./ phi ./ (bulk_min .- bulk_fl2)

bulk_sat2 = bulk_min ./ (1f0 ./ patch_temp .+ 1f0)

# Calculate new bulk modulus as weighted harmonic average.

bulk_new = 1f0 / ((1f0 .- sw) ./ (bulk_sat1 .+ 4f0/3f0 * shear_sat1)

35

https://github.com/FluxML/Zygote.jl


+ sw ./ (bulk_sat2 + 4f0/3f0 * shear_sat1)) - 4f0/3f0 * shear_sat1

# Calculate new density and velocity.

rho_new = rho + phi .* sw * (rhow - rhoo)

vp_new = sqrt.((bulk_new .+ 4f0/3f0 * shear_sat1) ./ rho_new)

return vp_new, rho_new

end

We map the changes in the wavespeeds to time-lapse seismic data, d = {di}nv
i=1, via the

blockdiagonal seismic modeling2 operator F(v) = diag
(
{Fi(vi)qi}nv

i=1

)
. In this formula-

tion, the single vintage forward operators Fi and corresponding sources, qi, are allowed to

vary between vintages.

With the fluid-flow (surrogate) solver, S, the rock physics module,R, and wave physics

module, F , in place, along with regularization via reparametrization using Gθ∗ , we are now

in a position to formulate the desired end-to-end inversion problem as

minimize
z

1

2
∥F ◦ R ◦ S (Gθ∗(z))− d∥22 +

λ

2
∥z∥22, (2.3)

where the inverted permeability can be calculated by K∗ = Gθ∗(z∗) with z∗ the latent

space minimizer of 2.3. As illustrated in Figure 2.1, we obtain the nonlinear end-to-end

map by composing the fluid-flow, rock, and wave physics, according to F ◦ R ◦ S . The

corresponding Julia code reads

# Set up ADAM optimizer.

opt = ADAM()

# Define the reparameterized loss function including penalty term.

loss(z) = .5f0 * norm(F R S(G(z)) - d)ˆ2f0 + .5f0 * lambda * norm(z)ˆ2f0

# ADAM iterations.

for it = 1:maxiter

g = gradient(loss, z)[1] # gradient computed by AD

update!(opt, z, g) # update z by ADAM

2Note, we parameterized this forward modeling in terms of the compressional wavespeed.
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end

# Convert latent variable to permeability.

K = G(z)

This end-to-end inversion procedure, which utilizes a learned deep prior and a pre-

trained FNO surrogate, was successfully employed by [68] on a simple stylistic blocky

high-low permeability model. The procedure involves using AD, with rrule for the wave

and fluid physics, in combination with innate AD capabilities to compute the gradient of the

objective in 2.3, which incorporates fluid-flow, rock, and wave physics. Below, we share

early results from applying the proposed end-to-end inversion in a more realistic setting

derived from real data (cf. Figure 2.2).

2.6 Preliminary inversion results

While initial results by [68] were encouraging and showed strong benefits from the learned

prior, the permeability model and fluid flow simulations considered in their study were too

simplistic. To evaluate the proposed end-to-end inversion methodology in a more realistic

setting, we consider the permeability model plotted in Figure 2.7a, which we derived from

a slice of the Compass model [59] shown in Figure 2.2. To generate realistic CO2 plumes

in this model, we generate immiscible and compressible two-phase flow simulations with

JutulDarcy.jl over a period of 18 years with 5 snapshots plotted at years 10, 15, 16, 17, and

18. These CO2 snapshots are shown in the first row of Figure 2.8. Next, given the fluid-

flow simulation, we use the patchy saturation model [70] to convert each CO2 concentration

snapshot, ci, i = 1 . . . nv to corresponding wavespeed model, vi, i = 1 . . . nv with v =

R(c). We then use JUDI.jl to generate synthetic time-lapse data, di, i = 1 . . . nv, for each

vintage.

During the inversion, the first 15 years of time-lapse data, di, i = 1 . . . 15, from the

above synthetic experiment are inverted with permeabilities within the reservoir initialized

by a single reasonable value as shown in Figure 2.7b. Inversion results obtained after
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25 passes through the data for the physics-driven two-phase flow solver and its learned

neural surrogate approximation are included in Figure 2.7c and Figure 2.7d, respectively.

Both results were obtained with 200 iterations of the code block shown above. Each time-

lapse vintage consist of 960 receivers and 32 shots. To limit the number of wave-equation

solves, gradients were calculated for only four randomly selected shots with replacement

per iteration. While these results obtained without learned regularization are somewhat

preliminary, they lead to the following observations. First, both inversion results for the

permeability follow the inverted cone shape of the CO2. This is to be expected because

permeability can only be inverted where CO2 has flown over the first 15 years. Second,

the inverted permeability follows trends of this strongly heterogeneous model. Third, as

expected details and continuity of the results obtained with the two-phase flow solver are

better. In part, this can be explained by the fact that there are no guarantees that the model

iterations remain with the statistical distribution on which the FNO was trained. Fourth,

the implementation of this workflow greatly benefited from the software design principles

listed above. For instance, the use of abstractions made it trivial to replace physics-driven

two-phase flow solvers with their learned counterparts.

Despite being preliminary, the inversion results show that this framework is conducive

to produce current CO2 plume estimates and near-future forecasts. As described by [68],

these capabilities can be achieved through use of the physics simulator or the trained FNO

surrogate. The 18 year CO2 simulations in both inverted permeability models are reason-

able when comparing the true plume development plotted in the top row of Figure 2.8 with

plumes simulated from the inverted models plotted in rows three and four of Figure 2.8.

While certain details are missing in the estimates for the past, current, and predicted CO2

concentrations, the inversion constitutes a considerable improvement compared to plumes

generated in the starting model for the permeability plotted in the second row of 2.8.
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(a) (b)

(c) (d)

Figure 2.7: Fifteen-year time-lapse seismic end-to-end permeability inversion with
physics-based and surrogate fluid-flow simulations. (a) Ground truth permeability. (b)
Initial permeability with homogeneous values in the reservoir. (c) Inverted permeability
from physics-based inversion. (d) Inverted permeability with neural surrogate approxima-
tion.
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Figure 2.8: CO2 plume estimation and prediction. The first two columns are the CO2

concentration snapshots at year 10 and year 15 of the first 15 years of simulation monitored
seismically. The last three columns are forecasted snapshots at years 16, 17, 18, where no
seismic data is available. First row corresponds to the ground truth CO2 plume simulated
by the unseen ground truth permeability model. Second row contains plume simulations
in the starting model, with a 10.99 dB SNR on the first 15 years of CO2 snapshots and
a 8.51 dB on the last 3 years. Rows three and four contain estimated and predicted CO2

plumes for the physics-based and surrogate-based permeability inversion. The SNR values
of the first 15 years of the estimated CO2 plume are 17.72 dB and 16.17 dB for the physics-
based inversion and the surrogate-based inversion, respectively. The SNR values for the
CO2 plume forecasts for the last 3 years are 15.69 dB and 14.05 dB for the physics-based
inversion and the surrogate-based inversion.
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2.7 Remaining challenges

The numerical case studies shown above illustrate that working with abstractions certainly

has its benefits. Thanks to the math-inspired abstractions, which naturally lead to modu-

larity and separation of concerns, we were able to accelerate the research and development

cycle for the end-to-end inversion. As a result, we created a development environment that

allowed us to include state-of-the-art industry-strength simulators and machine learning

techniques. What we unfortunately not yet have been able to do is to demonstrate our abil-

ity to scale this end-to-end inversion to 3D, while both the Devito-based propagators and

Jutul.jl’s fluid-flow simulations both have been demonstrated on industry-scale problems.

Unfortunately, lack of access to large-scale computational resources makes it challenging

in an academic environment to validate the proposed methodology on 4D synthetic and

field data even though the computational toolchain presented in this chapter is fully differ-

entiable and in principle capable of scale-up. Most components have been separately tested

and verified on realistic 3D examples [31, 71, 72, 73] and efforts are underway to remove

fundamental memory and other bottlenecks.

2.7.1 Scale-up normalizing flows

Generative models, and NFs included, call for relatively large training sets and large com-

putational resources for training. While efforts have been made to create training sets for

the more traditional machine learning tasks, no public-domain training set exists that con-

tains realistic 3D examples. The good news is that normalizing flows [29] have a small

memory footprint compared to diffusion models [74], so training this type of network will

be feasible when training sets and compute become available. Concurrent studies have al-

ready shown the success to train and evaluate NFs on 3D models in size of 128×128×128

[75]. In some cases where geophysicists might not have enough samples for velocity/per-

meability models, one could use in-house legacy models to train the NFs as a preparation
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step for inverting the seismic data. We leave the potential investigation to future studies.

2.7.2 Scale-up neural operators

Since the seminal paper by [30], there has been a flurry of publications on the use of FNOs

as neural surrogates for expensive multiphase fluid-flow solvers used to simulate CO2 in-

jection as part of geological storage projects [67, 76]. While there is good reason for this

excitement, challenges remain when scaling this technique to realistic 3D problems. In

that case, additional measures have to be taken. For instance, by nesting FNOs [76] were

able to divide 3D domains into smaller hierarchical subdomains centered around the wells,

an approach that is only viable when certain assumptions are met. Because of this nested

decomposition, these authors avoid the large memory footprint of 3D FNOs and report

many orders of magnitude speedup. Given the potential impact of irregular CO2 flow, e.g.,

leakage, we as much as possible try to avoid making assumptions on the flow behavior and

propose an accurate distributed Fourier neural operator (dfno) structure based on a domain

decomposition of the network’s input and network weights [31]. By using DistDL [77],

a software package that supports “model parallelism” in machine learning, our dfno par-

titions the input data and network weights across multiple GPUs such that each partition

is able to fit in the memory of a single GPU. As reported by [31], our work demonstrated

validity of dfno on realistic problem and reasonable training set (permeability/CO2 concen-

tration pairs) sizes, for permeability models derived from the Sleipner benchmark model

[78]. On 16 timesteps and models of size 64×118×263, we reported from our perspective

a more realistic speedup of over 1300× compared to the simulation time on Open Porous

Media [63], one of the leading open-source reservoir simulators. These results confirm a

similar independent approach advocated by [79].
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2.8 Conclusions

In this chapter, we introduced a software framework for geophysical inverse problems and

machine learning that provides a scalable, portable, and interoperable environment for re-

search and development at scale. We showed that through carefully chosen design prin-

ciples, software with math-inspired abstractions can be created that naturally leads to de-

sired modularity and separation of concerns without sacrificing performance. We achieve

this by combining Devito’s automatic code generation for wave propagators with Julia’s

modern highly performant and scalable programming capabilities, including differentiable

programming. Thanks to these features, we were able to quickly implement a prototype, in

principle scalable to 3D, for permeability inversion from time-lapse crosswell seismic data.

Aside from the use of proper abstractions, our approach to solving this relatively complex

multiphysics problem extensively relied on Julia’s innate algorithmic differentiation capa-

bilities, supplemented by auxiliary performant derivatives for the wave/fluid-flow physics,

and for components of the machine learning. On account of these design choices, we de-

veloped an agile and relatively easy to maintain compact software stack where low-level

code is hidden through a combination of math-inspired abstractions, modern programming

practices, and automatic code generation.
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CHAPTER 3

TIME-LAPSE FULL-WAVEFORM PERMEABILITY INVERSION: A

FEASBILITY STUDY

3.1 Summary

Time-lapse seismic monitoring necessitates integrated workflows that combine seismic and

reservoir modeling to enhance reservoir property estimation. We present a feasibility study

of an end-to-end inversion framework that directly inverts for permeability from multiple

prestack time-lapse seismic datasets. To assess the method’s robustness, we design exper-

iments focusing on its sensitivity to initial models and potential errors in modeling. Our

study leverages the publicly available Compass model to simulate CO2 storage in saline

aquifers. This model is derived from well and seismic data from the North Sea in an area

that is currently considered for geological carbon storage.

3.2 Introduction

Despite significant advancements in reservoir monitoring over recent decades, time-lapse

seismic technology continues to face challenges related to cost and efficiency [1, 2, 3, 4].

Employing 4D seismic workflows, including time-lapse full-waveform inversion (TL-FWI)

[5, 6], has become a common practice for estimating changes in the Earth’s elastic prop-

erties, facilitating the quantitative interpretation of these changes as indicators of reservoir

attributes like fluid content and pressure [7, 8]. Recent methodologies aim to leverage time-

lapse seismic data for the joint estimation of both elastic and reservoir properties, with a

focus on parameters such as saturation and porosity [9, 10]. However, the integration

of seismic imaging workflows with reservoir simulation tools remains limited, constrain-

ing the direct application of time-lapse seismic data for permeability estimation directly
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from multiple time-lapse seismic surveys. A few exceptions exist. For example, [11] uses

ensemble Kalman filtering to refine permeability and porosity estimates. [12] and [13]

have explored using time-lapse seismic data for linearized inversion to update permeabil-

ity. Despite these initial attemps, a more systematic and integrated approach for reservoir

characterization and monitoring deserves further investigation.

This chapter introduces a novel 4D processing framework for estimating permeability

directly from prestack time-lapse seismic data, offering a streamlined, geophysics based

inversion process. Unlike traditional methods, this framework, tested on various synthetic

case studies [14, 15, 16, 17], updates permeability models by exclusively matching against

multiple observed time-lapse seismic surveys. Despite the potential for rapid model up-

dates, initial results have not yet demonstrated significant alterations in fluid saturation

predictions, and the resulting permeability models often lack the heterogeneity necessary

for detailed analysis. To address these limitations and to assess the framework’s real-world

applicability for 4D monitoring, we undertake a feasibility study using a 2D slice of the

Compass model shown in Figure 3.1 [18]. The geological structures of this model were

derived from well logs and imaged seismic from the South-West North Sea area — a re-

gion under consideration for CO2 storage [19, 20]. This region comprises a storage unit

composed of Bunter sandstone 300− 500m thick, depicted in orange in Figure 3.1 (a) and

characterized by high permeability values shown in Figure 3.1 (b). On top of the stor-

age unit there is a primary seal about 50m thick, made of the low-permeable Rot Halite

Member, and a secondary seal, over 300m, made of low-permeability mudstone in the

Haisborough Group, illustrated in blue and green in Figure 3.1 (a).

This study evaluates the coupled fluid-flow, rock physics, seismic inversion frame-

work’s sensitivity to different starting models, forward modeling errors, and crosstalk dur-

ing multiparameter inversion, omitting regularization techniques to focus on the impact

of time-lapse seismic data on permeability updates. We explore the framework’s ability

to recover relatively fine-scale permeability structures, predict CO2 dynamics within the
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Figure 3.1: Experimental configuration. (a) Setup of seismic acquisition and well control.
Dark blue ⋆ denotes the CO2 injection well. While × and black · represent source and
receiver locations, respectively. The gray curve delineates the shape of the CO2 plume
at the 25th year. (b) Unseen ground truth spatial distribution of horizontal permeability.
(c) Histogram of the common logarithm of the permeability model with Kernel Density
Estimation (KDE).
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seismic monitoring period, and forecast CO2 dynamics in near future without any seismic

observation. Recognizing the limitations of our simplifying assumptions, we conclude with

suggestions for future research to advance this promising approach.

3.3 Permeability inversion framework

Our feasibility study examines the time-lapse seismic monitoring of geological carbon stor-

age (GCS), focusing on the integration of three fundamental physics disciplines: fluid-flow

physics, rock physics, and wave physics, as illustrated in Figure 3.2. The dynamics of the

CO2 plume during injection are modeled using multiphase flow equations [21], processed

through a reservoir simulator [22, 23, 24, 25]. While these simulations require detailed

inputs, including well operation parameters and the spatial distribution of porosity and per-

meability, in this exposition we focus on the permeability, K, particularly, as the parameter

of interest. The output from the reservoir simulator, S, primarily the time-varying CO2 sat-

uration snapshots, compiled in c, serves as the input to the rock physics model, R. Based

on the porosity and the brine-filled baseline velocity before CO2 injection, this model trans-

lates each CO2 saturation snapshot into altered seismic velocity models, compiled in the

vector, v, using the patchy saturation model proposed by [26]. Lastly, based on the veloc-

ity models for each snapshot, the wave modeling operator [27], F , is used to generate the

time-lapse seismic dataset, d, which collects the seismic data from each vintage.

In practice, the prestack time-lapse seismic dataset, d, is observed from the field, with

the objective to estimate the past, current, and future dynamics of the CO2 plume in GCS

projects. Our methodology diverges from traditional workflows that typically proceed from

seismic inversion to quantitative interpretation and subsequent reservoir parameter updates

based on the derived wave properties. Instead, we propose an integrated, end-to-end ap-

proach that directly inverts the time-lapse surveys collected in d for permeability, K, by

reducing the time-lapse seismic data misfit objective through an automatic optimization

procedure. The core of our method is the composition of three physics-based modeling
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Figure 3.2: Multiphysics forward model. The reservoir simulator, S, produces nk snapshots
of time-varying CO2 saturation, compiled in c, from the permeability model, K. The rock
physics model,R, based on the porosity and the brine-filled velocity model, converts each
CO2 saturation snapshot, ck, to the altered velocity model, vk . The shaded area highlights
the CO2-induced changes in velocity. Finally, the wave modeling, F , generates a time-
lapse seismic dataset, dk, for each velocity model, vk. These datasets are collected in the
vector, d.

operators, formulated to minimize the following objective function:

minimize
K

∥F ◦ R ◦ S(K)− d∥22. (3.1)

This optimization problem is reached with the assumption that the permeability model,

K, is the only unknown parameter during inversion. Especially, the porosity and the brine-

filled velocity model before CO2 injection (as inputs to the patchy saturation model,R) are

assumed known and fixed during the inversion. This objective is minimized via an iterative

procedure that includes:

• Generating synthetic time-lapse seismic data using an initial guess for the permeabil-

ity model;

• Calculating the gradient of the permeability by backpropagating the residuals of the

time-lapse seismic datasets;

• Updating the permeability model to reduce the misfit between the synthetic and ob-

served time-lapse seismic datasets.

The advantage of this end-to-end inversion framework lies in its ability to break down

silos through multiphysics integration. Specifically, it eliminates the need for intermediate
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processing steps to update the saturation and velocity models. As we demonstrate in the

subsequent feasibility study, the inverted permeability can produce accurate fluid saturation

and velocity models, even for the near future without any additional seismic observations.

3.4 Feasibility study on the Compass model

We evaluate the performance of this inversion framework through a synthetic case study

on the Compass model [18]. This model has a grid spacing of 6m in both the horizontal

and vertical directions. Compared to conventional reservoir models that often have nearly

homogeneous layers and a coarse discretization in the horizontal direction (e.g., 100m), the

high-resolution and spatially heterogeneous Compass model can help reveal the potential

of inverting fine-scale geological structures in the permeability model.

Using five vintages of prestack time-lapse seismic surveys, we aim to invert for the

spatial distribution of permeability. To this end, we utilize the aforementioned 2D slice of

the velocity model, included in Figure 3.1 (a), where the orange region signifies the storage

unit. Since the Compass model only includes velocities and densities and no permeabil-

ity or porosity values, we build a fully heterogeneous ground truth permeability model,

displayed in Figure 3.1 (b), by assuming the elementwise relationship in Equation 3.2,

between the entries of the brine-filled velocity model, cp, in km/s, and the horizontal per-

meability, K, in millidarcies (md)1.

K =


3000 exp(cp − 4) if cp ≥ 4

0.01 exp(25.22(cp − 3.5)) if cp ≥ 3.5

0.01 exp(cp − 3.5) else

(3.2)

Because the baseline seismic Compass model is derived from well and imaged seismic,

it contains subtle changes in the seismic properties related to sub-wavelength interference.
1This relationship is only used to create the ground truth permeability model. When solving the optimiza-

tion problem in Equation 4.1, no assumptions are made on relationships between the permeability, porosity,
and velocity.
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The above elementwise relationship between the seismic velocity and permeability ensures

that the derived permeability model shares the same spatial heterogeneity as exhibited by

the seismic baseline. By construction, it also features significant permeability contrasts

within different layers within the storage unit. The low-permeability layers range from ap-

proximately 10−3 to 1 md, while the high-permeability layers vary between 600 to 6000 md.

The histogram of the common logarithm of the permeability model is shown in Figure 3.1

(3), which demonstrates that the permeability values do not follow log-normal distribution.

A CO2 injection well, marked with a dark blue ⋆, is placed centrally to inject supercritical

CO2 for 25 years at a constant rate of two million metric tons per year. We assume the

porosity and the kv/kh ratio to be constant and given by 25% and 10%, respectively. The

simulation of compressible and immiscible two-phase flow, where CO2 displaces brine in

porous rocks, is performed using a fully implicit method implemented in JutulDarcy.jl [28,

29]. The boundary of the CO2 plume at the 25th year is depicted in grey in Figure 3.1

(a). After converting the CO2 saturation into seismic velocity models, v, via the patchy

saturation model, acoustic time-lapse seismic data is generated with constant density for

five vintages at years 5, 10, 15, 20, and 25 using Devito [30, 31] and JUDI.jl [32, 33],

employing a Ricker wavelet with a central frequency of 20 Hz. The well-bore source and

receiver geometries are shown in Figure 3.1 (a).

3.4.1 Sensitivity with respect to starting models

To evaluate the efficacy of our end-to-end inversion framework, particularly its sensitiv-

ity to initial permeability models, we examine two distinct initial permeability models. In

case 1, the initial permeability model, shown in Figure 3.3 (a), features homogeneous per-

meability values (100md) across the entire reservoir. This model allows us to explore the

extent of permeability updates achievable from a non-informative permeability model. In

case 2, we apply a spatial distortion [34] to the unseen ground truth permeability in Fig-

ure 3.1 (b) to obtain the initial permeability model, shown in Figure 3.3 (b). The values of
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different permeability layers are near accurate, but the positions are misplaced.

In both cases, we employ a methodological shortcut often referred to as committing an

“inversion crime”, where the data generation and inversion processes share the same com-

putational kernel. This ideal setup is used here to show what is ideally achievable by this

inversion framework. To add a layer of realism, we incorporate 8 dB of incoherent band-

limited Gaussian noise into the observed time-lapse datasets, which severely contaminates

the seismic signal in the time-lapse difference.

To invert for the permeability model, we run 100 iterations of stochastic gradient de-

scent (SGD), starting with Figure 3.3 (a) and Figure 3.3 (b). During each iteration, we

randomly draw four sources out of the total of 32 sources to calculate the misfit and the

gradient with respect to permeability model [35]. This amounts to 12.5 datapasses through

the entire time-lapse seismic dataset. We display permeability updates in logarithmic scale

for both cases, in Figure 3.3 (e) and Figure 3.3 (f), respectively. Additionally, Figure 3.3

(c) and Figure 3.3 (d) offer a visualization of “ideal” updates by showing the logarithmic

differences between the ground truth and the initial permeability models.

The following observations can be made: First, the permeability updates are primarily

confined to areas directly influenced by the CO2 plume’s flow, as delineated by the gray

curves. This outcome is expected since the time-lapse variations in wave properties are

attributed to changes in fluid saturation exclusively. Consequently, without additional in-

formation, this inversion method does not alter permeability values outside the CO2 plume’s

extent where the flow of CO2 has not occurred. Second, the inverted permeability within

the CO2 plume largely reflects the trend of the ground truth permeability model. In case

1, the framework successfully identifies major permeability layers — both high and low

(depicted in red and blue, respectively) at approximately 1600m depth — accurately cap-

turing their depth and lateral distribution in alignment with the actual layers. In case 2,

the inversion process introduces high-resolution details to the layers affected by the plume,

aligning well with the ideal updates shown in Figure 3.3 (d). Despite these successes, the
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full magnitude of permeability contrasts is not entirely captured, pointing to the inherently

ill-posed nature of permeability inversion [36], necessitating workflows that include uncer-

tainty quantification for future investigations [37].

3.4.2 Sensitivity with respect to forward modeling errors

To extend our investigation beyond overly idealized scenarios, we examine the framework’s

robustness next, during scenarios that avoid “committing the inversion crime”. A critical

area of focus in time-lapse seismic is the error in the brine-filled baseline velocity model be-

fore CO2 injection. Errors in this baseline model, which feeds into the rock physics model,

can produce inaccurate velocity models of the CO2-filled reservoir, leading to inaccuracies

in the simulated time-lapse seismic datasets.

To construct an inaccurate but realistic baseline velocity model, we use a Ricker wavelet

with central frequency of 20Hz to generate cross-well and surface seismic data before CO2

injection, and employ the SGD method to run 10 datapass of FWI with a kinematically

correct but smooth initial velocity model to obtain the inverted velocity model depicted in

Figure 3.4 (a). This imperfect brine-filled velocity model is subsequently fed into the rock

physics model,R, for permeability inversion (case 3).

We employ the initial permeability model from Figure 3.3 (a) to assess the impact of

modeling errors on the inversion results. The update to the permeability, shown in log-

arithmic scale in Figure 3.4 (b), reveals some artifacts outside the CO2 plume area due

to the modeling inaccuracies. Additionally, a high permeability zone within the plume is

slightly misplaced when compared to the updates in Figure 3.3 (e), yet the overall trend of

permeability changes is correctly captured.

Following this permeability update, we proceed with reservoir simulations using the

updated permeability models to assess the corrections made to the CO2 plume predictions.

This step is crucial for validating the practical utility of the inversion framework for real-

world seismic monitoring scenarios.
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Figure 3.3: Permeability inversion results for cases 1 and 2. (a)(c)(e) display the initial per-
meability model in case 1, the logarithmic ratio of the ground truth permeability (Figure 3.1
(b)) to the initial one, and the logarithmic ratio of the inverted permeability to the initial
one. (b)(d)(f) display the same but for case 2 with a distorted initial permeability model.
Gray curve indicates the boundary of the CO2 plume at the 25th year. “× initial” on the
caption of the colorbar represents the factor by which the initial permeability is updated.

Figure 3.4: Permeability inversion results for case 3. (a) Inverted brine-filled baseline ve-
locity used in permeability inversion. (b) The logarithmic ratio of the inverted permeability
to the initial one. Gray curve indicates the boundary of the CO2 plume at the 25th year.
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3.4.3 CO2 plume estimation and forecast

The primary objective of our end-to-end inversion framework is to accurately estimate

reservoir permeability, a crucial step towards the ultimate goal of predicting CO2 satura-

tion both historically and in the near future. Based on initial, inverted, and ground truth

permeability models, we conduct a quality control involving CO2 saturation simulations,

as depicted in Figure 3.5. Across all simulations, we note substantial improvements in pre-

dictions of the CO2 plume shape, closely aligning with the boundaries of the ground truth

CO2 plume. Notably, the initial simulations significantly misjudged the lateral spread of the

CO2 plume. The corrections applied through the updated permeability models, however,

yield accurate representations of the plume’s lateral extent.

Expanding our analysis to future forecasting, Figure 3.6 illustrates the predicted move-

ment of the CO2 plume over a 40-year period, following a 25-year injection phase, with-

out further CO2 injection or seismic observations. During this forecasted period, the CO2

plume primarily ascends due to buoyancy, while a portion (approximately 10%) remains

trapped in the pore spaces, indicated in purple. This phenomenon, known as residual trap-

ping [38], is a critical factor in assessing the long-term storage capabilities of GCS projects.

Initial forecasts tend to underestimate the extent of CO2 sequestration through residual trap-

ping. In contrast, simulations driven by the updated permeability models not only provide

a more accurate estimation of the permanently stored CO2 volume but also closely match

the ground truth CO2 plume’s boundaries, even without collecting further monitoring data.

3.4.4 Multiparameter inversion

While case 1-3 demonstrate the performance of the inversion framework for permeabil-

ity estimation, further scrutiny is in order to investigate its performance when multiple

parameters are unknown and need to be jointly estimated. To this end, we design case

4 where spatial distributions of both porosity and permeability are unknown. While per-

meability only appears in the two-phase flow equations, porosity appears as an input not
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Figure 3.5: Predicted CO2 saturation for 5th, 15th, and 25th years, shown in first, second,
and third columns, respectively. The first row shows the (unseen) ground truth CO2 satu-
ration. The second and fourth rows show the saturation predicted with initial permeability
models in Figure 3.3 (a) and Figure 3.3 (b), respectively. The third, fifth, and sixth rows
show the updated saturation after updating the initial permeability models by Figure 3.3
(e), Figure 3.3 (f), and Figure 3.4 (b), respectively. The boundaries of the (unseen) ground
truth CO2 saturation are shown in white curves.
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Figure 3.6: CO2 plume forecasts for 45th and 65th years, shown in first and second
columns, respectively. The ordering of the rows remains the same as Figure 3.5. Purple
regions display the CO2 plume permanently stored via the residual trapping mechanism.
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only in the two-phase flow reservoir simulator, S, but also in the patchy saturation model,

R. This results in a more challenging inverse problem because porosity affects more than

one physics-based forward models in Figure 3.2, and because there can be crosstalk in the

gradient calculations during the inversion.

As a proof of concept, we simplify this multiparameter inversion problem by assum-

ing that the porosity, ϕ, and the horizontal permeability, K, are related by the following

elementwise Kozeny-Carman relationship [39]:

K = T (ϕ) = 3.65× 104
ϕ3

(1− ϕ)2
. (3.3)

Following this relationship, we artificially create a ground truth porosity model, shown

in Figure 3.7 (c), according to the permeability values in Figure 3.1 (b), and then use the

ground truth permeability and porosity models to simulate CO2 saturation, velocity models,

and the five time-lapse seismic datasets. During inversion, we parameterize permeability

by porosity according to Equation 3.3, and minimize the following objective function to

invert for the porosity:

minimize
ϕ

∥F (R (ϕ,S (ϕ, T (ϕ))))− d∥22. (3.4)

The scalable and differentiable programming framework, proposed by [16], allows for

effortless and accurate gradient calculation with respect to porosity, ϕ, which otherwise

requires labor-intensive and error-prone derivation of cross-gradient terms by hand. We

initialize the reservoir with homogeneous porosity values of 12%, shown in Figure 3.7 (a).

After 100 iterations of SGD, the inverted porosity is shown in Figure 3.7 (b). While some

layers in the inverted porosity are slightly misplaced in this preliminary study, the overall

trend of porosity is adequately estimated in the center of the model.
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Figure 3.7: Porosity inversion in case 4. (a) Initial porosity. (b) Inverted porosity. (c)
Unseen ground truth porosity. The gray curve delineates the shape of the CO2 plume at the
25th year.

3.5 Limitations

While our case studies offer promising insights, it is crucial to acknowledge the assump-

tions underpinning our approach and recognize the inherent limitations that merit further

investigation. Additionally, we explore the potential for integrating this 4D processing

workflow with other reservoir characterization and management strategies.

3.5.1 Reservoir simulation

Our study assumes known values for all multiphase flow model parameters, including rel-

ative permeability functions, residual water saturation, temperature and capillary pressure.

These parameters were kept constant in the simulations to isolate the impact of permeabil-

ity on seismic data, but there can be significant rock-dependent variations in practice. A

multiparameter inversion, indicated by the preliminary case study in case 4, is worthwhile

for future investigation to extend this inversion framework through joint estimation of these

parameters. Further exploration is also required to understand the crosstalk between these

parameters. In addition, our assumption that supercritical CO2 miscibility in the resident

brine is low could be removed by considering a compositional flow model that introduces

additional uncertain parameters. The feasibility of such approaches hinges on the avail-

ability of a differentiable reservoir simulator, like JutulDarcy.jl, or the use of deep neural

networks to approximate the physics of multiphase flow [40, 16, 17] and serve as a sur-

rogate during inversion. Moreover, multiphase flow equations may not hold in scenarios
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involving CO2 leakage, necessitating robust leakage detection methodologies [41, 42].

3.5.2 Rock physics

The case studies currently ignore the pressure effect on the wave properties [43, 44]. While

this can be justified for some GCS projects where the pressure change is relatively subtle,

the inversion framework can be extended to honor the relationship between pressure and

wave properties, and include geomechanical effects [45, 46]. The patchy saturation model

may also not fully capture the complexities of real-world reservoirs [47], indicating a need

for calibration of the rock physics model against actual reservoir and seismic data.

3.5.3 Wave physics

The omission of updates to the brine-filled baseline velocity model represents a simpli-

fication that warrants further exploration. Future research could extend the framework

to jointly update this baseline alongside permeability, incorporating additional parameters

like shear velocity and density, which are currently ignored in the modeling and inversion.

Quantifying uncertainties in velocity [48, 49, 50] and permeability models remains a criti-

cal challenge for enhancing the reliability of inversion results.

3.6 Discussion and conclusion

Our feasibility studies demonstrate the performance of this inversion framework in esti-

mating permeability models directly from multiple prestack time-lapse seismic datasets in

a cross-well setting. The recovered horizontal details in the permeability, especially shown

in Figure 3.3 (f) using a 6m grid spacing, highlight the capability of this end-to-end inver-

sion framework to provide high-resolution spatial information of the permeability model.

This framework also has the potential to significantly reduce cycle time in 4D processing

workflows by avoiding labor-intensive, step-by-step inversion schemes where seismic ve-

locity and CO2 saturation are subsequently inverted from right to left in Figure 3.2. Further-
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more, the proposed framework differs from conventional workflows [51, 52] by coupling

fluid-flow, rock, and wave physics, leveraging the sensitivities of the reservoir simulator

through a differential programming software framework [16]. By utilizing the rock physics

model that links changes in CO2 saturation to changes in seismic properties, we gain ac-

cess to these sensitivities from the time-lapse seismic data, allowing us to invert for the

permeability directly.

Opportunities for future research remain. This inversion framework can be further en-

hanced to incorporate multimodal observations, such as a combination of well measure-

ments and seismic data. This enhancement can be readily achieved by integrating addi-

tional misfit terms into the objective function, as detailed by [17]. Moreover, the resolution

of permeability inversion deserves more exploration. Currently, the inversion is limited to

the resolution achievable by seismic methods. Adopting a multimodal data assimilation

approach necessitates further studies into the upscaling of the permeability model [53],

which we leave for future work. Additionally, the permeability inversion framework is

well-suited for integration with the digital twin framework, as reported by [54] and in other

ongoing projects at our research group. When time-lapse seismic and well measurements

are collected from the field, performing permeability inversion facilitates more accurate

estimations of reservoir properties. These estimations can then be used to forecast the

CO2 plume’s behavior and optimize well injectivity in GCS projects, thereby maximizing

injection volumes while minimizing fracturing risks [55].

3.7 Data availability

Software with this research can be accessed at http://github.com/slimgroup/TL-FWPI.jl/,

with the DOI link https://doi.org/10.5281/zenodo.10910283. The full 3D Compass model

is open access with CC BY license, available at ftp://slim.gatech.edu/data/synth/Compass/.
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CHAPTER 4

SOLVING MULTIPHYSICS-BASED INVERSE PROBLEMS WITH LEARNED

SURROGATES AND CONSTRAINTS

4.1 Summary

Solving multiphysics-based inverse problems for geological carbon storage monitoring can

be challenging when multimodal time-lapse data are expensive to collect and costly to sim-

ulate numerically. We overcome these challenges by combining computationally cheap

learned surrogates with learned constraints. Not only does this combination lead to vastly

improved inversions for the important fluid-flow property, permeability, it also provides a

natural platform for inverting multimodal data including well measurements and active-

source time-lapse seismic data. By adding a learned constraint, we arrive at a computation-

ally feasible inversion approach that remains accurate. This is accomplished by including

a trained deep neural network, known as a normalizing flow, which forces the model iter-

ates to remain in-distribution, thereby safeguarding the accuracy of trained Fourier neural

operators that act as surrogates for the computationally expensive multiphase flow simu-

lations involving partial differential equation solves. By means of carefully selected ex-

periments, centered around the problem of geological carbon storage, we demonstrate the

efficacy of the proposed constrained optimization method on two different data modalities,

namely time-lapse well and time-lapse seismic data. While permeability inversions from

both these two modalities have their pluses and minuses, their joint inversion benefits from

either, yielding valuable superior permeability inversions and CO2 plume predictions near,

and far away, from the monitoring wells.
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4.2 Introduction

In this chapter, we introduce a novel learned inversion algorithm designed to address in-

verse problems based on partial differential equations (PDEs). These problems can be

represented using the following general form:

d = H ◦ S(K) + ϵ. (4.1)

In this expression, the nonlinear operator S represents the solution operator of a nonlin-

ear parametric PDE mapping the coefficients K to the solution. Given numerical solutions

of the PDE, partially observed data, collected in the vector d, are modeled by compounding

the solution operator with the measurement operator,H, followed by adding the noise term

ϵ with noise level of σ—i.e., ϵ ∼ N (0, σ2I). This problem is quite general and pertinent

to various physical applications, including geophysical exploration [1, 2], medical imaging

[3], and experimental design [4].

Without loss of generality, we focus on time-lapse seismic monitoring of geological car-

bon storage (GCS), which involves underground storage of supercritical CO2 captured from

the atmosphere or from industrial smoke stacks [5]. We consider GCS in saline aquifers,

which involves multiphase flow physics where CO2 replaces brine in the porous rocks [6].

In this context, the PDE solution operator, S, serves as the multiphase flow simulator, which

takes the gridded spatially varying permeability in the reservoir, K, as input and produces

nt time-varying CO2 saturation snapshots, c = [c1, c2, · · · , cnt ], as output. The governing

equations for the multiphase flow involve Darcy’s and the mass conservation law. Detailed

information on the governing equations, initial and boundary conditions, and numerical

solution schemes can be found in [7] and the references therein. To ensure safety, confor-

mance, and containment of GCS projects, various kinds of time-lapse data are collected to

monitor CO2 plumes. These different data modalities include measurements in wells [8,

9], and the collection of gravity [10, 11], electromagnetic [12, 13], and seismic time-lapse
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data [14, 15, 16] that can be used to follow the plume and invert for reservoir properties

such as the permeability, K. The latter is the property of interest in this exposition.

Overall, solving for the reservoir model parameter, K, poses significant challenges for

two primary reasons:

• the forward modeling operator, H ◦ S, can be ill-posed, resulting in multiple model

parameters that fit the observed data equally well. This necessitates the use of regu-

larizers [17, 2] in the form of penalties or constraints [18].

• The PDE modeling operator S, and the sensitivity calculations with respect to the

model parameters can be computationally expensive for large-scale problems, lim-

iting the efficacy of iterative methods such as gradient-based [19] or Markov chain

Monte Carlo [20] methods.

To overcome the second challenge, numerous attempts have been made to replace com-

putationally expensive PDE solves with more affordable approximate alternatives [21, 22],

which include the use of radial basis functions to learn the complex models from few sam-

ple points [23] or reduced-order modeling where the dimension of the model space is re-

duced [24, 25]. More recently, various deep learning techniques have emerged as cheap

alternatives to numerical PDE solves [26, 27, 28, 29, 30, 31, 32]. After incurring initial

training costs, these neural operators lead to vastly improved computation of PDE solves.

Data-driven methods have also been used successfully to learn coarse-to-fine grid map-

pings of PDEs solves. Because of their advertised performance on approximating solution

operators of the multiphase flow in porous media [33, 34, 35, 36, 37], we will consider

Fourier neural operators [38, 30] in this work even though alternative choices can be made.

Once trained, FNOs produce approximate PDE solutions orders of magnitude faster than

traditional solvers [38, 39, 35, 40]. In addition, [41, 42, 43] demonstrated that trained

FNOs can replace PDE solution operators during inversion. This latest development is es-

pecially beneficial to applications such as GCS where trained FNOs can be used in lieu of
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numerically costly flow simulators [44, 7, 45]. However, despite their promising results,

unconstrained inversion formulations offer little to no guarantees that the model iterates

remain within the statistical distribution on which the FNO was trained initially during in-

version. As a consequence, FNOs may no longer produce accurate fluid-flow simulations

throughout the iterations, which can lead to erroneous inversion results when the errors

become too large, possibly rendering surrogate modeling by FNOs ineffective. To avoid

this situation, we propose a constrained formulation where a trained normalizing flow (NF,

[46]) is included as a learned constraint. This added constraint guarantees that the model

iterates remain within the desired statistical distribution. Because our approach safeguards

the FNO’s accuracy, it allows FNOs to act as reliable low-cost neural surrogates replacing

costly fluid-flow simulations and gradient calculations that rely on numerically expensive

PDE solves during inversion.

The organization of this chapter is as follows: First, we introduce FNOs and explore

the possibility of replacing the forward modeling operator with a trained FNO surrogate.

Next, NFs are introduced. By means of a motivational example, we demonstrate how

these learned generative networks control the prediction error of FNOs by ensuring that

the model iterates remain in distribution. Based on this motivational example, we propose

our novel method for using trained NFs as a learned constraint to guarantee performance

of FNO surrogates during inversion. Through four synthetic experiments related to GCS

monitoring, the efficacy of our method will be demonstrated.

4.3 Fourier neural operators

There is an extensive literature on training deep neural networks to serve as affordable al-

ternatives to computationally expensive numerical simulators [26, 29, 30, 47, 48]. Without

loss of generality, we limit ourselves in this exposition to the training of a special class of

neural operators known as Fourier neural operators (FNOs). These FNOs are designed to

approximate numerical solution operators of the PDE solution operator, S, by minimizing
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the following objective:

minimize
θ

1

N

N∑
j=1

∥Sθ(K(j))− c(j)∥22 where c(j) = S(K(j)). (4.2)

Here, Sθ denotes the FNO with network weights θ. The optimization aims to minimize

the ℓ2 misfit between numerically simulated PDE solutions, c(j), and solutions approxi-

mated by the FNO, across N training samples (permeability models), {K(j)}Nj=1 compiled

by domain experts. Once trained, FNOs can generate approximate PDE solutions for un-

seen model parameters orders of magnitude faster than numerical simulations [35, 40]. For

model parameters that fall within the distribution used to train, approximation by FNOs are

reasonably accurate—i.e., Sθ∗(K) ≈ S(K), with θ∗ being the minimizer of Equation 4.2.

We refer to the numerical examples section for details calculating these weights. Before

studying the impact of applying these surrogates on samples for the permeability that are

out of distribution, let us first consider an example where data is inverted using surrogate

modeling.

4.4 Inversion with learned surrogates

Replacing PDE solutions by approximate solutions yielded by trained FNO surrogates has

two main advantages when solving inverse problems. First, as mentioned earlier, FNOs are

orders of magnitude faster than numerical PDE solves, which allows for many simulations

at negligible costs [49, 50]. Second, existing software for multiphase flow simulations may

not always support computationally efficient calculations of sensitivity, e.g. via adjoint-

state calculations [51, 52, 53] of the simulations with respect to their input. In such cases,

FNO surrogates are favorable because automatic differentiation on the trained network [54,

42, 41, 55, 43] readily provides access to gradients with respect to model parameters. As a

result, the PDE solver, S, in Equation 4.1 can be replaced by trained surrogate, Sθ∗—i.e.,

we have
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minimize
K

∥d−H ◦ Sθ∗(K)∥22 (4.3)

where θ∗ represent the optimized weights minimizing Equation 4.2. While the above

formulation in terms of trained surrogates has been applied successfully during permeabil-

ity inversion from time-lapse seismic data [56, 41, 43], this type of inversion is only valid

as long as the (intermediate) permeabilities remain within distribution during the inversion.

Practically, this means two things. First, the data need to be in the range of permeability

models that are in distribution. This means that there can not be too much noise neither can

the observed data be the result of an out-of-distribution permeability. Second, there are no

guarantees that the permeability model iterates remain in distribution during inversion even

though some bias of the gradients of the surrogate towards in-distribution permeabilities

may be expected. To overcome this challenge, we propose to add a learned constraint to

Equation 4.3 that offers guarantees that the model iterates remain in distribution.

4.5 Learned constraints with normalizing flows

As demonstrated by [57, 58, 59], regularization of non-linear inverse problems, such as

full-waveform inversion, with constraints, e.g., total-variation [58] or transform-domain

sparsity with ℓ1-norms [60], offers distinct advantages over regularizations based adding

these norms as penalties. Even though constraint and penalty formulations are equivalent

for linear inverse problems for the appropriate choice of the Lagrange multiplier, mini-

mizing the constraint formulation leads to completely different solution paths compared to

adding a penalty term to the data misfit objective [61]. In the constrained formulation, the

model iterates remain at all times within the constraint set while model iterates yielded by

the penalty formulation does not offer these guarantees. [57] demonstrated this importance

difference for the non-convex problem of full-waveform inversion. For this problem, it

proved essential to work with a homotopy where the intersection of multiple handcrafted
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constraints (intersection of box and size of total-variation-norm ball constraints) are relaxed

slowly during the inversion, so the model iterates remain physically feasible and local min-

ima are avoided.

Motivated by these results, we propose a similar approach but now for “data-driven”

learned constraints based on normalizing flows (NFs, [46]). NFs are powerful deep gener-

ative neural networks capable of learning to generate samples from complex distributions

[62, 63, 64, 65, 43]. Designed to be invertible, these NFs require the latent and model

spaces to share identical dimensions, which confers several advantages:

• unlike variational autoencoders [66] or generative adversarial networks (GANs, [67]),

which both have a lower-dimensional latent space, NFs do not impose any intrinsic

dimensionality constraints. This flexibility lets NFs capture model space character-

istics across high dimensions [68]. Relevantly, concurrent literature has delved into

the intrinsic dimensionality of NFs, indicating the potential to using NFs to generate

models with inherently lower dimensions [69].

• NFs’ inherent invertibility negates the need to store state variables during gradient

calculations, enabling memory-efficient training and inversion in large-scale 3D ap-

plications, such as in geophysics [70, 71, 72, 73, 74] and ultrasound imaging [75, 64,

76, 65, 77, 78].

• because of their invertibility NFs guarantee unique latent codes for all model space

samples, including out-of-distribution ones. Therefore, they can still be used to in-

vert for out-of-distribution model parameters, while other methods like GANs may

introduce bias [79].

Aside from being invertible, NFs are trained to map samples from a target distribution

in the physical space to samples from the standard zero-mean Gaussian distribution noise

in the latent space. After training is completed, samples from the target distribution are

generated by running the NF in reverse on samples in the latent space from the standard
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Gaussian distribution. Below, we will demonstrate how NFs can be used to guarantee that

the permeability remains in distribution during the inversion.

4.5.1 Training normalizing flows

Given samples from the permeability distribution, {K(j)}Nj=1, training NFs entails minimiz-

ing the Kullback-Leibler divergence between the base and target distributions [80]. This

involves solving the following variational problem:

minimize
w

1

N

N∑
i=1

(
1

2
∥G−1

w (Ki)∥22 − log
∣∣det JG−1

w
(Ki)

∣∣) . (4.4)

In this optimization problem, G−1
w represents the NF, which is parameterized by its

network weights w, while JG−1
w

denotes its Jacobian. By minimizing the ℓ2-norm, the ob-

jective imposes a Gaussian distribution on the network’s output and the second log det

term prevents trivial solutions, i.e., cases where G−1
w produces zeros. To ensure alignment

between the permeability distributions, Equation 4.2 and Equation 4.4 are trained on the

same dataset consisting of 2000 permeability models examples of which are included in

Figure 4.1. Each 64 × 64 permeability model of consists of a randomly generated highly

permeable channels (120mD) in a low-permeable background of 20mD, where mD de-

notes millidarcy. Generative examples produced by the trained NF are included in the

second row of Figure 4.1, which confirm the NF’s ability to learn distributions from ex-

amples. Aside from generating samples from the learned distribution, trained NFs are also

capable of carrying out density calculations, an ability we will exploit below.

4.5.2 Trained normalizing flows as constraints

As we mentioned before, adding constraints to the solution of non-convex optimization

problems offers guarantees that model iterates remain within constrained sets. When solv-

ing inverse problems with learned surrogates, it is important that model iterates remain “in
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Figure 4.1: Permeability models. First row shows the realistic permeability samples for
FNO and NF training. Second row shows the generative samples from the trained NF.

distribution”, which can be achieved by recasting the optimization problem in Equation 4.3

into the following constrained form:

minimize
z

∥d−H ◦ Sθ∗ ◦ Gw∗(z)∥22 subject to ∥z∥2 ≤ τ. (4.5)

To arrive at this constrained optimization problem, two important changes were made.

First, the permeability K is replaced by the output of a trained NF with trained weights

w∗ obtained by minimizing Equation 4.4. This reparameterization in terms of the latent

variable, z, produces permeabilities that are in distribution as long as z remains distributed

according to the standard normal distribution. Second, we added a constraint on this latent

space variable in Equation 4.5, which ensures that the latent variable z remains within an

ℓ2-norm ball of size τ .

To better understand the behavior of a trained normalizing flow in conjunction with

the ℓ2-norm constraint for in- and out-of-distribution examples, we include Figure 4.2 and

Figure 4.3. In the latter Figure, nonlinear projections (via latent space shrinkage),

K̃ = Gw∗ (αz) where z = G−1
w∗(K) (4.6)
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are plotted as a function of increasing α. We also plot in Figure 4.4 the NF’s rela-

tive nonlinear approximation error, ∥K̃−K∥2/∥K∥2, and the corresponding relative FNO

prediction error,∥Sθ∗(K̃) − S(K̃)∥2/∥S(K̃)∥2 as a function of increasing 0 ≤ α ≤ 1.

From these plots, we can make the following observations. First, the latent representations

(Figure 4.2c and Figure 4.2d) of the in- and out-of-distribution samples (Figure 4.2a and

Figure 4.2b ) clearly show that NF applied to out-of-distribution samples produces a latent

variable far from the standard normal distribution, while the latent variable correspond-

ing to the in-distribution example is close to being white Gaussian noise. Quantitatively,

the ℓ2 norm of the latent variables are 0.99∥N (0, I)∥2 and 3.11∥N (0, I)∥2, respectively,

where ∥N (0, I)∥2 corresponds to the ℓ2-norm of the standard normal distribution. Second,

we observe from Figure 4.3 that for small ℓ2-norm balls (α ≪ 1) the projected solutions

tend to be close to the most probable sample, which is a flat permeability channel in the

middle. This is true for both the in- and out-of-distribution example. As α increases, the

in-distribution example is reconstructed accurately when the ℓ2 norm of the scaled latent

variable, ∥αz∥2, is close to the ∥N (0, I)∥2. Clearly, this is not the case for the out-of-

distribution example. When ∥αz∥2 ≈ ∥N (0, I)∥2, the reconstruction still looks like an

in-distribution permeability sample and is not close to the out-of-distribution sample. How-

ever, if α = 1, which makes ∥αz∥2 well beyond the norm of the standard normal distribu-

tion, the out-of-distribution example is recovered accurately by virtue of the invertibility of

NFs, irrespective on their input and what they have been trained on. Third, the relative FNO

prediction error for the in-distribution example (Figure 4.4a) remains flat while the error of

the FNO surrogate increases as soon as α ≈ 0.25. At that value for α, the projection, K̃, is

gradually transitioning from being in-distribution to out-of-distribution, which occurs at a

non-linear approximation error of about 45%. As expected the plots in Figure 4.4 also show

a monotonous decay of the nonlinear approximation error as a function of increasing α. To

further analyze the effects of the nonlinear projections in Equation 4.6, we draw 50 ran-

dom realizations from the standard normal distribution, scale each of them by 0 ≤ α ≤ 2,
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(a) (b)

(c) (d)

Figure 4.2: Sample permeability models in the physical and latent space. (a) An in-
distribution permeability model. (b) An out-of-distribution permeability model. (c) An
in-distribution permeability model in the latent space. (d) An out-of-distribution perme-
ability model in the latent space.

and calculate the FNO prediction errors on these samples. Figure 4.5 includes the results

of this excercise where each column represents the FNO prediction error calculated for

0 ≤ α ≤ 2. From these experiments, we make the following two observations. First, when

α < 0.8, the FNO consistently makes accurate predictions for all projected samples. Sec-

ond, as expected, the FNO starts to make less accurate predictions for α > 1 with errors

that increase as the size of the ℓ2-norm ball of the latent space expands, demarcating the

transition from being in distribution to being out-of-distribution.
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Figure 4.3: Projections onto increasing ℓ2-norm balls for the in- and out-of-distribution
examples of Figure 4.2. Top row: projections of in-distribution sample. Bottom row:
projections of out-of-distribution sample. Each column corresponds to setting α =
0, 0.1, 0.2, 0.4, 1 in Equation 4.6.

(a) (b)

Figure 4.4: Latent space projection experiments.(a) Relative ℓ2 reconstruction error and
FNO prediction error for in-distribution sample. (b) The same but for out-of-distribution
sample. The blue curve shows the relative ℓ2 misfit between the permeability models before
and after latent space shrinkage. The orange curve shows the FNO prediction error on
the permeability model after shrinking the ℓ2-norm ball. The red dashed line denotes the
amplitude of standard Gaussian noise.

Figure 4.5: FNO prediction errors for the latent space shrinkage experiment in Equation 4.6
for 50 random realizations of standard Gaussian noise.
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In summary, the experiments of Figure 4.2 to Figure 4.4 indicate that FNO errors remain

small and relatively constant for the in-distribution example. Irrespective of the value of α,

the generated samples remain in distribution while moving from the most likely—i.e., a flat

high-permeability channel in the middle, to the in-distribution sample as α increases. Con-

versely, the projection of the out-of-distribution example morphs from being in distribution

to being out-of-distribution for α ≥ 0.25. The FNO prediction errors also increase during

this transition from an in-distribution sample to an out-of-distribution sample. Therefore,

shrinkage in the latent space by multiplying with a small α can serve as an effective pro-

jection that ensures relatively low FNO prediction errors. We will use this unique ability to

control the distribution during inversion.

4.5.3 Inversion with progressively relaxed learned constraints

Our main objective is to perform inversions where the multiphase flow equations are re-

placed with pretrained FNO surrogates. To make sure the learned surrogates remain accu-

rate, we propose working with a continuation scheme where the learned constraint in Equa-

tion 4.5 is steadily relaxed by increasing the size of the ℓ2-norm ball constraint. Compared

to the more common penalty formulation, where regularization entails adding a Lagrange-

multiplier weighted ℓ2-norm squared, constrained formulations offer guarantees that the

model iterates for the latent variable, z, remain within the constraint set—i.e., within the

ℓ2-norm ball of size τ . Using the argument of the previous section, this implies that perme-

ability distributions generated by the trained NF remain in distribution as long as the size of

the initial ℓ2-norm ball, τinit, is small enough (e.g., smaller than 0.6∥N (0, I)∥2, following

the observations from Figure 4.5). Taking advantage of this trained NF in a homotopy, we

propose Algorithm 1.

Given observed data, d, trained networks, Sθ∗ and Gw∗ , the initial guess for the perme-

ability distribution, K0, the initial size of the ℓ2-norm ball, τinit, and the final size of the

ℓ2-norm ball, τfinal, Algorithm 1 proceeds by solving a series of constrained optimization
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Algorithm 1 Inversion with relaxed learned constraints

1: Input: initial model parameter K0 ∈ RN , observed data d, noise level σ
2: Input: trained FNO Sθ∗ , trained NF Gw∗

3: Input: number of inner-loop iterations maxiter
4: Input: initial ℓ2 ball size τinit, multiplier β > 1, final ℓ2 ball size τfinal
5: z = G−1

w∗(K0)
6: τ = τinit
7: while ∥d−H ◦ Sθ∗ ◦ Gw∗(z)∥2 > σ∥N (0, I)∥2 and τ ≤ τfinal do
8: for iter = 1 : maxiter do
9: g = ∇z∥d−H ◦ Sθ∗ ◦ Gw∗(z)∥22

10: z = Pτ (z− γg)
11: end for
12: τ = βτ
13: end while
14: Output: inverted model parameter K = Gw∗(z)

problems where the size of the constraint set is increased by a factor of β after each iter-

ation (cf. line 12 in Algorithm 1). The constrained optimization subproblems themselves

(cf. line 8 to 11 of Algorithm 1) are solved with projected gradient descent [81]. Each

iteration of the projected gradient descent method first calculates the gradient (cf. line 9 of

Algorithm 1), followed by the much cheaper projection of the updated latent variable back

onto the ℓ2-norm ball of size τ via the projection operator Pτ (cf. line 10 in Algorithm 1).

This projection is a trivial scaling operation if the updated latent variable ℓ2-norm exceeds

the constraint — i.e.,

Pτ (z) =


z if ∥z∥2 ≤ τ

τz/∥z∥2 if ∥z∥2 > τ

(4.7)

A line search determines the steplength γ [82] for each iteration shown in line 8 to 11.

As is common in continuation methods, the relaxed gradient-descent iterations are warm-

started with the optimization result from the previous iteration, which at the first iteration

is initialized by the latent representation of the initial permeability model, K0 (cf. line 5 in

Algorithm 1). Practically, each subproblem does not need to be fully solved, but only need

a few iterations instead. The number of iterations to solve each subproblem is denoted by

86



maxiter in line 8 of Algorithm 1. This continuation strategy serves two purposes. First,

for small τ ’s it makes sure the model iterates remain in distribution, so accuracy of the

learned surrogate is preserved. Second, by relaxing the constraint slowly, the data residual

is gradually allowed to decrease, bringing in more and more features derived from the data.

By slowly relaxing the constraint, we find a careful balance between these two purposes as

long as progress is made towards the solution when solving the subproblem (cf. line 8 to

11 in Algorithm 1). One notable distinction of the surrogate-assisted inversion, compared

to the conventional inversion with relaxed constraints [58], is that the size of the ℓ2-norm

projection ball cannot increase far beyond the ℓ2-norm of the standard Gaussian white noise

on which the NFs are trained. Otherwise, there is no guarantee the learned surrogate is

accurate because the NF may generate samples that are out-of-distribution (cf. Figure 4.5).

This is explicitly incorporated into the stopping criteria, τ ≤ τfinal, in line 7 of Algorithm 1.

4.6 Numerical Experiments

To showcase the advocasy of the proposed optimization method with relaxed learned con-

straints, a series of carefully chosen experiments of increasing complexity are conducted.

These experiments are designed to be relevant to GCS, which in its ultimate form involves

coupling of multiphase flow with the wave equation to perform end-to-end inversion for the

permeability given multimodal data. To convince ourselves of the validity of our approach,

at all times comparisons will be made between inversion results involving numerical solves

of the multiphase equations and inversions yielded by approximations with our learned

surrogate.

For all numerical experiments, the “ground-truth” permeability model will be selected

from the unseen test set and is shown in Figure 4.6a. The inversions will be initiated

with the smooth permeability model depicted in Figure 4.6b. This initial model, K0, rep-

resents the arithmetic mean of all permeability samples in the training dataset. To en-

sure that the model iterates remain in distribution, we set the starting ℓ2-norm ball size to
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(a) (b)

Figure 4.6: Permeability models. (a) unknown “ground-truth” permeability model from
unseen test set, where the symbols ▶ and ◀ denote the CO2 injection and brine production
location, respectively; (b) initial permeability model, K0.

τinit = 0.6∥N (0, I)∥2—i.e., 0.6× the ℓ2-norm of standard white Gauss noise realizations

for the discrete permeability model of 64 by 64 gridpoints. To gradually relax the learned

constraint, the multiplier of the projection ball size is taken to be β = 1.2, and we set the

ultimate projection ball size τfinal in Algorithm 1 to be 1.2 times the norm of standard white

noise. To limit computational costs of solving the subproblems, we allow each constrained

subproblem (cf. line 8 to 11 in Algorithm 1) to perform 8 iterations of projected gradi-

ent descent to solve for the latent variable. From practical experience, we found that the

proposed inversions are not very sensitive to the choice of these hyperparameters.

To simulate the evolution of injected CO2 plumes, we make use of the open-source

software package Jutul.jl [83, 84, 85], which for each permeability model, K(j), solves

the immiscible and compressible two-phase flow equations for the CO2 and brine satu-

ration. As shown in Figure 4.6a, an injection well is set up on the left-hand side of the

model, which injects supercritical CO2 with density 700 kg/m3 at a constant rate of 0.005

m3/s. To relieve pressure, a production well is included on the right-hand side of the

model, which produces brine with density 1000 kg/m3 with a constant rate of also 0.005

m3/s. This finally results in approximately a 6% storage capacity after 800 days of CO2
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(a)

Figure 4.7: Five CO2 saturation snapshots after 400, 500, 600, 700, and 800 days. First
row shows the CO2 saturation simulated by the PDE. Second row shows the CO2 saturation
predicted by the trained FNO. Third row shows the 5× difference between the first row and
the second row.

injection. From these simulations, we collect eight snapshots for the CO2 concentration,

c = [c1, c2, · · · , cnt ] with nt = 8 the number of snapshots that cover a total time period

of 800 days. The last five snapshots of these simulations are included in the top row of

Figure 4.6a. Due to buoyancy effects and well control, the CO2 plume gradually moves

from the left to the right and upwards.

Given these simulated CO2 concentrations, the optimized weights, w∗, for the FNO sur-

rogate are calculated by minimizing Equation 4.2 for N = 1900 training pairs, {K(j), c(j)}Nj=1.

Another 100 training pairs are used for validation. After training with 350 epochs, an av-

erage of 7% prediction error is achieved for permeability samples from the unseen test set.

As observed from Figure 4.7, the approximation errors of the FNO are mostly concentrated

at the leading edge of the CO2 plumes. The same permeability models are used to train the

NF by minimizing Equation 4.4 for 245 epochs using the open-source software package

InvertibleNetworks.jl [86]. We use the HINT network structure [87] for the NF. Three gen-
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erative samples are shown in the second row of Figure 4.1. From these examples, we can

see that the trained NF is capable of generating random permeability models that resemble

the ones in the training samples closely, despite minor noisy artifacts.

4.6.1 Unconstrained/constrained permeability inversion from CO2 saturation data

To demonstrate that permeability inversion with surrogates is indeed feasible, we first con-

sider the idealized, impossible in practice, situation where we assume to have access to

the time-lapse CO2 concentration, c = [c1, c2, · · · , cnt ], everywhere, and for all nt = 8

timesteps. In that case, the measurement operator, H in Equation 4.1, corresponds to the

identity matrix. Given CO2 concentrations simulated from the “ground-truth” permeabil-

ity distribution plotted in Figure 4.6a, we invert for the permeability by minimizing the

unconstrained formulation (cf. Equation 4.3) for the correct, yielded by the PDE, and ap-

proximate fluid-flow physics, yielded by the trained FNO. The results of these inversions

after 100 iterations of gradient descent with back-tracking linesearch [82] are plotted in

Figure 4.8a and Figure 4.8b. From these plots, we observe that the inversion results using

PDE solvers delineates most of the upper boundary of the channel accurately. Because

there is a null space in the fluid-flow modeling—i.e., this null space mostly corresponds

to regions of the permeability model that are barely touched by the CO2 plume (e.g. bot-

tom and right-hand side of the channel) — artifacts are present in the high-permeability

channel itself. As expected, the reconstruction of the permeability is also not perfect at the

bottom and at the far right of the model. The inversion result with the FNO surrogate is

similar but introduces unrealistic artifacts in the high-permeability channel and also out-

side the channel. These more severe artifacts can be explained by the behavior of the FNO

approximation error plotted as the orange curve in Figure 4.8e. The error value increases

rapidly to 13%, and finally saturates at 10%. This behavior of the error is a manifestation

of out-of-distribution model iterates that explain the erroneous behavior of the surrogate

and its gradient with respect to the permeability.
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Inversions yielded by the relaxed constrained formulation with the trained NF (see Al-

gorithm 1), on the other hand, show virtually artifact free inversion results (see Figure 4.8c

and Figure 4.8d) that compare favorably with the “ground-truth” permeability plotted in

Figure 4.6. While adding the NF as a constraint obviously adds information, explaining the

improved inversion for the accurate physics (Figure 4.8c), it also renders the approximate

surrogates more accurate, as can be observed from the blue curve in Figure 4.8e, where

the FNO approximation error is controlled thanks to adding the constraint to the inversion.

This behavior underlines the importance of ensuring model iterates to remain within distri-

bution. It also demonstrates the benefits of a solution strategy where we start with a small

τ , followed by relaxing the constraint slowly by increasing the size of the constraint set

gradually.

4.6.2 Unconstrained/constrained permeability inversion from well observations

While the example of the previous section established feasibility of constrained permeabil-

ity inversion, it relied on having access to the CO2 saturation everywhere, which is unreal-

istic in practice. To address this issue, we first consider permeability inversion from CO2

saturations, collected at three equally spaced monitoring well locations, for only the first 6

timesteps over the period of 600 days [88]. In this more realistic setting, the measurement

operator, H in Equation 4.1, corresponds to a restriction operator that extracts simulated

CO2 saturations at each well location in first six snapshots. The objective function reads

minimize
z

∥dw −M ◦ Sθ∗ ◦ Gw∗(z)∥22 subject to ∥z∥2 ≤ τ, (4.8)

where dw represents the well measurements collected at three well locations through the

linear restriction operator M. The goal is to invert for the permeability by minimizing the

misfit of the well measurements of the CO2 saturation without and with constraints on the

ℓ2-norm ball in the latent space. The results of these numerical experiments are included in

the first row of Figure 4.9, where the differences with respect to the ground truth permeabil-
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(c) (d)

(e)

Figure 4.8: Permeability inversion from fully observed time-lapse CO2 saturations. (a)
Inversion result with PDE solvers. (b) The same but via the approximate FNO surrogate.
(c) Same as (a) but with NF constraint. (d) Same as (b) but with NF constraint. (e) The
FNO approximation errors as a function of the number of iterations for the result plotted in
(b) and (d). 92



ity shown in Figure 4.6a are plotted in the second row. Because the part of the permeability

that is not touched by the CO2 plume lives in the null space, we highlight the CO2 plume

in the difference plots by dark color and focus on analyzing errors within the plume region.

As expected, the unconstrained inversions based on PDE solves (Figure 4.9a) and surrogate

approximations (Figure 4.9b) are both poorly resolved because of the limited spatial infor-

mation on the saturation. Contrasting these unconstrained inversions with results for the

constrained inversions for the PDE (Figure 4.9c) and surrogate (Figure 4.9d) again shows

the importance of adding constraints to the inversion. Figure 4.9i clearly demonstrates that

the FNO prediction errors remain relatively constant during constrained inversion while the

error continues to grow during the unconstrained iterations eventually exceeding 14%. Both

constrained results improve significantly, even though they converge to different solutions

in the end. This is because history matching is typically an ill-posed problem with many

distinctive solutions [89]. This observation further motivates us to consider the experiment

below, where time-lapse seismic data are jointly inverted for the subsurface permeability.

4.6.3 Multiphysics end-to-end inversion

Next, we consider the alternative setting for seismic monitoring of geological carbon stor-

age, where the dynamics of the CO2 plumes are indirectly observed from time-lapse seis-

mic data. In this case, the measurement operator, H, involves the composition of the rock

physics modeling operator,R, which converts CO2 saturations to decreases in the compres-

sional wavespeeds for rocks within the reservoir [90], and the seismic modeling operator,

F , which generates time-lapse seismic data recorded at the receiver locations and based

on acoustic wave equation modeling [91]. The multiphysics end-to-end inversion process

estimates permeability from time-lapse seismic data via inversion of these nested physics

operators for the flow, rock physics, and waves [56]. Following earlier work by [41] and

[43], the fluid-flow PDE modeling is replaced by the trained FNO (cf. Equation 4.5), re-

sulting in the following optimization problem:
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(e) (f) (g) (h)

(i)

Figure 4.9: Permeability inversions from CO2 saturations sampled at three well locations
at 6 early snapshots. The well locations are denoted by the red vertical lines. (a) Uncon-
strained inversion result based on PDE solves. (b) Same as (a) but now with FNO surrogate
approximation. (c) Constrained inversion result based on PDE solves. (d) Same as (c) but
now with FNO surrogate approximation. (e)-(h) The error of the permeability inversion
results in (a)-(d) compared to the unseen ground truth shown in Figure 4.6a. (i) The FNO
prediction errors as a function of the number of iterations for (b) and (d).
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minimize
z

∥ds −F ◦ R ◦ Sθ∗ ◦ Gw∗(z)∥22 subject to ∥z∥2 ≤ τ, (4.9)

where ds represents the observed time-lapse seismic data. While this end-to-end inver-

sion problem benefits from having remote access to changes in the compressional wavespeed,

it may now suffer from null spaces associated with the flow, Sθ∗ , and the wave/rock physics,

F ◦R. For instance, the latter suffers from bandwidth limitation of the source function and

from limited aperture. Because important components are missing in the observed data, in-

version based on the data objective alone in Equation 4.9 are likely to suffer from artifacts

that can easily drive the intermediate permeability model iterates out-of-distribution.

To demonstrate capabilities of the proposed relaxed inversion procedure with surrogates

for the fluid flow, we assume the baseline to be known—i.e, we assume the brine-filled

reservoir with 25% porosity to be acoustically homogeneous prior to CO2 injection with a

compressional wavespeed of 3500m/s. We use the patchy saturation model [90] to con-

vert the time-dependent CO2 saturation resulting in < 300m/s decreases in the wavespeed

within the CO2 plumes. We collect six seismic surveys at the first six snapshots for the

CO2 saturation from day 100 to day 600, which are the same snapshots as the ones used in

the previous experiment. For each time-lapse seismic survey, 16 active-seismic sources are

located within a well on the left-hand side of the model. We also position 16 sources on

the top of the model. Each active source uses a Ricker wavelet with a central frequency of

50Hz. The transmitted and reflected wavefields are collected by 480 receivers on the top

and 480 receivers on the right-hand side of the model. The seismic acquisition is shown

in Figure 4.10, where the plume at the last seismic vintage (at day 600) is plotted in the

middle.

To avoid numerical dispersion, the velocity model is upsampled by a factor of two in

both the horizontal and vertical directions, which results in a 7.5m grid spacing. For the

simulations, use is made of the open-source software package JUDI.jl [92, 43] to generate

the time-lapse seismic data at the first six snapshots. The fact that this software is based
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Figure 4.10: Seismic acquisition. The white × represents the acoustic sources, and the red
lines represent the dense receivers. The CO2 saturation snapshot at day 600 is plotted in
the middle, which is the last snapshot that is monitored seismically.

on Devito’s wave propagators [93, 94] allows us to do this quickly. For realism, we add 10

dB Gaussian noise to the time-lapse seismic data. Given these six time-lapse vintages, our

goal is to invert for the permeability in the reservoir by minimizing the time-lapse seismic

data misfit through the nested physics operators shown in Equation 4.9.

Inversion results obtained by solving the PDEs for the fluid flow during the inversion

are shown in Figure 4.11a and Figure 4.11c. As before, the inversions benefit majorly

from adding the trained NF as a constraint. Remarkably, the end-to-end inversion results

shown in Figure 4.11a, Figure 4.11c, and Figure 4.11d are close to the results plotted in

Figure 4.8a, Figure 4.8c, and Figure 4.8d, which was obtained with access to the CO2 sat-

uration everywhere. This reaffirms the notion that time-lapse seismic can indeed provide

useful spatial information away from the monitoring wells to estimate the reservoir per-

meability, which aligns with earlier observations by [56, 41, 43]. Juxtaposing the results

for the FNO surrogate without (Figure 4.11b) and with the constraint (Figure 4.11d) again

underlines the importance of adding constraints especially in situations where the forward

(wave) operator has a non-trivial nullspace. The presence of this nullspace has a detrimen-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 4.11: Permeability inversions from time-lapse seismic data. (a) Inversion result
using PDE solvers. (b) The same as (a) but for the FNO surrogate. (c) The same as (a)
but with the NF-based constraint. (d) The same as (a) but now for the FNO surrogate with
the NF-based constraint. (e)-(h) The error of the permeability inversion results in (a)-(d)
compared to the unseen ground truth shown in Figure 4.6a. (i) The FNO prediction errors
as a function of the number of iterations for (b) and (d).
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tal affect on the unconstrained result obtained by the FNO. Contrary to solutions yielded

by the PDE, trained FNOs offer little to no control on the feasibility of the solution, which

explains the strong artifacts in Figure 4.11b. As we can see from Figure 4.11i, these arti-

facts are mainly due to the FNO-approximation errors that dominate and grow after a few

iterations. Conversely, the errors for the constrained case remain more or less flatlined be-

tween 7% and 8%. In contrast, using the trained NF as a learned constraint yields better

recovery where the errors are minor within the plume region and mostly live on the edges,

shown in the second row of Figure 4.11.

4.6.4 Jointly inverting time-lapse seismic data and well measurements

Finally, we consider the most preferred scenario for GCS monitoring, where multiple

modalities of data are jointly inverted for the reservoir permeability [95, 96]. In our ex-

periment, we consider to jointly invert time-lapse seismic data and well measurements by

minimizing the following objective function:

minimize
z

∥ds −F ◦ R ◦ Sθ∗ ◦ Gw∗(z)∥22 + λ∥dw −M ◦ Sθ∗ ◦ Gw∗(z)∥22 subject to ∥z∥2 ≤ τ.

(4.10)

This objective function includes both the time-lapse seismic data misfit from Equa-

tion 4.9 and the time-lapse well measurement misfit from Equation 4.8 with a balancing

term λ. While better choices can be made, we select this λ in our numerical experiment to

be 10, so that the magnitudes of the two terms are relatively the same. The inversion results

and differences from the unseen ground truth permeability are shown in Figure 4.12, where

we again observe large artifacts for the recovery when FNO surrogate is inverted without

NF constraints. This behavior is confirmed by the plot for the FNO error curve as a function

of the number of iterations. This error finally reaches a value over 15%.

We report quantitative measures for the permeability inversions for all optimization

methods and different types of observed data in Table 4.1 for the signal-to-noise ratios
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 4.12: Joint permeability inversions from both time-lapse seismic data and time-
lapse well measurements. (a) Inversion result using PDE solvers. (b) The same as (a) but
for the FNO surrogate. (c) The same as (a) but with the NF-based constraint. (d) The
same as (a) but now for the FNO surrogate with the NF-based constraint. (e)-(h) The error
of the permeability inversions in (a)-(d), compared to the unseen ground truth shown in
Figure 4.6a. (i) The FNO prediction errors as a function of the number of iterations for (b)
and (d).
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(S/Ns) and the structural similarity index measure (SSIM, [97]). To avoid undue influence

of the null space for the permeability, we only calculate the S/N and SSIM values based

on the parts of the models that are touched by CO2 plume. From these values, following

observations can be made. First, the NF-constrained permeability inversion are superior in

both S/Ns and SSIMs, which demonstrates the efficacy of the learned constraint. Second,

by virtue of this NF constraint, the results yielded by either the PDE solver or by the FNO

surrogate produce very similar S/Ns and SSIMs. This behavior reaffirms that the trained

FNO behavior is similar to the behavior yielded by PDE solver when its inputs remain

in-distribution, which is controlled by the NF constraints.

Table 4.1: S/N (in dB) and SSIM values of permeability recovery.

Inversion method

Well

measurement

Time-lapse

seismic Both

Unconstrained inversion

with PDE solvers

9.34 dB / 0.67 10.50 dB / 0.73 10.70 dB / 0.73

Unconstrained inversion

with FNO surrogates

9.64 dB / 0.68 11.94 dB / 0.72 11.98 dB / 0.72

Constrained inversion with

PDE solvers

12.2 dB / 0.77 14.18 dB / 0.80 15.20 dB / 0.85

Constrained inversion with

FNO surrogates

11.06 dB / 0.74 14.16 dB / 0.81 14.92 dB / 0.83

4.6.5 CO2 plume estimation and forecast

While end-to-end permeability inversion from time-lapse data provides novel access to

this important fluid-flow property, the real interest in monitoring GCS lies in determining

where CO2 plumes are and will be in the foreseeable future, say of 100 and 200 days ahead.

To demonstrate the value of the proposed surrogates and of the use of time-lapse seismic
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data, as opposed to time-lapse saturation data measured at the wells only, we in Figure 4.7

juxtapose CO2 predictions obtained from fluid-flow simulations based on the inverted per-

meabilities in situations where either well data is available (first row), or where time-lapse

seismic data is available (second row), or where both data modalities are available (third

row). These results are achieved by first inverting for permeabilities using FNO surro-

gates and NF constraints, followed by running the fluid-flow simulations for additional

time steps given the inverted permeabilities yielded by well-only (Figure 4.9d), time-lapse

data (Figure 4.11d), and both (Figure 4.12d). From these plots, we draw the following two

conclusion. First, the predicted CO2 plumes estimated from seismic data are significantly

more accurate than those obtained by inverting time-lapse saturations measured at the wells

only. As expected, there are large errors in the regions away from the wells for the CO2

plumes estimated from wells shown in the fourth row of Figure 4.13. Second, thanks to

the NF-constraint, the CO2 predictions obtained with the computationally beneficial surro-

gate approximation remain close to the ground truth CO2 plume plotted in the first row of

Figure 4.7, with only minor artifacts at the edges. Third, using both seismic data and well

measurements produces CO2 plume predictions with the smallest errors, while the uplift

of well measurements on top of seismic observations is modest (comparing the second and

the third rows of Figure 4.13). Finally, while the CO2 plume estimates for the past (mon-

itored) vintages (i.e. first three columns of the third row of Figure 4.13) are accurate, the

near-future forecasts without time-lapse well or seismic data (i.e. last two columns of the

third row of Figure 4.13) could be less accurate. This is because the right-hand side and

the bottom of the permeability model are not touched yet by the CO2 plume during the first

600 days. As a result, the error on the permeability recovery on the right-hand side leads

to the slightly larger errors on the CO2 plume forecast. Overall, these CO2 forecasts for the

future 100 and 200 days match the general trend of the CO2 plume without any observed

data despite minor errors. A continuous monitoring system, where multiple modalities of

data are being acquired and inverted throughout the GCS project, could allow for updating

101



the reservoir permeability and forecasting the CO2 plume consistently.

4.6.6 Analysis of computational gains

FNOs, and deep neural surrogates in general, have the potential to be orders of magni-

tude faster than conventional PDE solvers [38], and this speed-up is generally problem-

dependent. In our numerical experiments, the PDE solver from Jutul.jl [83, 84, 85] cur-

rently only supports CPUs and we find an average runtime for both the forward and gra-

dient on the 64 × 64 model to be 10.6 seconds on average on an 8-core Intel(R) Xeon(R)

W-2245 CPU. The trained FNO, implemented using modules from Flux.jl [98], takes 16.4

milliseconds on average for both the forward and gradient. This means that the trained FNO

in our case provides 646× speed up compared to conventional PDE solvers. The training

of FNO takes about 4 hours on an NVIDIA T1000 8GB GPU. Given these numbers, we

can calculate the break-even point — i.e., the point where using FNO surrogate becomes

cheaper in terms of the overall runtime, by the following formula:

breakeven =
generating training set time + training time

PDE solver runtime− FNO runtime
≈ 3364. (4.11)

This means that after 3364 calls to the forward simulator and its gradients, the com-

putational savings gained from using the FNO surrogate evaluations during the inversion

process balances out the initial upfront costs. These upfront costs include the generation

of the training dataset and the training of the FNO. Therefore, after this break-even point

of 3364 calls, the use of the FNO surrogate becomes more cost-effective compared to the

conventional PDE solver. Because the trained FNO has the potential to generalize to dif-

ferent kinds of inversion problems, and potentially also different GCS sites, 3364 calls

is justifiable in practice. However, we acknowledge that a more detailed analysis on a

more realistic 4D scale problem will be necessary to understand the potential computa-

tional gains and tradeoffs of the proposed methodology. For details on a high-performance

computing parallel implementation of FNOs, we refer to [35] who also conducted a real-
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(a)

Figure 4.13: CO2 plume estimation and forecast using FNO surrogates and NF constraints
to invert different modalities of observed data. The first three columns represent past CO2

saturations at day 400, 500, and 600 of the first 600 days of CO2 saturation monitored either
through the well measurements or time-lapse data. The last two columns include forecasts
for the saturations at future days 700 and 800, where no observed data is available. The
first row shows the past and future CO2 estimates yielded by inverting well measurements
only. The second row is the same but now inverting time-lapse seismic data. The third row
is the same but now jointly inverting well measurements and time-lapse seismic data. The
fourth, fifth, and sixth rows show 5× difference between the ground truth CO2 plume (first
row of Figure 4.7) and the first, second, third row, respectively. The S/Ns for the first, the
second, and the third rows are 15.26 dB, 20.14 dB, 20.46 dB, respectively.
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istic performance on large-scale 4D multiphase fluid-flow problems. Even in cases where

the computational advances are perhaps challenging to justify, the use of FNOs has the

additional benefit by providing access to the gradient with respect to model parameters

(i.e. permeability) through automatic differentiation. This feature is important since it is an

enabler for inversion problems that involve complex PDE solvers for which gradients are

often not readily available, e.g. [45]. By training FNOs on input-output pairs, “gradient-

free” gradient-based inversion is made possible in situations where the simulator does not

support gradients.

4.7 Discussion and conclusions

Monitoring of geological carbon storage is challenging because of excessive computational

needs and demands on data collection by drilling monitor wells or by collecting time-lapse

seismic data. To offset the high computational costs of solving multiphase flow equations

and to improve permeability inversions from possibly multimodal time-lapse data, we in-

troduce the usage of trained Fourier neural operators (FNOs) that act as surrogates for

the fluid-flow simulations. We propose to do this in combination with trained normaliz-

ing flows (NFs), which serve as regularizers to keep the inversion and the accuracy of the

FNOs in check. Since the computational expense of FNO’s online evaluation is negligible

compared to numerically expensive partial differential equation solves, FNOs only incur

upfront offline training costs. While this obviously presents a major advantage, the approx-

imation accuracy of FNOs is, unfortunately, only guaranteed when its argument, the perme-

ability, is in distribution—i.e., is drawn from the same distribution as the FNO was trained

on. This creates a problem because there is, thanks to the non-trivial null space of perme-

ability inversion, no guarantee the model iterates remain in-distribution. Quite the opposite,

our numerical examples show that these iterates typically move out-of-distribution during

the (early) iterations. This results in large errors in the FNO and in rather poor inversion

results for the permeability.
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To overcome this out-of-distribution dillema for the model iterates during permeability

inversion with FNOs, we propose adding learned constraints, which ensure that model it-

erates remain in-distribution during the inversion. We accomplish this by training a NF on

the same training set for the permeability used to train the FNO. After training, the NF is

capable of generating in-distribution samples for the permeability from random realizations

of standard Gaussian noise in the latent space. We employ this learned ability by param-

eterizing the unknown permeability in the latent space, which offers additional control on

whether the model iterates remain in-distribution during the inversion. After establishing

that out-of-distribution permeability models can be mapped to in-distribution models by

restricting the ℓ2-norm of their latent representation, we introduce permeability inversion

as a constrained optimization problem where the data misfit is minimized subject to a con-

straint on the ℓ2-norm of the latent space. Compared to adding pretrained NFs as priors via

additative penalty terms, use of constraints ensures that model iterates remain at all times

in-distribution. We show that this holds as long as the size of constraint set does not exceed

the size of the ℓ2-norm ball of the standard normal distribution. As a result, we arrive at

a computationally efficient continuation scheme, known as a homotopy, during which the

ℓ2-norm constraint is relaxed slowly, so the data misfit objectives can be minimized while

the model iterates remain in distribution.

By means of a series of carefully designed numerical experiments, we were able to

establish the advocasy of combining learned surrogates and constraints, yielding solutions

to permeability inversion problems that are close to solutions yielded by costly PDE-based

methods. The examples also clearly show the advantages of working with gradually relaxed

constraints where model iterates remain at all times in distribution with the additional joint

benefit of slowly building up the model while bringing down the data misfit, an approach

known to mitgate the effects of local minima [57, 58, 59]. Consequently, the quality of

all time-lapse inversions improved significantly without requiring information that goes

beyond having access to the training set of permeability models.
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While we applied the proposed method to gradient-based iterative inversion, a simi-

lar approach can be used for other types of inversion methods, including inference with

Markov chain Monte Carlo methods for uncertainty quantification [50]. We also envisage

extensions of the proposed method to other physics-based inverse problems [99, 55] and

simulation-based inference problems [100], where numerical simulations often form the

computational bottleneck.

Despite the encouraging results from the numerical experiments, the presented ap-

proach leaves room for improvements, which we will leave for future work. For instance,

the gradient with respect to the model parameters (permeability) derived from the neu-

ral surrogate is not guaranteed to be accurate—e.g. close to the gradient yielded by the

adjoint-state method. As recent work by [101] has shown, this potential source of error can

be addressed by training neural surrogates on the simulator’s gradient with respect to the

model parameters, provided it is available. Unfortunately, deriving gradients of complex

HPC implementatons of numerical PDE solvers is often extremely challenging, explaining

why this information is often not available. Because our method solely relies on gradients

of the surrogate, which are readily available through algorithmic differentiation, we only

need access to numerical PDE solvers available in legacy codes. While this approach may

go at the expense of some accuracy, this feature offers a distinct practical advantage. How-

ever, as with many other machine learning approaches, our learned methods may also suffer

from time-lapse observations that are out-of-distribution—i.e., produced by a permeability

model that is out-of-distribution. While this is a common problem in data-driven methods,

recent developments [63] may remedy this problem by applying latent space corrections, a

solution that is amenable to our approach. On the other hand, expanding the latent space’s

ℓ2 norm ball during inversion would allow NFs to generate any out-of-distribution model

parameter. However, in that case the accuracy of the learned surrogate is not guaranteed.

For such cases, transitioning from the learned surrogate to the numerical solver during later

iterations may be advantageous and merits further study. The choice for the size of the
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ℓ2-norm ball at the beginning and at the end can also be further investigated [102].

While this chapter primarily presents a proof of concept through a relatively small 2D

experiment, our inversion strategy is designed to scale to large-scale 3D problems. NFs,

with their inherent memory efficiency due to invertibility, are already primed for extension

to 3D problems. For the learned surrogates, [35] showcases model-parallel FNOs, demon-

strating success in simulating 4D multiphase flow physics of over 2.6 billon variables. By

combining these strengths, we are optimistic scaling this inversion strategy to 3D.

To end on a positive note and forward looking note, we argue that the presented ap-

proach makes a strong case for the inversion of multimodal data, consisting of time-lapse

well and seismic data. While inversions from time-lapse saturation data collected from

wells are feasible and fall within the realm of reservoir engineering, their performance, as

expected, degrades away from the well. We argue that adding active-source seismic pro-

vides essential fill-in away from the wells. As such, it did not come to our surprise that

joint inversion of multimodal data resulted in the best permeability estimates. From our

perspective, our successfull combination of these often disjoint data modalities holds future

promise when addressing challenges that come with monitoring and control of geological

carbon storage and enhanced geothermal systems.

4.8 Availability of data and materials

The scripts to reproduce the experiments are available on the SLIM GitHub page https:

//github.com/slimgroup/FNO-NF.jl.
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CHAPTER 5

DERISKING GEOLOGIC CARBON STORAGE FROM HIGH-RESOLUTION

TIME-LAPSE SEISMIC TO EXPLAINABLE LEAKAGE DETECTION

5.1 Summary

Geological carbon storage represents one of the few truly scalable technologies capable of

reducing the CO2 concentration in the atmosphere. While this technology has the poten-

tial to scale, its success hinges on our ability to mitigate its risks. An important aspect of

risk mitigation concerns assurances that the injected CO2 remains within the storage com-

plex. Amongst the different monitoring modalities, seismic imaging stands out with its

ability to attain high resolution and high fidelity images. However, these superior features

come, unfortunately, at prohibitive costs and time-intensive efforts potentially rendering

extensive seismic monitoring undesirable. To overcome this shortcoming, we present a

methodology where time-lapse images are created by inverting non-replicated time-lapse

monitoring data jointly. By no longer insisting on replication of the surveys to obtain

high fidelity time-lapse images and differences, extreme costs and time-consuming labor

are averted. To demonstrate our approach, hundreds of realistic synthetic noisy time-lapse

seismic datasets are simulated that contain imprints of regular CO2 plumes and irregular

plumes that leak. These time-lapse datasets are subsequently inverted to produce time-

lapse difference images used to train a deep neural classifier. The testing results show that

the classifier is capable of detecting CO2 leakage automatically on unseen data and with a

reasonable accuracy. We consider the use of this classifier as a first step in the development

of an automatic workflow designed to handle the large number of continuously monitored

CO2 injection sites needed to help combat climate change.
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5.2 Introduction

For various reasons, seismic monitoring of geological carbon storage (GCS) comes with

its own set of unique challenges. Amongst these challenges, the need for low-cost highly

repeatable, high resolution, and high fidelity images ranks chiefly. While densely sampled

and replicated time-lapse surveys—which rely on permanent reservoir monitoring systems

or on replicated streamer or node surveys—may be able to provide images conducive to

interpretation and reservoir management, these approaches are often too costly and may

require too much handholding to be of practical use for GCS at many injection sites.

To overcome these challenges, we replace the current paradigm of costly replicated

acquisition, cumbersome time-lapse processing, and interpretation, by a joint inversion

framework mapping time-lapse data to high fidelity and high resolution images from sparse

non-replicated time-lapse surveys. We demonstrate that we arrive at an imaging frame-

work that is suitable for automatic detection of pressure-induced CO2 leakage, which rep-

resents one of the possible leakage scenarios. Rather than relying on meticulous 4D work-

flows where baseline and monitoring surveys are processed separately to yield accurate

and artifact-free time-lapse differences, our approach exposes information that is shared

amongst the different vintages by formulating the imaging problem in terms of an un-

known fictitious common component, and innovations of the baseline and monitor surveys

with respect to this common component. Because the common component is informed by

all time-lapse surveys, its image quality improves when the surveys bring complementary

information, which is the case when the surveys are not replicated. In turn, the enhanced

common component results in improved images for the baseline, monitor, and their time-

lapse difference(s). Our joint wave-equation based imaging formulation is versatile and

capable of accounting for real data time-lapse issues such as changes in the background

velocity model, calibration errors in shot and receiver locations [1], and noise [2, 3]. The

same applies to corrections for the source signature using on-the-fly source estimations [4,
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5]. However, we also acknowledge that the robustness of our method to such real data

issues needs to be validated and is a topic for future study.

To showcase the achievable imaging gains and how these can be used in a GCS setting

where CO2 leakage is of major consideration, we create hundreds of time-lapse imaging

experiments involving CO2 plumes whose behavior is determined by the two-phase flow

equations. To mimic irregular flow due to pressure-induced opening of fractures, we in-

crease the permeability in the seal at random locations and pressure thresholds. The re-

sulting flow simulations are used to generate time-lapse datasets that serve as input to our

joint imaging scheme. The produced time-lapse difference images are subsequently used

to train and test a neural network that as an explainable classifier determines whether the

CO2 plume behaves regularly or shows signs of leakage.

Our contributions are organized as follows. First, we discuss the time-lapse seismic

imaging problem and its practical difficulties. Next, we introduce the joint recovery model

that takes explicit advantage of information shared by multiple surveys. By means of a

carefully designed synthetic case study involving saline aquifers made of Blunt sandstone

in the Southern North Sea, we demonstrate the uplift of the joint recovery model and how

its images can be used to train a deep neural network classifier to detect erroneous growth

of the CO2 plume automatically. Aside from determining whether the CO2 plume behaves

regularly or not, our network also provides class activation mappings that visualize areas

in the image on which the network is basing its classification.

5.3 Seismic monitoring with time-lapse imaging

To keep track of CO2 plume development during geological carbon storage (GCS) projects,

multiple time-lapse surveys are collected. Baseline surveys are acquired before the super-

critical CO2 is injected into the reservoir. These baseline surveys, denoted by the index

j = 1, are followed by one or more monitor surveys, collected at later times and indexed

by j = 2, · · · , nv with nv the total number of surveys.
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Seismic monitoring of GCS brings its own unique set of challenges that stem from the

fact that its main concern is (early) detection of possible leakage of CO2 from the storage

complex. To be successful with this task, monitoring GCS calls for a time-lapse imaging

modality that is capable of

• detecting weak time-lapse signals associated with small rock-physics changes in-

duced by CO2 leakage

• attaining high lateral resolution from active-source surface seismic data to detect

vertically moving leakage

• handling an increasing number of not perfectly calibrated seismic surveys collected

over long periods of time (∼ 50− 100 years)

• reducing costs drastically by no longer insisting on replication of time-lapse surveys

to attain high degrees of repeatability

• lowering the cumulative environmental imprint of active source acquisition

5.3.1 Monitoring with the joint recovery model

To meet these challenges, we choose a linear imaging framework where observed linearized

data for each vintage is related to perturbations in the acoustic impedance via

bj = Ajxj + ej for j = 1, 2, · · · , nv. (5.1)

In this expression, the matrix Aj stands for the linearized Born scattering operator for the

j th vintage. Observed linearized data, collected for all shots in the vector bj , is generated

by applying the Aj’s to the (unknown) impedance perturbations denoted by xj for j =

1, 2, · · · , nv. The task of time-lapse imaging is to create high resolution, high fidelity and

true amplitude estimates for the time-lapse images, {x̂j}nv

j=1, from non-replicated sparsely

sampled noisy time-lapse data.

We argue that our choice for linearized imaging is justified for four reasons. First,
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CO2 injection sites undergo baseline studies, involving vintage data and possible follow-

up surveys, which means that accurate information on the background velocity model is

generally available. Second, changes in the acoustic parameters induced by CO2 injection

are typically small, so it suffices to work with one and the same background model for the

baseline and monitor surveys. Third, when the background model is sufficiently close to

the true model, linearized inversion, which corresponds to a single Gauss-Newton iteration

of full-waveform inversion, converges quadratically. Fourth, because the forward model is

linear, it is conducive to the use of the joint recovery model where inversions are carried

out with respect to the common component, which is shared between all vintages, and

innovations with respect to the common component. Because the common component

represents an average, we expect this joint imaging method to be relatively robust with

respect to kinematic changes induced by time-lapse effects or by lack of calibration of the

acquisition [1].

By parameterizing time-lapse images, {xj}nv

j=1, in terms of the common component,

z0, and innovations with respect to the common component, {zj}nv

j=1, we arrive at the joint

recovery model where representations for the images are given by

xj =
1

γ
z0 + zj for j = 1, 2, · · · , nv. (5.2)

Here, the parameter, γ, controls the balance between the common component, z0, and in-

novation components, {zj}nv

j=1 [6]. Compared to traditional time-lapse approaches, where

data are imaged separately or where time-lapse surveys are subtracted, inversions for time-

lapse images based on the above parameterization are carried out jointly and involve in-

verting the following matrix:

A =


1
γ
A1 A1

... . . .

1
γ
Anv Anv

 . (5.3)
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While traditional time-lapse imaging approaches strive towards maximal replication be-

tween the surveys to suppress acquisition related artifacts, imaging with the joint recov-

ery model—which entails inverting the underdetermined system in Equation 5.3 using

structure-promotion techniques (e.g. via ℓ1-norm minimization)—improves the image qual-

ity of the vintages themselves in situations where the surveys are not replicated. This occurs

in cases where Ai ̸= Aj for ∀i ̸= j, or in situations where there is significant noise. This re-

markable result was shown to hold for sparsity-promoting denoising of time-lapse field data

[2, 3], for various wavefield reconstructions of randomized simultaneous-source dynamic

(towed-array) and static (OBC/OBN) marine acquisitions [1, 7, 8], and for wave-based

inversion, including least-squares reverse-time migration and full-waveform inversion [9,

10]. The observed quality gains in these applications can be explained by improvements

in the common component resulting from complementary information residing in non-

replicated time-lapse surveys. This enhanced recovery of the common component in turn

improves the recovery of the innovations and therefore the vintages themselves. The time-

lapse differences themselves also improve, or at the very least, remain relatively unaffected

when the surveys are not replicated. Relaxing replication of surveys obviously leads to

reduction in cost and environmental impact. Below, we show how GCS monitoring also

benefits from this approach.

5.3.2 Monitoring with curvelet-domain structure promotion

To obtain high resolution and high fidelity time-lapse images, we invert the system in Equa-

tion 5.3 [4, 11, 12] with

minimize
z

λ∥Cz∥1 +
1

2
∥Cz∥22

subject to ∥b−Az∥22 ≤ σ,

(5.4)

where C is the forward curvelet transform, λ the threshold parameter, and σ the magnitude

of the noise. At iteration k and for σ = 0, solving Equation 5.4 corresponds to computing
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the following iterations:

uk+1 = uk − tkA
⊤
k (Akzk − bk)

zk+1 = C⊤Sλ(Cuk+1),
(5.5)

where Ak, with a slight abuse of notation, represents the matrix in Equation 5.3 for a

subset of shots randomly selected from sources in each survey. The vector bk contains

the extracted shot records from b and the symbol ⊤ refers to the adjoint. The dynamic

steplength tk is given by tk = ∥Akxk−bk∥22/∥A⊤
k (Akxk−bk)∥22[13]. Sparsity is promoted

via curvelet-domain soft thresholding, Sλ(·) = max(| · | − λ, 0) sign(·), where, λ, is the

threshold. The vectors uk and zk contain the baseline and innovation components.

5.4 Numerical case study: Blunt sandstone in the Southern North Sea

Before discussing the impact of high resolution and high fidelity time-lapse imaging with

the joint recovery model on the down-stream task of automatic leakage detection with a

neural network classifier, we first detail the setup of our numerical experiments using tech-

niques from simulation-based acquisition design as described by [12]. In order to generate

realistic time-lapse data and training sets for the automatic leakage classifier, we follow

the workflow summarized in Figure 5.1. In this approach, use is made of proxy models

for seismic properties derived from real 3D imaged seismic and well data [14]. With rock

physics, these seismic models are converted to fluid-flow models that serve as input to two-

phase flow simulations. The resulting datasets, which include pressure-induced leakage,

will be used to create time-lapse data used to train our classifier. For more detail, refer to

the caption of Figure 5.1.

5.4.1 Proxy seismic and fluid-flow models

Amongst the various CO2 injection projects, GCS in offshore saline aquifers has been most

successful in reaching scale and in meeting injection targets [15]. For that reason, we con-
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Figure 5.1: Simulation-based monitoring design framework. Starting with a proxy model
for the wavespeed and density (a), the workflow proceeds by converting these seismic prop-
erties into permeability and porosity (b). These fluid flow properties are used to simulated
CO2 plumes that behave regularly or exhibit leakage outside the storage complex (c). In-
duced changes by the CO2 plume for the wavespeed and density are depicted in (d) and
serve as input to simulations of time-lapse seismic data (SNR 8.0 dB) and shot-domain
time-lapse differences (SNR −31.4 dB). Imaging results for regular and irregular plume
developments are plotted in (f) and serve as input to the deep neural classifier (g), which
determines whether the flow behaves regularly or leaks. Activation mappings in (h) show
regions on which the network is basing its classification. As expected, the activation map-
ping is diffusive in case of regular CO2 plume development and focused on the leakage
location when CO2 plume behaves irregularly.
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sider a proxy model derived from real 3D imaged seismic and well data [14] and represen-

tative for CO2 injection in the South of the North Sea involving a saline aquifer made of the

highly permeable Blunt sandstone. This area, which is actively being considered for GCS

[16], consists of the following three geologic sections (see Figure 5.2 for the permeability

and porosity distribution):

(i) the highly porous (average 33%) and permeable (> 170mD) Blunt sandstone reser-

voir of about 300 − 500m thick. This section, denoted by red colors in Figure 5.2,

corresponds to the saline aquifer and serves as the reservoir for CO2 injection;

(ii) the primary seal (permeability 10−4 − 10−2mD) made of the Rot Halite Member,

which is 50m thick and continuous (black layer in Figure 5.2);

(iii) the secondary seal made of the Haisborough group, which is > 300m thick and

consists of low-permeable (permeability 15 − 18mD) mudstone (purple section in

Figure 5.2).

To arrive at the fluid-flow models, we consider 2D subsets of the 3D Compass model

[14] and convert these seismic models to fluid-flow properties (see Figure 5.1 (b)) by as-

suming a linear relationship between compressional wavespeed and permeability in each

stratigraphic section. For further details on the conversion of compressional wavespeed and

density to permeability and porosity, we refer to empirical relationships reported in [17].

During conversion, an increase of 1km/s in compressional wavespeed is assumed to cor-

respond to an increase of 1.63mD in permeability. From this, porosity is calculated with

the Kozeny-Carman equation [18] K = ϕ3
(

1.527
0.0314∗(1−ϕ)

)2

, where K and ϕ denote perme-

ability (mD) and porosity (%) with constants taken from the Strategic UK CCS Storage

Appraisal Project report.
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(a) (b)

Figure 5.2: Permeability and porosity derived from a 2D slice of Compass model.

5.4.2 Fluid-flow simulations

To model CO2 plumes that behave regularly and irregularly, the latter due to leakage, we

solve the two-phase flow equations numerically1 for both pressure and concentration [19,

20]. To mimic possible pressure-induced CO2 leakage, we increase the permeability at

random distances away from the injection well within the seal from 10−4mD to 500mD

when the pressure exceeds ∼ 15MPa. At that depth, the pressure is below the fracture

gradient [21]. Since pressure-induced fractures come in different sizes, we also randomly

vary the width of the pressure-induced fracture openings from 12.5m to 62.5m. Examples

of fluid-flow simulations without and with leakage are shown in Figure 5.1 (c).

5.4.3 Rock-physics conversion

To monitor temporal variations in the plume’s CO2 concentration seismically, we use the

patchy saturation model [22] to convert the CO2 concentration to decrease in compressional

wavespeed and density. These changes are shown in Figure 5.1 (d). The fact that these

induced changes in the time-lapse differences in seismic properties are relatively small in

spatial extent (∼ 800m for the plume and < 62.5m for the leakage) and amplitude (1.68%

time-lapse change in the acoustic impedance) calls for a time-lapse imaging modality with

small normalized root-mean-square (NRMS) values [23].

1We used the open-source software FwiFlow.jl [19, 20] to solve the two-phase flow equations for both the
pressure and concentration.
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5.4.4 Time-lapse seismic simulations

To train and validate automatic detection of CO2 leakage from the storage complex re-

quires the creation of realistic synthetic time-lapse datasets that contain the seismic imprint

of regular as well as irregular (leakage) plume development. To this end, baseline surveys

are simulated prior to CO2 injection for different subsets of the Compass model. Monitor

surveys are simulated 200 days after leakage occurs to verify that potential leakage can be

detected automatically early on. For regular plume development, we shoot monitor surveys

for each subset at random times after CO2 injection. To strike a balance between acquisition

productivity and time-lapse image quality, use is made of dense semi-permanent acoustic

monitoring at the seafloor with 25m receiver spacing. Contrary to expensive permanent

reservoir monitoring systems with multi-component geophones, our system works with

hydrophones connected to underwater buoys located 2m above the ocean bottom. Aside

from being relatively low-cost, this system also avoids complications arising from elas-

tic wave interactions at the seabed. Time-lapse acquisition costs are further reduced by

non-replicated coarse shooting with the source towed at 10m depth below the ocean sur-

face. Subsampling artifacts are reduced by using a randomized technique from compressive

sensing where 32 sources are located at non-replicated jittered [24] source positions, yield-

ing an average source sampling of 125m. Given this acquisition geometry, linear data is

generated2 with Equation 5.1 for a 25Hz Ricker wavelet and with the band-limited noise

term set so that the data’s signal-to-noise ratio (SNR) is 8.0 dB. This noise level leads to

an extremely poor SNR of −31.4 dB for time-lapse differences in the shot domain. See

Figure 5.1 (e).

2We used the open-source software JUDI.jl [25, 26] to model the wave propagation. This Julia package
implements highly optimized propagators using Devito [27, 28, 29].
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5.4.5 Imaging with joint recovery model versus reverse-time migration

Given the simulated time-lapse datasets with and without leakage, time-lapse difference

images are created according to two different imaging scenarios, namely via independent

reverse-time migration (RTM), conducted on the baseline and monitor surveys separately,

and via inversion of the joint recovery model (cf. Equations 5.3 and 5.4). To limit the

computational cost of the Bregman iterations (Equation 5.5), four shot records are selected

per iteration at random from each survey for imaging [30, 11, 4, 12], limiting the cost of

the joint inversion to the equivalent of three RTMs. The recovered baseline images are

shown in Figures 5.3a for RTM and 5.3b for JRM. For the leakage scenario, the time-

lapse differences are plotted in Figures 5.3c and 5.3d, for RTM and JRM respectively.

For the regular plume, the time-lapse differences are plotted in Figures 5.3e and 5.3f, for

RTM and JRM respectively. From these images, it is clear that joint inversion leads to

relatively artifact-free recovery of the vintages and time-lapse differences. This observation

is reflected in the NRMS values, which improve considerably as shown by the histograms

in Figure 5.4 for 1000 imaging experiments. Not only do the NRMS values shift towards

the left, their values are also more concentrated when inverting time-lapse data with the

joint recovery model. Both features are beneficial to automatic leakage detection.

5.5 Deep neural network classifier for CO2 leakage detection

The injection of supercritical CO2 into the storage complex perturbs the physical, chem-

ical and thermal environment of the reservoir [31]. Because CO2 injection increases the

pressure, this process may trigger CO2 leakage across the seal when the pressure increase

induces opening of pre-existing faults or fractures zones [32, 21]. To ensure safe oper-

ations of CO2 storage, we develop a quantitative leakage detection tool based on a deep

neural classifier. This classifier is trained on time-lapse images that contain the imprint of

CO2 plumes that behave regularly and irregularly. In case of irregular flow, CO2 escapes the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Reverse-time migration (RTM) versus inversion joint recovery model (JRM).
(a) RTM image of the baseline; (b) JRM image of the baseline; (c) time-lapse difference
and CO2 plume for independent RTM images with leakage; (d) time-lapse obtained by in-
verting the time-lapse data jointly with leakage; (e) time-lapse difference and CO2 plume
for independent RTM images without leakage; (f) time-lapse obtained by inverting the
time-lapse data jointly without leakage. Notice improvement in the time-lapse image qual-
ity. This improvement in reflected in the NRMS values that decrease from 8.48% for RTM
to 3.20% for JRM.
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Figure 5.4: NRMS values for 1000 time-lapse experiments.

storage complex through a pressure induced opening in the seal, which causes a localized

increase in permeability (shown in Figure 5.3d).

Because time-lapse differences are small in amplitude, and strongly localized laterally

when leakage occurs, highly sensitive learned classifiers are needed. For this purpose,

we follow [33] and adopt the Vision Transformer (ViT) [34]. This state-of-the-art classi-

fier originated from the field of natural language processing (NLP) [35]. Thanks to their

attention mechanism, ViTs have been shown to achieve superior performance on image

classification tasks where image patches are considered as word tokens by the transformer

network. As a result, ViTs have much less image-specific inductive bias compared to con-

volutional neural networks [34].

To arrive at a practical and performant ViT classifier, we start from a ViT that is pre-

trained on image tasks with 16 × 16 patches and apply transfer learning [36] to fine-tune

this network on 1576 labeled time-lapse images. Catastrophic forgetting is avoided by

freezing the initial layers, which are responsible for feature extraction, during the initial

training. After the initial training of the last dense layers, all network weights are updated
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for several epochs while keeping the learning rate small. The labeled (regular vs. irregular

flow) training set itself consists of 1576 time-lapse datasets divided equally between regular

and irregular flow.

After the training is completed, baseline and monitor surveys are simulated for 394 un-

seen Earth models with regular and irregular plumes. These simulated time-lapse datasets

are imaged with JRM by inverting the matrix in Equation 5.3 via Bregman iterations in

Equation 5.5. The resulting time-lapse difference images (see Figures 5.3d and 5.3f for

two examples) serve as input to the ViT classifier. Refer to Figure 5.5 for performance,

which corresponds to a two by two confusion matrix. The first row denotes the classifica-

tion results for samples with regular plume (negative samples), where 193 (true negative)

out of 206 samples are classified correctly. The second row denotes the classification results

for samples with CO2 leakage over the seal (positive samples), where 147 (true positive)

out of 188 samples are classified correctly. Due to the fact that JRM recovers relatively

artifact-free time-lapse differences, the classifier does not pick up too many artifacts re-

lated to finite acquisition as CO2 leakage. This leads to much fewer false alarms for CO2

leakage.

5.6 Class activation mapping based saliency map

While our ViT classifier is capable of achieving good performance (see Figure 5.5), making

intervention decisions during GCS projects calls for interpretability and trustworthiness of

our classifier [37, 38, 39]. To enhance these features, we take advantage of class activation

mappings (CAM) [40]. These saliency maps help us to identify the discriminative spatial

regions in each image that support a particular class decision. In our application, these

regions correspond to areas where the classifier deems the CO2 plume to behave irregu-

larly (if the classification result is leakage). By overlaying time-lapse difference images

with these maps, interpretation is facilitated, assisting practitioners to make decisions on

how to proceed with GCS projects and take associated actions. Figure 5.6 illustrates how
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Figure 5.5: Confusion matrix for classifier trained on recovery images from JRM.
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(a) (b)

Figure 5.6: CAM for time-lapse difference images with a leaking plume and with a regular
plume.

the Score CAM approach [41] serves this purpose3. Figure 5.6a shows the CAM result

for a time-lapse difference image classified as a CO2 leakage (in Figure 5.3d). Despite

few artifacts around the image, the CAM clearly focuses on the CO2 leakage over the

seal, which could potentially alert the practitioners of GCS. When the plume is detected

as growing regularly, the CAM result is diffusive (shown in Figure 5.6b). This shows

that the classification decision is based on the entire image and not only at the plume

area. The scripts to reproduce the experiments are available on the SLIM GitHub page

https://github.com/slimgroup/GCS-CAM.

5.7 Discussion and conclusion

As a first step in the development of scalable automatic workflows for seismic monitoring

of geologic carbon storage, we propose a methodology for low-cost time-lapse imaging

that exploits commonality between baseline and monitor surveys through the joint recov-

ery model. By means of carefully designed realistic synthetic time-lapse seismic experi-

ments, we have shown that highly repeatable, high resolution and high fidelity images are

achievable without insisting on replication of the baseline and monitor surveys. Because

our method relies on a joint inversion methodology, it also averts labor-intensive 4D pro-

cessing to compensate for less-than-ideal acquisitions. Aside from establishing our claim

3We used the open-source software PyTorch library for CAM methods [42] to calculate the CAM images.
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of relaxing the need for replication empirically, through hundreds of synthetic time-lapse

experiments yielding significant improvements in time-lapse image quality and NMRS val-

ues, we also showed that a deep neural classifier can be trained to detect CO2 leakage au-

tomatically. While the classification results are encouraging, false positives and negatives

remain. We argue that these may be acceptable since decisions to intervene, e.g. to stop

injection of CO2, typically involve other complementary sources of information such as

pressure drops at the wellhead. In future work, we plan to extend our methodology to

different leakage scenarios and quantification of uncertainty. We also intend to further in-

vestigate robustness of the proposed joint imaging methodology with respect to calibration

errors and variations in the source signature within and across different surveys. Finally,

interpretability of the neural classifier’s output and different leakage scenarios and their

impact on the shape of the CO2 plume will also be further investigated.
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CHAPTER 6

WISE: FULL-WAVEFORM VARIATIONAL INFERENCE VIA SUBSURFACE

EXTENSIONS

6.1 Summary

We introduce a probabilistic technique for full-waveform inversion, employing variational

inference and conditional normalizing flows to quantify uncertainty in migration-velocity

models and its impact on imaging. Our approach integrates generative artificial intelli-

gence with physics-informed common-image gathers, reducing reliance on accurate initial

velocity models. Considered case studies demonstrate its efficacy producing realizations

of migration-velocity models conditioned by the data. These models are used to quantify

amplitude and positioning effects during subsequent imaging.

6.2 Introduction

Full-waveform inversion (FWI) plays a pivotal role in exploration, primarily focusing on

estimating Earth’s subsurface properties from observed seismic data. The inherent com-

plexity of FWI stems from its nonlinearity, further complicated by ill-posedness and com-

putational intensiveness of the wave modeling. To address these challenges, we introduce a

computationally cost-effective probabilistic framework that generates multiple migration-

velocity models conditioned on observed seismic data. By combining deep learning with

physics, our approach harnesses advancements in variational inference (VI) [1] and gen-

erative artificial intelligence (AI) [2, 3, 4]. We achieve this by forming common-image

gathers (CIGs), followed by training conditional normalizing flows (CNFs) that quantify

uncertainties in migration-velocity models.

This chapter is organized as follows. First, we delineate the FWI problem and its in-
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herent challenges. Subsequently, we explore VI to quantify FWI’s uncertainty. To reduce

VI’s computational costs, we introduce physics-informed summary statistics and justify the

use of CIGs as these statistics. Our framework’s capabilities are validated through two

case studies, which include studying the effects of uncertainty in the generated migration-

velocity models on migration.

6.3 Methodology

We present a Bayesian inference approach to FWI by briefly introducing FWI and VI used

as a framework for uncertainty quantification (UQ).

6.3.1 Full-waveform inversion

Estimation of unknown migration-velocity models, x, from noisy seismic data, y involves

inverting nonlinear forward operator, F , which links x to y via y = F(x) + ϵ with ϵ mea-

surement noise. Source/receiver signatures are assumed known and absorbed into F . Solv-

ing this nonlinear inverse problem is challenging because of the noise, the non-convexity

of the objective function, and the non-trivial null-space of the modeling [5]. As a result,

multiple migration-velocity models fit the data, necessitating a Bayesian framework for

UQ.

6.3.2 Full-waveform inference

Rather than seeking a single migration-velocity model, our goal is to invert for a range of

models compatible with the data, termed “full-waveform inference”. From a Bayesian per-

spective, this involves determining the posterior distribution of migration-velocity models

given the data, p(x|y). We focus on amortized VI, which exchanges the computational

cost of posterior sampling for neural network training [6, 7, 8, 9, 10, 11]. Specifically, we

employ amortized VI, which incurs offline computational training cost but enables cheap

online posterior inference on many datasets y [12]. Next, we discuss how to use CNFs for
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amortized VI.

6.3.3 Amortized variational inference with conditional normalizing flows

During VI, the posterior distribution p(x|y) is approximated by the surrogate, pθ(x|y),

with learnable parameters, θ. Given the sample pairs {(x(i),y(i))}Ni=1, CNFs are suitable

to act as surrogates for the posterior because of their low-cost training and rapid sampling

[13, 14]. Their training involves minimization of the Kullback-Leibler divergence between

the true and surrogate posterior distribution. In practice, this requires access to N training

pairs of migration-velocity model and observed data to minimize the following objective:

minimize
θ

1

N

N∑
i=1

(
1

2
∥fθ

(
x(i);y(i)

)
∥22 − log |detJfθ |

)
. (6.1)

Here, fθ is the CNF with network parameters, θ, and Jacobian, Jfθ . It transforms each

velocity model, x(i), into white noise (as indicated by the ℓ2-norm), conditioned on the ob-

servation, y(i). After training, the inverse of CNF turns random realizations of the standard

Gaussian distribution into posterior samples (migration-velocity models) conditioned on

any seismic observation that is in the same statistical distribution as the training data.

6.3.4 Physics-informed summary statistics

While CNFs are capable of approximating the posterior distribution, training the CNFs on

pairs (x, y) presents challenges when changes in the acquisition occur or when physical

principles simplifying the mapping between model and data are lacking, both of which lead

to increasing training costs. To tackle these challenges, [15] introduced fixed reduced-size

summary statistics that encapsulate observed data and inform the posterior distribution.

Building on this concept, [16] uses the gradient as the set of physics-informed summary

statistics, partially reversing the forward map and therefore accelerating CNF training. For

linear inverse problems with Gaussian noise, these statistics are unbiased — maintaining
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the same posterior distribution, whether conditioned on original shot data or on the gradi-

ent. Based on this principle, [17] used reverse-time migration (RTM), given by the action

of the adjoint of the linearized Born modeling, to summarize data and quantify imaging

uncertainties for a fixed accurate migration-velocity model.

We aim to extend this approach to the nonlinear FWI problems. While RTM transfers

information from the data to the image domain, its performance diminishes for incorrect

migration velocities. [18] showed that least-squares migration can perfectly fit the data for

correct migration-velocity models, but this fit fails for inaccurate velocity models. This

highlights a fundamental limitation in cases where the velocity model is inaccurate and

RTM does not correctly summarize the original shot data, which leads to a biased posterior.

For an inaccurate initial FWI-velocity model x0, p (x|y) ̸= p
(
x
∣∣∣∇F (x0)

⊤ y
)

with ∇F

Born modeling and ⊤ the adjoint. To avoid this problem, more robust physics-informed

summary statistics are needed to preserve information.

6.3.5 Common-image gathers as summary statistics

Migration-velocity analysis has a rich history in the literature [19]. Following [18], we

employ relatively artifact-free subsurface-offset extended Born modeling to calculate sum-

mary statistics. More information can be found in Section A.3. Thanks to being closer

to an isometry—i.e, the adjoint of extended Born modeling is closer to its inverse [20,

21] and therefore preserves information — its adjoint can nullify residuals even when the

FWI-velocity model is incorrect as shown by [18]. [22] further demonstrated that neural

networks can be used to map CIGs to velocity models. Both these findings shed impor-

tant light on the role of CIGs during VI because CIGs preserve more information than the

gradient, which leads to less biased physics-informed summary statistics when given an in-

accurate initial FWI-velocity model. Formally, this means p (x|y) ≈ p
(
x
∣∣∣∇F (x0)

⊤ y
)

,

where ∇F is extended Born modeling. Leveraging this mathematical observation, we

propose WISE, short for full-Waveform variational Inference via Subsurface Extensions.
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The core of this technique is to train CNFs with pairs of velocity models, x, and CIGs,

∇F (x0)
⊤ y, guided by the objective of Equation 6.1. Our case studies will demonstrate

that even with inaccurate initial FWI-velocity models, CIGs encapsulate more information,

enabling the trained CNFs to generate accurate migration-velocity models consistent with

the observed shot data.

6.4 Synthetic case studies

Our study evaluates the performance of WISE through synthetic case studies on 2D slices of

the Compass dataset [23], known for its “velocity kickback” challenge for FWI algorithms.

For a poor initial FWI-velocity model, we aim to compare the quality of posterior samples

informed by RTM alone versus those informed by CIGs to verify the superior information

content of CIGs. We also illustrate how uncertainty in migration-velocity models can be

converted into uncertainties in amplitude and positioning of imaged reflectors.

6.4.1 Dataset generation and network training

We take 800 2D slices of the Compass model of 6.4 km by 3.2 km, with 512 equally spaced

sources towed at 12.5m depth and 64 ocean-bottom nodes (OBNs) located at jittered sam-

pled horizontal positions [24, 25]. This sampling scheme utilizes compressive sensing

techniques to improve acquisition productivity in various situations [26, 27, 28, 29]. The

surface is assumed absorbing. Using a 15Hz central frequency Ricker wavelet with en-

ergy below 3Hz removed for realism, acoustic data is simulated with Devito [30, 31] and

JUDI.jl [32]. Uncorrelated band-limited Gaussian noise is added (S/N 12dB). The arith-

metic mean over all velocity models is used as the 1D initial FWI-velocity model (shown in

Figure 6.1(b)). 51 horizontal subsurface offsets ranging from −500m to +500m are used

to compute CIGs (shown in Figure 6.1(e)). Each offset is input to the network as a separate

channel. We use the conditional glow network structure [33] for the CNFs thanks to its

capability to generate superior natural [34] and seismic [14] images.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: (a) an unseen ground-truth velocity model; (b) 1D initial FWI-velocity model;
(c) conditional mean estimate for RTM as summary statistics (SSIM = 0.48); (d) condi-
tional mean estimate from WISE (SSIM = 0.56); (e) CIGs calculated by the initial FWI-
velocity model given by (b); (f) CIGs calculated by (d).
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6.4.2 Results

After CNF training, our method’s performance is evaluated on an unseen 2D Compass

slice shown in Figure 6.1(a). When RTM is used to summarize the data, the conditional

mean estimate (Figure 6.1(c)) does not capture the shape of the unconformity. Thanks

to the CIGs, WISE captures more information and as a result produces a more accurate

conditional mean (Figure 6.1(d)). For the 50 test samples, the structural similarity index

measure (SSIM) with CIGs yields a mean of 0.63, outperforming RTM-based statistics

with a mean SSIM of 0.52.

6.4.3 Quality control

To verify the inferred migration-velocity model as the conditional mean of the posterior,

CIGs calculated for the initial FWI-velocity model (Figure 6.1(b)), plotted in Figure 6.1(e),

are juxtaposed against CIGs calculated for the inferred migration-velocity model (Fig-

ure 6.1(d)), plotted in Figure 6.1(f). Significant improvement in near-offset focused en-

ergy is observed in the CIGs for the inferred migration-velocity model. A similar focusing

behavior is noted for the posterior samples themselves, as shown in Section B.

6.4.4 Uncertainty quantification and downstream imaging

While access to the posterior represents an important step towards grasping uncertainty,

understanding its impact on imaging with (30Hz) RTMs is more relevant because it con-

cerns uncertainty in the final product. For this purpose, we display the posterior velocity

samples in Figure 6.2(a) and the point-wise standard deviation in Figure 6.2(b). These

deviations increase with depth and correlate with complex geology where the RTM-based

inference struggled. To understand how this uncertainty propagates to imaged reflectors,

forward uncertainty is assessed by carrying out RTMs for different posterior samples with

results shown in Figure 6.2(c) and the standard deviations plotted in Figure 6.2(d). These

amplitude deviations are different because mapping migration-velocities to RTMs is highly
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nonlinear, leading to large areas of intense amplitude variation and dimming at the edges

caused by the Born modeling’s null-space. While these amplitude sensitivities are use-

ful, deviations in the migration velocities also leads to differences in reflector positioning.

Vertical shifts between the envelope of the reference image (central image in Figure 6.2(c))

and the envelopes of RTMs for different posterior samples are calculated with a local cross-

correlation technique and included in Figure 6.2(d) where blue/red areas correspond to up-

/down shifts. As expected, these shifts are most notable in the deeper regions and at the

edges where velocity variations are the largest.

6.5 Discussion

Once the offline costs of computing 800 CIGs and network training are covered, WISE en-

ables generation of velocity models for unseen seismic data at the low computational cost

of a single set of CIGs for a poor initial FWI-velocity model. The Open FWI case study

in Section B demonstrates WISE’s capability of producing realistic posterior samples and

conditional means for a broad range of unseen velocity models. In the case of the Compass

model, the initial FWI-velocity model was poor. Still, CIGs obtained from a single 1D

initial model capture relevant information from the non-zero offsets. From this informa-

tion, the network learns to produce migration-velocity models at inference that focus CIGs.

WISE also produced two types of uncertainty, namely (i) inverse uncertainty in migration-

velocity model estimation, which arises from both the non-trivial null-space of FWI and the

measurement noise, and (ii) forward uncertainty where uncertainty in migration-velocity

models is propagated to uncertainty in amplitude and positioning of imaged reflectors.

Opportunities for future research remain. One area concerns dealing with the “amor-

tization gap” where CNFs tend to maximize performance across multiple datasets rather

than excelling at a single observation [35]. While we discovered that training CNFs on a

diverse set of samples enhances generalization, applying AI techniques to unseen, out-of-

distribution samples remains a challenge. However, our WISE framework is compatible
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(a) (b)

(c) (d)

(e)

Figure 6.2: Variability in velocity models and imaged reflectors. (a) Posterior velocity
samples from WISE visualized similar to CIGs by plotting the conditional mean (Figure
6.1(d)) in the central image. Above it shows the posterior sample traces at Z = 2.4 km. On
the right shows the traces at X = 3.4 km. (b) Point-wise standard deviation of the poste-
rior velocity samples. (c) Samples of imaged reflectors, where the central image displays
imaged reflectors using the conditional mean estimate. The layout of the traces remains
the same as (a). (d) Point-wise standard deviation of the imaged reflectors. (e) Point-wise
maximum depth shift.
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with several fine-tuning approaches. To improve single-observation performance, partic-

ularly for out-of-distribution samples, computationally more expensive latent space cor-

rections [17] can be employed that incorporate the physics. Recent studies also have

indicated that trained CNFs can act as preconditioners or regularizers for physics-based,

non-amortized inference [6, 36]. These correction methods can enhance the fit of posterior

samples to observed data, as shown in [17], or enable the generation of more focused CIGs

through migration velocity analysis. Moreover, velocity continuation methods [37] could

be used including recent advances in neural operators [38]. These could offset the cost

of running RTMs for each posterior sample, thus accelerating forward uncertainty prop-

agation. While we observed that providing more offsets can enhance the quality of the

inference, we recognize the resulting increase in CIG computation costs and CNF memory

consumption. This necessitates cost-effective frameworks for determining optimal offset

numbers or sampling strategies for CIGs. In this context, recent work on using CNFs

for Bayesian optimal experimental design [39] seamlessly integrates as an advancement

to the WISE framework. Considering low-rank approximations of CIGs [20] may reduce

computational demands. Additionally, exploring other conditional generative models like

diffusion models [40] may be worthwhile. Our case studies have yet to account for inverse

uncertainty due to modeling errors, such as attenuation effects, multiples, or residual shear

wave energy, which could be addressed through Bayesian model misspecification tech-

niques [41]. Recent advances suggest that transfer learning could correct these modeling

inaccuracies [42, 43], a solution that is amenable to our approach.

Incurred computational cost on an NVIDIA A100 GPU can be broken down as follows:

generating training pairs requires generation of 64 OBN datasets and corresponding CIGs

for 800 models, totaling approximately 80 hours of runtime. After generating the training

set, training the CNF takes around 16 hours. With these initial runtime investments, the

cost for a single inference involves only a single CIG computation, which takes about 6

minutes. For context, running a single FWI starting from the velocity model included in
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Figure 6.1(b) requires 12.5 data passes taking roughly 50 minutes to complete (the final

result is shown in Section B). Traditional UQ methods require the compute equivalent to

hundreds of FWI runs [10], but here we estimate at least 50 FWI runs. Based on these num-

bers, the computational savings from employing CNF surrogates offset the upfront costs

after inference on approximately 3 datasets. We emphasize that as long as the statistics of

the underlying geology remains similar, our amortized network can be applied to different

observed datasets in the complete basin without retraining. Furthermore, the parallel exe-

cution of training pair generation on clusters can significantly reduce initial computational

time. Although our study primarily demonstrates a proof of concept on a realistic 2D ex-

periment, the WISE software tool chain is designed for large-scale 3D problems. CNFs,

favored for their memory efficiency through invertibility [33], are well-suited for 3D prob-

lems. In addition, memory consumption of CIG computation can be reduced significantly

with random trace estimation techniques [44]. Since our work requires training samples

of Earth models, we envision these samples coming from legacy proxy models and future

work will explore automatic workflows for generating these from field observations.

6.6 Conclusions

We present WISE, full-Waveform variational Inference via Subsurface Extensions, for

computationally efficient uncertainty quantification of FWI. This framework underscores

the potential of generative AI in addressing FWI challenges, paving the way for a new

seismic inversion and imaging paradigm that is uncertainty-aware. By having common-

image gathers act as information-preserving summary statistics, a principled approach to

UQ is achieved where generative AI is successfully combined with wave physics. Because

WISE automatically produces distributions for migration-velocity models conditioned by

the data, it moves well beyond traditional velocity model building. It was shown that

this distributional information can be employed to quantify uncertainties in the migration-

velocity models that can be used to better understand amplitude and positioning uncertainty
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in migration.
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CHAPTER 7

WISER: MULTIMODAL VARIATIONAL INFERENCE FOR FULL-WAVEFORM

INVERSION WITHOUT DIMENSIONALITY REDUCTION

7.1 Summary

We present a semi-amortized variational inference framework designed for computation-

ally feasible uncertainty quantification in 2D full-waveform inversion to explore the mul-

timodal posterior distribution without dimensionality reduction. The framework is called

WISER, short for full-Waveform variational Inference via Subsurface Extensions with

Refinements. WISER leverages the power of generative artificial intelligence to perform

approximate amortized inference that is low-cost albeit showing an amortization gap. This

gap is closed through non-amortized refinements that make frugal use of acoustic wave

physics. Case studies illustrate that WISER is capable of full-resolution, computationally

feasible, and reliable uncertainty estimates of velocity models and imaged reflectivities.

7.2 Introduction

Full-waveform inversion (FWI) aims to estimate unknown multi-dimensional (D ≥ 2) ve-

locity models, denoted as x, from noisy seismic data, y, by inverting the nonlinear forward

operator, F , which relates x and y via y = F(x) + ϵ with ϵ measurement noise [1]. FWI

poses significant challenges, as it requires solving a high-dimensional, non-convex, and

ill-posed inverse problem, with a computationally demanding forward operator in multiple

dimensions. In addition, the inherent nonuniqueness of FWI results leads to multiple possi-

ble Earth models compatible with the observed data, underscoring the need for uncertainty

quantification (UQ) to handle this multimodality.

The trade-off between accuracy and computational cost is a critical consideration in any
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high-dimensional inference routine with expensive forward operators [2], including FWI.

To circumvent the costs associated with global optimization, several approaches have at-

tempted localized UQ [3, 4, 5, 6] based on the Laplace approximation. However, these

approaches may not capture the full complexities of multimodal parameter spaces. In con-

trast, a Bayesian inference approach offers a costly but comprehensive resolution of the

posterior distribution, p(x | y).

Bayesian inference algorithms are broadly categorized into two groups. The first,

sampling-based methods, like Markov-chain Monte Carlo [McMC, 7], struggle with high-

dimensional parameter spaces. To meet this challenge, they often rely on too restrictive

low-dimensional parameterizations to reduce the number of sampling iterations [8, 9, 10,

11, 12, 13], which could bias the inference results, rendering them impractical for multi-D

UQ studies especially when solutions are nonunique.

The second category, optimization-based methods, like variational inference [VI, 14],

seek to approximate the posterior distribution using classes of known parameterized distri-

butions. VI can be subdivided into amortized and non-amortized methods. Amortized VI

involves a computationally intensive offline training phase, leveraging advances in genera-

tive artificial intelligence (genAI), particularly with models like conditional diffusion [15]

and conditional normalizing flows [CNFs, 16]. After training, amortized VI provides rapid

sampling during inference [17, 18], exemplified by the WISE framework [19] for multi-D

FWI problems. However, these methods may suffer from an amortization gap — implying

that the amortized networks may only deliver suboptimal inference for a single observation

at inference time, particularly when trained with limited examples or when there exists a

discrepancy between training and inference [20]. Conversely, non-amortized VI dedicates

entire computational resources to the online inference [21, 22, 23]. They result in more

accurate inference, but the costly optimization has to be carried out repeatedly for new ob-

servations, and integrating realistic priors can be challenging since the prior needs to be

embedded involving density evaluations [24].
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This chapter introduces WISER as a semi-amortized VI framework to facilitate com-

putationally feasible and reliable UQ for multi-D FWI without dimensionality reduction.

Building on WISE, we train CNFs for efficient, suboptimal amortized inference, but then

follow up with a crucial refinement step that only needs frugal use of the forward operator

and its gradient. The refinement step aligns the posterior samples with the observation dur-

ing inference, effectively bridging the amortization gap and enhancing inference accuracy.

Our contributions are organized as follows. We begin by outlining WISER in Algo-

rithm 2. We explore the algorithm by explaining amortized VI with WISE, followed by

computationally feasible multi-D physics-based refinement. The performance of WISER

is demonstrated through realistic synthetic 2D case studies using the Compass model [25],

showcasing improvements over WISE for both in- and out-of-distribution scenarios.

7.3 Amortized VI with WISE (lines 1—20)

WISER starts with an offline training phase that leverages conditional generative models

to approximate the posterior distribution. This is achieved by WISE [19], which involves

generating a training dataset (lines 3—9 of Algorithm 2) and training the CNFs (line 11—

12).

7.3.1 Dataset generation (lines 3—9)

We begin by drawing N velocity models from the prior distribution, denoted by p(x) (line

5). For each sample, x(i), we simulate the observed data, y(i), by performing the wave

modeling and adding a random noise term (lines 6—7). Next, we compute common-image

gathers [CIGs, 26] for each observed data with an initial smooth 1D migration-velocity

model, x0, which can be rather inaccurate. These CIGs, represented by y(i), are produced

by applying the adjoint of the extended migration operator, ∇F(x0)
⊤, to the observed

data. Using CIGs as the set of physics-informed summary statistics not only preserves

information from the observed seismic data [27] but also enhances the training of CNFs in
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Algorithm 2 WISER: full-Waveform variational Inference via Subsurface Extensions with
Refinements

1: Offline training phase
2:
3: Dataset generation
4: for i = 1 : N do
5: x(i) ∼ p(x)
6: ϵ(i) ∼ p(ϵ)
7: y(i) = F(x(i)) + ϵ(i)

8: y(i) = ∇F(x0)
⊤y(i)

9: end for
10:
11: Network training

12: θ∗ = argmin
θ

1

N

N∑
i=1

(
1

2
∥fθ

(
x(i);y(i)

)
∥22 − log |detJfθ |

)
13:
14: Online inference phase
15:
16: yobs = ∇F(x0)

⊤yobs

17: for i = 1 : M do
18: zi ∼ N(0, I)
19: xi = f−1

θ∗ (hϕ (zi) ;yobs)
20: end for
21:
22: Physics-based refinements
23: for ii = 1 : maxiter1 do
24: for i = 1 : M do
25: gi = ∇xi

[
1

2σ2
∥F(xi)− yobs∥22 +

1

2γ2
∥xi − f−1

θ∗ (hϕ (zi) ;yobs) ∥22
]

26: xi = xi − τgi

27: end for
28: for iii = 1 : maxiter2 do

29: L(ϕ) =
M∑
i=1

[
1

2γ2
∥xi − f−1

θ∗ (hϕ (zi) ;yobs) ∥22 +
1

2
∥hϕ (zi) ∥22 − log

∣∣detJhϕ

∣∣]
30: ϕ← ADAM(L(ϕ))
31: end for
32: end for
33:
34: Output: {f−1

θ∗ (hϕ (zi) ;yobs)}Mi=1 as samples of p(x|yobs)

the next stage [28, 29], as they help to decode the wave physics, translating prestack data

to the image (subsurface-offset) domain.
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7.3.2 Network training (lines 11—12)

CNFs are trained with pairs of velocity models and CIGs via minimization of the objec-

tive in line 12. The symbol fθ denotes the CNFs, characterized by their network weights,

θ, and the Jacobian, Jfθ . The term “normalizing” within CNFs implies their functional-

ity to transform realizations of velocity models, x(i), into Gaussian noise from a standard

multivariate normal distribution (as defined by the ℓ2 norm), conditioned on the summary

statistics (CIGs).

7.3.3 Online inference (lines 14—20)

The aforementioned data generation and CNF training procedures conclude the offline

training phase. During online inference, amortized VI is enabled by leveraging the inherent

invertibility of CNFs. For a given observation, yobs, the online cost is merely generation

of a single set of CIGs (line 16). Subsequently, the posterior samples are generated by

applying the inverse of the CNFs to Gaussian noise realizations, conditioned on these CIGs

(lines 18—19)1.

7.4 Physics-based refinements (lines 22—32)

Consider a single observation, yobs, and its corresponding posterior samples, xi ∼ p(x |

yobs). The latent representations generated by the trained CNFs, ẑi = fθ∗(xi;yobs), may

not conform exactly to the standard Gaussian distribution during inference. To address this

issue, we follow [17] to apply latent space corrections to fine-tune the trained CNFs. This

involves integrating a shallower, yet invertible, network2, specifically trained to map real-

izations of true Gaussian noise to the corresponding latent codes, ẑi. Adhering to a transfer

learning approach, we maintain the weights of the trained CNFs while solely updating the

1We slightly abuse the notation to assume hϕ as an identity operator here.
2For linear inverse problems in seismic imaging, [17] show that an elementwise scaling and shift mecha-

nism is adequate to bridge the gap. However, given the complex, non-convex nature of FWI, we employ hϕ

as a generic invertible network.
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weights of the shallower network by minimizing the following objective:

minimize
ϕ

Ez∼N(0,I)

[
1

2σ2
∥F ◦ f−1

θ∗ (hϕ (z) ;yobs)− yobs∥22 +
1

2
∥hϕ (z) ∥22 − log

∣∣detJhϕ

∣∣] .
(7.1)

Here, the refinement network, hϕ, mitigates the amortization gap by adjusting the latent

variable z before feeding it to the inverse of the trained CNFs, f−1
θ∗ . Intuitively, minimizing

the first terms ties the posterior samples closer to the observed data. The second and third

terms prevent the corrected latent space from being far from the Gaussian distribution,

which implicitly takes advantage of the prior information existing in the amortized training

phase.

Equation 7.1 offers a fine-tuning approach that leverages the full multi-D wave physics

to refine the amortized VI framework for a single observation at inference phase. However,

it introduces notable computational demands because it necessitates the coupling of the

modeling operator and the networks. Specifically, every update to the network weights, ϕ,

requires costly wave modeling operations. Given that network training typically involves

numerous iterations, these computational demands can render it impractical for realistic

FWI applications.

To relieve this computational burden, we adopt a strategy from [30] to reformulate

Equation 7.1 into a weak form by allowing the network output to be only weakly enforced

(in an ℓ2 sense) to be the corrected velocity models. The objective function for this weak

formulation reads:

minimize
x1:M ,ϕ

[
1

M

M∑
i=1

1

2σ2
∥F(xi)− yobs∥22 +

1

2γ2
∥xi − f−1

θ∗ (hϕ (zi) ;yobs) ∥22

+
1

2
∥hϕ (zi) ∥22 − log

∣∣detJhϕ

∣∣]. (7.2)
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We strategically decouple the computationally expensive forward operator, F , from the

more cheap-to-evaluate networks, fθ∗ and hϕ. This is achieved in a penalty form with the

assumption that the misfit between the network outputs and the posterior samples adheres

to a Gaussian distribution, N(0, γ2I), where γ is a hyperparameter dictating the trade-off

between data misfit and regularization. Setting γ to 0 equates this weak formulation to the

constrained formulation in Equation 7.1. This weak formulation also supports optimization

strategies for updating the velocity models with physical constraints [31, 32] and multiscale

optimization techniques [33].

WISER takes full computational advantage of this weak formulation by employing a

nested loop structure. The outer loop is dedicated to updating M velocity models, xi,

through costly gradient descent steps (lines 24—27 of Algorithm 2), while the inner loop

(lines 28—31) focuses on more updates (with the ADAM optimizer) to network weights,

ϕ, without computationally expensive physics modeling. To achieve a balance, we conduct

maxiter2 = 128 iterations in the inner loop. After refinements, WISER first evaluates

the refined network on the latent variables to obtain refined latent codes. Subsequently, the

amortized network uses the refined codes conditioned on the CIGs to compute the corrected

posterior samples (line 34).

7.5 Case studies

Evaluation of WISER is conducted through synthetic case studies utilizing 2D slices of the

Compass model and 2D acoustic wave physics. The parameter of interest is discretized into

512 × 256 gridpoints with a spatial resolution of 12.5m, resulting in over 105 degrees of

freedom. The forward operator, F , simulates acoustic data with absorbing boundaries. A

Ricker wavelet with a central frequency of 15Hz and an energy cut below 3Hz is employed.

We use 512 sources towed at 12.5m depth and 64 ocean-bottom nodes (OBNs) located at

jittered sampled horizontal positions [34]. We employ source-receiver reciprocity during

the modeling and sensitivity calculations. The observed data, yobs, is perturbed with band-

161



limited Gaussian noise to achieve a signal-to-noise ratio (S/N) of 12 dB. The training of the

CNFs uses N = 800 pairs of velocity models and CIGs. To demonstrate WISER’s efficacy

in mitigating the amortization gap, we compare results from WISE and WISER under two

scenarios during inference:

(i) observed shot data is generated using an in-distribution velocity model with the same

forward operator;

(ii) observed shot data is produced by an out-of-distribution (OOD) velocity model and

also a slightly altered forward operator.

7.5.1 Case 1: in distribution

The ground-truth velocity model is an unseen 2D slice from the Compass model, shown

in Figure 7.1a. Following Algorithm 2, we initiate WISER by drawing M = 16 Gaussian

noise realizations to create the initial set of 16 velocity models, depicted in Figure 7.1b.

To minimize computational demands, stochastic gradients [35] are calculated in line 25

of Algorithm 2. Each particle’s gradient is estimated using only 1 randomly selected OBN

gather from the observed data. We also add box constraints to the velocity models to restrict

their range to 1.48 to 4.44 km/s. Following maxiter1 = 80 outer iterations—equivalent to

20 data passes or 2560 PDE solves3—–we obtain the posterior samples from WISER in

Figure 7.1c.

Observations

The conditional mean estimate (CM) from WISE lacks finer details, particularly beneath

the unconformity at depths below 2.4 km (in red). This is attributed to the excessive vari-

ability in structural details of the posterior samples, visible on the right panel of Figure 7.1b.

In contrast, WISER generates more consistent and accurate posterior samples. In Fig-

ure 7.1c, the right panel shows that the uncertainty from WISER is reduced below the un-
31 PDE solve means solving the wave equation for a single source. A gradient requires 2 PDE solves

(forward and adjoint).
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 7.1: Comparison between WISE and WISER for an in-distribution case. (a) Unseen
ground-truth velocity model. (b) Estimated velocity models from WISE. The conditional
mean estimate (CM) is shown in the center. For posterior samples, horizontal traces at
Z = 2.7 km and vertical traces at X = 3.6 km are displayed on the top and on the right,
respectively. (d) Imaged reflectivity samples from WISE. (f) Zoom-in views of (d) overlay-
ing on the CM of WISE. (c)(e)(g) are the counterparts from WISER, showcasing significant
improvements.
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conformity. The upper panel illustrates that the uncertainty is more focused on the dipping

events at the unconformity, highlighting areas of poor illumination.

Impact on imaging

To assess the impact of uncertainty in velocity models on downstream tasks, we conduct

high-frequency imaging using a Ricker wavelet with central frequency of 30Hz and com-

pare the imaged reflectivities derived from the posterior samples of both WISE and WISER,

shown in Figure 7.1d and Figure 7.1e, respectively.

The imaged reflectivities produced by CM from WISER exhibit superior continuity and

a better correlation with the CM migration-velocity model, particularly noticeable in Fig-

ure 7.1g under the unconformity. Also, reflectivity samples produced by WISER demon-

strate improved alignment among themselves compared to those produced by WISE. In

addition, notable vertical shifts observed in the imaged reflectivities from WISE to WISER

indicate significant adjustments in the positioning of subsurface reflectors, underlining the

necessity of the refinement procedure for precisely estimating migration-velocity models

that locate subsurface reflectors more accurately.

7.5.2 Case 2: out of distribution

To test the robustness and adaptability of WISER when faced with unexpected variations

at inference, we also evaluate WISER’s performance under OOD scenarios. We introduce

alterations to the velocity model depicted in Figure 7.1a through an elementwise perturba-

tion shown in Figure 7.2a. This manipulation modifies the velocity values across different

depth levels, resulting in a significant shift in their statistical distribution, illustrated in

Figure 7.2b. We use the perturbed velocity as the unseen ground-truth velocity model in

this case study, shown in Figure 7.2c. To further expand the amortization gap, we modify

the encoding of the forward operator by introducing a higher amplitude of band-limited

Gaussian noise (S/N 0 dB).
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These complexities present substantial challenges for WISE, leading to biased inference

results as depicted in Figure 7.2d. The yellow histograms in Figure 7.2b show that the

velocity values of the posterior samples from WISE closely resemble those of the original

velocity model, despite the different distribution of the ground-truth velocity model. This

indicates that WISE tends to incorporate an inductive bias from the training samples. In

WISER, we conduct maxiter1 = 160 outer iterations, using M = 16 particles and 1

OBN per gradient. We also employ the frequency continuation method [33] to compute

the gradient in line 25 of Algorithm 2, transitioning gradually from low-frequency to high-

frequency data. This results in 40 datapasses or 5120 PDE solves in total.

Observations

WISER produces more accurate posterior samples shown in Figure 7.2e. Furthermore,

the statistical distribution of the velocity values in the WISER posterior samples (green

histogram in Figure 7.2b) aligns better with the distribution of the unseen ground-truth

velocity values (blue histogram in Figure 7.2b), demonstrating WISER’s robustness against

potential distribution shifts during inference.

To further showcase WISER’s robustness under severe measurement noise, we com-

pare a posterior sample from WISER (Figure 7.2k) to a velocity model estimated by FWI

(Figure 7.2j), derived by minimizing only the data likelihood (the first term in line 25 of

Algorithm 2), while starting from the same initial model as WISER. The FWI result is sig-

nificantly impacted by noise, while the posterior samples from WISER remain relatively

noise-free and capture all pertinent geological structures.

Impact on imaging

The imaging results from WISE (Figure 7.2f) and WISER (Figure 7.2g) reveal noticeable

discrepancies in quality. The CM migration-velocity model from WISE leads to disconti-

nuities in the imaged reflectivities, particularly at the horizontal layer around 1.8 km depth
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

(j) (k)

Figure 7.2: OOD case study. (a) Curves for velocity-value perturbations; (b) histograms
of values at the depth of 0.5 km and 2.8 km in the original velocity model (Figure 7.1a),
perturbed velocity model (Figure 7.2c), posterior samples of WISE, and WISER, shown in
red, blue, yellow and green color, respectively. (c)—(i) Comparison between WISE and
WISER. The ordering remains the same as in Figure 7.1. (j) FWI result starting with a
posterior sample from WISE. (k) A posterior sample from WISER.
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and more so below the unconformity. In contrast, the CM from WISER significantly im-

proves the continuity of the imaged reflectivities across the entire seismic section. The

imaged reflectivity samples from WISER not only show better consistency among them-

selves but also align more accurately with the estimated CM migration-velocity model,

particularly visible in Figure 7.2i.

7.6 Discussion and conclusions

The primary contribution of WISER is to leverage both genAI and physics to achieve

a semi-amortized VI framework for scalable (D ≥ 2) and reliable UQ for FWI even

in situations where local approximations are unsuitable. At its core, WISER harnesses

the strengths of both amortized and non-amortized VI: the amortized posterior obtained

through offline training provides a low-fidelity but fast mapping, and the physics-based

refinements offer reliable and accurate inference. Both approaches benefit from informa-

tion preservation exhibited by CIGs, rendering our inference successful where conventional

FWI fails due to cycle skipping.

Compared to McMC methods that rely on low-dimensional parameterizations, WISER

does not impose intrinsic dimensionality reductions or simplifications of the forward model.

Therefore, WISER is capable of delivering full-resolution UQ for realistic multi-D FWI

problems. CNFs are primed for large-scale 3D inversion thanks to their invertibility, which

allows for memory-efficient training and inference [36].

Compared to non-amortized VI methods, WISER also requires significantly less com-

putational resources during inference. This is because WISE, as a precursor of WISER,

already provides near-accurate posterior samples, making the refinement procedure com-

putationally feasible. [22] show that non-amortized VI, without access to realistic prior in-

formation, requires O(106) to O(108) PDE solves, while WISER only needs O(103) PDE

solves. Apart from the computational cost reduction, WISER ensures that the posterior

samples realistically resemble Earth models, thanks to the integration of the conditional
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prior information from WISE. Contrary to non-amortized VI, which needs density evalu-

ations to embed the prior (i.e., p(x) in line 5 of Algorithm 2) to produce realistic Earth

models, WISER only needs access to samples of the prior distribution (i.e., x(i) in line 5).

Opportunities for future research remain. Although case 2 demonstrates the robust-

ness of WISER concerning OOD issues, these issues could be fundamentally addressed by

diversifying the training set of WISE through a foundation model [37]. Also, our OOD

case study has not yet explored scenarios where the likelihood term is more pathologically

misspecified, such as the presence of unremoved shear wave energy outside the range of

the forward operator, which calls for further investigations. Our approach will also benefit

from calibration of the estimated posterior, including application of WISE(R) in 3D [38].

In conclusion, this chapter sets the stage for deploying genAI models to facilitate high-

dimensional Bayesian inference with computationally intensive multi-D forward operators.

Deep learning and AI have been criticized for their reliance on realistic training samples,

but WISER alleviates this reliance and still offers computationally feasible and reliable

inference through a blend of offline training and online frugal physics-based refinements,

preparing our approach for large 3D deployment.
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CHAPTER 8

CONCLUSION

In conclusion, this thesis presents several innovative methods based on scientific machine

learning for solving geophysical inverse problems at scale. Two main problems addressed

in this thesis are GCS monitoring and FWI. They both draw their complexity from sev-

eral computational challenges: the intensive cost, non-convexity and ill-posedness of the

modeling operator, and high-dimensional multimodal solution spaces. To meet these chal-

lenges, this thesis makes contributions by

• designing interoperable and differentiable programming framework that supports

learned multiphysics inversion at scale;

• exploring the usage of deep neural networks as surrogate models for cost-effective

Bayesian inference in large-scale inverse problems, which includes learning either

the forward map or the (nonunique) inverse map;

• employing the proposed scientific algorithms to solve FWI and GCS monitoring

problems.

8.1 Scalable, interoperable, and differentiable programming framework

Time-lapse monitoring of GCS requires resolving multiple physical systems, including

fluid-flow, rock, and wave physics. Specifically, multiphysics inversion requires different

physics modeling operators to interoperate both in the forward simulation and the gradi-

ent calculations. Conventional software modules for different physics modeling operators

typically rely on monolithic low-level implementations, which are difficult and costly to

maintain and innovate. While these practices lead to performant software for a specific
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problem, they pose significant challenges in innovation in geophysical research and de-

velopment, especially in the case for GCS monitoring where different physics modeling

operators (and their associated software modules) need to be coupled.

To meet these challenges, I proposed a scalable, interoperable, and differentiable pro-

gramming framework in Chapter 2. Based on high-level math-inspired software abstraction

techniques, I presented numerical examples to leverage customized AD rules for different

software modules in the end-to-end permeability inversion framework. I also illustrated

that this adaptable and flexible software framework supports extremely fast innovations in

geophysical research, with a salient example where the numerical simulators in the fluid-

flow physics module are replaced by trained deep neural surrogates during inversion. This

effortless substitution demonstrates that the proposed framework, thanks to the modern

software practices, facilitates effortless substitution of deep learning models in lieu of nu-

merical simulators. The feasibility study presented in Chapter 3 also verifies the com-

putational feasibility of this software framework on the Compass model. The geological

structures of this Compass model were derived from well logs and imaged seismic from

the South-West North Sea area — a region under consideration for GCS [1]. Because the

software framework leverages differentiable programming principles to calculate gradients

with customized AD rules, I was able to conduct a multiparameter inversion study in Chap-

ter 3, where the unknown parameter of the interest, the porosity model, appears as an input

in more than one physics modeling operators, and has a deterministic relationship with the

permeability model. Calculating the gradient of the objective function with respect to the

porosity can be rather complex, error-prone, and labor-intensive as it requires deriving cross

gradients by hand if different physics modeling operators are separated. In contrast, inte-

gration of different software stacks in the proposed differentiable programming framework

allows for effortless and accurate gradient calculation.
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8.2 Surrogate-assisted inversion with learned modeling operators

After presenting the scalable and differentiable programming framework for surrogate-

assisted inversion, Chapter 4 further analyzes the accuracy of deep neural surrogates during

inversion. I proposed a proof of concept case study to examine the accuracy of surrogates

during gradient-based optimization, and observe that the accuracy of the surrogates de-

creases along iterations. This is because there is no guarantee that the model parameter

iterates remain in the statistical distribution on which the surrogate models were initially

trained. As a consequence, the surrogates may not produce accurate simulations during the

inversion, which can lead to erroneous inversion results eventually.

To safeguard the accuracy of surrogate models during inversion, I proposed an algo-

rithm that combines a trained generative model with the learned surrogates to achieve reli-

able and cost-effective inversion. Through a motivational example, I illustrated that NFs,

trained on the same statistical distribution as FNO surrogates, can be used to effectively

project an out-of-distribution sample to an in-distribution sample. This was achieved by

shrinkage in the latent space of the NFs. I also demonstrated that applying latent space

shrinkage to an out-of-distribution sample can successfully reduce the FNO prediction er-

ror on the projected (in-distribution) sample.

To take advantage of the interplay between NFs and FNOs, I proposed a surrogate-

assisted inversion algorithm with progressively relaxed learned constraints. This results

in a continuation scheme where the constraints on the latent space are gradually relaxed

throughout the iterations so that the model iterates always remain in-distribution and the

objective function can be minimized eventually. I conducted a series of case studies to ex-

amine this algorithm with different kinds of observed data in the GCS monitoring problem,

and verified that the accuracy of the FNO surrogates remains relatively constant in all these

studies, while the unconstrained inversion leads to gradually decreasing accuracy of the

FNOs throughout the inversion.
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To further investigate the GCS monitoring problem, specifically in the scenario where

the CO2 plumes leaks and therefore fails to follow the multiphase flow equations, I pro-

posed to use joint recovery model in Chapter 5 to jointly image the CO2 saturation history

from multiple time-lapse seismic surveys. This linearized joint inversion framework re-

lies on a relatively mild assumption that the Earth properties in different surveys share

a fictitious common component. By explicitly solving for this common component and

the innovations of each survey with respect to this common component, I demonstrated a

streamlined workflow for time-lapse imaging where the time-lapse changes in wave prop-

erties are robustly estimated from multiple seismic surveys with non-replicated acquisition

geometries, which shows great potential to drastically reduce the operational cost in time-

lapse acquisition and processing. I finalized this automated workflow by incorporating a

deep neural classifier to detect potential CO2 leakage in the estimated time-lapse seismic

images.

8.3 Semi-amortized variational inference with physics-informed summary statistics

In contrast to previous chapters where the modeling operators are learned, Chapter 6 and

Chapter 7 take a learned variational inference approach to tackle the FWI problem. Due

to the nonuniqueness and nonconvexity of the FWI objective, there can be multiple model

parameters that fit the observation adequately. To this end, Bayesian inference and uncer-

tainty quantification techniques are utilized to solve for the posterior distribution of model

parameters (velocity models) conditioned on the observation (seismic data). Due to the

high-dimensional multimodal posterior distribution and the computationally expensive for-

ward modeling operator, VI is chosen for its scalability to large-scale problems.

Chapter 6 proposed an amortized VI approach for solving FWI. The notable challenge

of amortized VI for FWI is that the mapping between model parameters and observations

is extremely complicated, and therefore, very difficult to learn. To meet this challenge,

physics-informed summary statistics is necessary to encapsulate the information in the ob-
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served data [2]. While prior art in [3] showed that adjoint operators in linear inverse prob-

lems preserves information, FWI is inherently a nonlinear and non-convex inverse problem,

implying that the adjoint of the Jacobian operator cannot preserve all the information in the

data if the initial model is far from the ground truth model. To this end, I proposed to

use the common-image gathers as the physics-informed summary statistics and argued that

it preserves most of the information in the observed data [4] even if an inaccurate initial

model is used to calculate them. I designed representative case studies that compare the

inference results when the summary statistics is only the gradient (obtained by applying the

adjoint of the standard Jacobian operator on the data) or the CIGs (obtained by applying

the adjoint of the extended Jacobian), and demonstrated that CIGs successfully encapsulate

more information in the data to inform the posterior.

Chapter 7 further improves the inference framework in Chapter 6 through a physics-

based refinement process. This refinement process is crucial when an amortization gap

exists in an amortized VI approach. To close this gap, I proposed a semi-amortized vari-

ational inference framework that finetunes the amortized networks via frugal usage of the

wave physics. This is achieved by composing a refinement network to the amortized net-

work, and optimizing the network weights in the refinement network to tie the posterior

samples better to the observed data through likelihood evaluations. I verified the efficacy

of this physics-based refinement approach in both in-distribution and out-of-distribution

scenarios and illustrated that the refined posterior samples are less biased by the training

samples compared to the amortized posterior samples. Chapter 6 and Chapter 7 together

presents a computationally feasible and accurate VI approach for large-scale inverse prob-

lems with computationally expensive forward modeling operators. I also demonstrated

that the uncertainty in the FWI solution is crucial for downstream imaging tasks where the

positioning and amplitude variations in the imaged reflectivities can also be accessed.
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8.4 Current limitations and future directions

8.4.1 Chapter 3

A multiparameter inversion study, including relative permeability curves and capillary pres-

sure functions to only name a few, would allow further investigation on potential crosstalks

between these parameters, paving the way for a more practical usage of the time-lapse seis-

mic data for inverting reservoir parameters. Also, an uncertainty quantification study is

worthwhile for further investigation to find different permeability models that produce the

same CO2 saturation history. Moreover, the impact of pore pressure and geomechanical

effects can be considered to enhance this framework. An upscaling study is necessary to

examine the resolution of this permeability inversion framework when multimodal obser-

vations (well measurements, time-lapse seismic data) are jointly inverted.

8.4.2 Chapter 4

Parameterization

The Algorithm 1 proposed in Chapter 4 presents a proof of concept to use trained NFs

as a learned constraint during surrogate-assisted inversion to improve the accuracy of the

surrogate throughout the iterations. Despite the success in the preliminary experiments,

there are alternative ways to carry out the optimization and add the constraint. Future

research can examine the inversion trajectory by juxtaposing inversion results obtained by

two different parameterizations, shown in Equation 8.1 and Equation 8.2, respectively.

minimize
z

∥H ◦ Sθ∗ ◦ Gw∗(z)− d∥22 subject to PZ(z) ≥ Ψz, (8.1)

minimize
K

∥H ◦ Sθ∗(K)− d∥2 subject to PK(K) ≥ ΨK . (8.2)

In these formulations, Sθ∗ represents the trained FNO with optimized network weights,
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θ∗. Gw∗ represents the trained NF, with optimized network weights, w∗. H is the mea-

surement operator on the solution of the PDEs, and d is the observed data. Ψz and ΨK

represents the threshold level for the probability density in the latent space, PZ(z), and the

density in the image space, PK(K), respectively. These two probability density functions

can be evaluated via the following:

− logPZ(z) =
1

2
∥z∥22 + const

− log pK(K) = − log pZ(G−1
w∗(K)) + log det |JGw∗ (K)|

= −1

2
∥G−1

w∗(K)∥22 + log det |JGw∗ (K)|+ const.

(8.3)

In Equation 8.3, const denotes constant terms not related to either z or K. Based on

these different parameterization routines, a constrained formulation can be reached with

either Equation 8.1 or Equation 8.2 if the threshold levels, Ψz and ΨK , are gradually re-

laxed (decreasing) throughout the constrained iterations. Both of these formulations can

begin with an unknown, either z or K, with high likelihood, and then gradually relax the

constraint to allow for data fitting. In fact, Equation 4.5 is equivalent to Equation 8.1.

Optimizing over the latent variable, z, brings the advantage that the threshold level is rel-

atively easier to choose, because z follows multivariate Gaussian distribution. Choosing a

threshold level for Equation 8.2 is comparatively more difficult because there is not easily a

value for reference. A rough estimation of the likelihood for the unseen ground truth model

parameter can be explored and used to examine the optimization routines in Equation 8.1

and Equation 8.2 to investigate the choice of parameterizations. These parameterization

routines both exist in the literature [5, 6]. It is an enticing avenue of future research to ex-

amine these formulations specifically for surrogate-assisted inversion, where the generative

network is utilized to improve the accuracy of the surrogate model.
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Derivative-informed surrogate-assisted inversion

Although Algorithm 1 demonstrates efficacy to enhance the accuracy of the surrogate mod-

els during forward evaluation in the inversion process, the gradient of the surrogate models

with respect to the model parameters is not guaranteed. This is because the training objec-

tive in Equation 4.2 only includes a misfit between the forward evaluations of the simulator

and the surrogate model. If the simulator is already differentiable, a hybrid objective func-

tion can be considered to include both misfit in the forward evaluation and the misfit in

gradient calculations [7]. Future work can investigate the benefit and necessity for accurate

gradient calculations by comparing the results using surrogate models trained by two dif-

ferent objective functions. Also, it is interesting to investigate the optimal fiducial point to

compare the gradients during training.

Overall, future investigations would benefit from a more detailed mathematical anal-

ysis on a simpler problem to draw theoretical conclusions regarding how the projection

improves the accuracy of the surrogate models. The algorithm would also benefit from a

case study in a larger scale with more complex geologies in the model parameter (perme-

ability) to validate its practicality.

8.4.3 Chapter 5

The joint inversion scheme presented in Chapter 5 only assumes the existence of a com-

mon component shared by all time-lapse surveys, but has not yet taken advantage of the

fact that the time-varying changes of the Earth properties are induced by CO2 plumes. To

further enhance the joint inversion scheme, an alternative way to parameterize the joint re-

covery model in GCS monitoring is to assume the common component is the pre-injection

brine-filled wavespeed at the baseline (therefore not related to the time dynamics), and the

innovation components are the CO2 saturation snapshots that can be solely described by

the time-varying fluid-flow dynamics. In this context, we could consider to extend the fea-

sibility study in Chapter 3 to simultaneously invert for the permeability and the brine-filled
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wavespeed model at the baseline.

8.4.4 Chapter 6

Theoretical analysis on uncertainty quantification

The WISE framework presented in Chapter 6 demonstrates the superior performance of

CIGs (extended gradients) in summarizing the observed data compared to RTMs (gradi-

ents). It is worthwhile for future research to include a case study on a toy problem to

further verify that these CIGs preserve all information in the observed data — i.e., whether

the posterior conditioned on CIGs is the same as the posterior conditioned on the observed

data. If there is an approximation error, future research can also investigate whether the in-

troduced error is related to the choice of the fiducial point (initial model) used to calculate

the CIGs.

Choice of initial models

Even if a theoretical proof in the idealized scenarios, as suggested by Section 8.4.4, could

indicate that the CIGs lead to an unbiased posterior, it is still worthwhile to investigate the

practical choice of the initial models (fiducial points) where the CIGs (extended gradients)

are calculated. This is because there is always a possibility that an amortization gap exists

due to the limited amount of training data and computational resources during the training

phase. To help choose the initial model, there are a few ways to further interpret the role of

the initial model during the CIG calculation and the amortized VI process:

• The initial model can be thought as an experimental configuration — i.e., different

initial models produce different CIGs, which might lead to different posterior distri-

butions approximated by the CNFs. In this context, we can optimize for the initial

model in order for it to maximally inform the posterior distribution. Thanks to our

principled Bayesian inference approach, this results in a Bayesian experimental de-

sign problem where the quality of the the experimental configurations (i.e. initial
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models) can be measured by the expected information gain [8]. Suggested by [9],

minimizing the training objective of CNFs over both the network weights and the

initial model can maximize the expected information gain. This reads:

minimize
θ,x0

1

N

N∑
i=1

(
1

2
∥fθ

(
x(i);∇F(x0)

⊤y(i)
)
∥22 − log |detJfθ |

)
. (8.4)

The definitions of the symbols in this objective remain the same as in Equation 6.1

in Chapter 6. This objective is minimized over both network parameters, θ, and the

initial model, x0. This can be achieved by gradient-based optimization algorithms.

There remains a computationally challenge that every gradient-based iteration re-

quires evaluating the action of ∇F(x0)
⊤ and differentiating the objective with re-

spect to the initial model, x0, both of which involves the computationally intensive

wave modeling. To alleviate this problem, recently developed frameworks can use

FNOs as a surrogate to map a set of CIGs associated with one background model to

CIGs associated with another initial model [10]. To take advantage of this neural sur-

rogate, future work can investigate the potential to replace the operator, ∇F(x0)
⊤,

with the neural surrogates to achieve accelerated evaluation and gradient calculation.

This surrogate-assisted optimization framework could also benefit by incorporating

the algorithm presented in Chapter 4 to safeguard the accuracy of the surrogates dur-

ing optimization.

• From a totally different perspective, the initial model can also be considered as a nui-

sance parameter in the framework of simulation-based inference (SBI) [11]. In this

context, a simulator, G, takes the input of velocity model, x from the prior distribu-

tion, initial model, x0, and random realizations of Gaussian noise, ϵ, and eventually

outputs the CIGs, y, as following

y = G(x,x0, ϵ) = ∇F(x0)
⊤(F(x) + ϵ). (8.5)
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Equation 8.5 presents a stylish SBI framework as the unknown parameter of interest,

x, and observables, y, are related through a simulator with two nuisance parameters,

x0, and ϵ. In this SBI context [2], a training dataset can be created by not only

randomly drawing samples from the prior and noise from the Gaussian distribution,

but also randomly drawing initial models, x0, from a distribution that can either be

independent or dependent on the velocity model, x. After generating the training

pairs, a conditional density estimator (e.g. CNF) can be trained to draw samples of x

conditioned on y.

The benefit of following the SBI framework is that the posterior estimation is robust

with respect to the nuisance parameter, x0. This practically means that any initial

model, x0, drawn from the same statistical distribution as the one used in training,

can be used during inference, while the original WISE framework presented in Chap-

ter 6 is designed to only use a single initial model during both training and inference.

It is worthwhile to investigate whether stochastic sampling can improve the accu-

racy of inference as indicated by [12]. However, this interpretation deviates from

the mainstream SBI literature because the nuisance parameter, x0, can be observed

(chosen) at the inference phase, while the conventional SBI only assumes to know

the distribution of the nuisance parameter. This can be an enticing avenue for future

research.

8.4.5 Chapter 7

Although the WISER framework demonstrates a proof of concept that distribution shifts

can be mitigated via physics-based refinements, future investigations are necessary to vali-

date the efficacy of WISER on more challenging OOD scenarios, especially using a velocity

model with a salt body to generate the observed data as the difficulty of FWI for salt is well

recognized in the literature [13]. Also, further OOD studies can be performed where the

observed data is simulated with a kernel slightly different from the kernel used in inversion
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to represent more realistic inversion scenarios. It is also worthwhile to investigate whether

the part of the observed data that is out of the range of the modeling operator leads to higher

uncertainty in the velocity model estimation accordingly, or the networks are insensitive to

those events.
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APPENDIX A

MORE DETAILS OF FWI: MODELING, GRADIENT, AND EXTENDED

GRADIENT

A.1 Wave modeling

The forward modeling operator in FWI, denoted by F , maps the velocity model, x, to the

seismic data collected at the receiver locations, collected in y. In its simplest form, F

can be evaluated by solving the wave equation and restricting the solution wavefield to the

receiver positions and recording time windows [1], as follows:

F(x) =



PA(x)−1q1

PA(x)−1q2

· · ·

PA(x)−1qns


. (A.1)

In this equation, we slightly abuse the notation to let x be the squared slowness given

by the reciprocal of the squared velocity. {qi}ns
i=1 represents the sources, with ns being the

number of sources. The matrix, A(x), represents the wave equation with the coefficient, x.

The wave equation can be written as:

A(x)u =

(
diag(x)

∂2

∂t2
−∇2

)
u = qi. (A.2)

In this equation, diag(x) represents a diagonal matrix with x on its diagonal. ∂2

∂t2
rep-

resents second-order time derivative operator, and ∇2 represents Laplacian operator. The

wave operator relates its solution (also called wavefield), u, to each source, qi. The in-

verse of A(x) solves the wave equation for each source, and the matrix, P, is a restriction

operator that measures the wavefield at the receiver locations. In practice, this wave oper-
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ator, A(x), is never explicitly formed, nor its inverse mathematically derived. It is instead

evaluated using finite-difference time-stepping propagation [2, 3].

A.2 Gradient

Algorithms for solving FWI typically use the gradient of the objective function with respect

to the model parameter as an update direction. Here, we choose the ℓ2 misfit as the objective

function for simplicity:

ϕ(x) =
1

2
∥F(x)− y∥22. (A.3)

Then, the gradient is given by:

g =
∂ϕ

∂x
= ∇F(x)⊤ (F(x)− y) , (A.4)

where ∇F(x) represents the Jacobian matrix, and ⊤ denotes the adjoint. This is also

referred as the reverse-time migration (RTM, [4]) in the geophysical literature.

A.3 Extended gradient

While there exist many approaches to extend the wave modeling and its gradient calcula-

tions [5, 6], my thesis focuses on an extension to the wave equation in Equation A.2 where

the instantaneous action in the wave equation is relaxed, allowing for the action of the

wavefield over a “distance”, also known as the subsurface offset [7, 8, 9]. In this context,

the wave equation is extended to honor this action through a non-diagonal matrix before

the second-order time-derivative term in Equation A.2. The extended wave equation reads:

A(X)u =

(
X

∂2

∂t2
−∇2

)
u = qi, (A.5)

where X = diag(x) reduces it to the standard scalar wave equation in Equation A.2.
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Following Equation A.5 to parameterize the wave equation and solve the FWI problem, the

objective function in Equation A.3 is modified to:

ϕ(X) =
1

2
∥F(X)− y∥22 where F(X) = PA(X)−1qi. (A.6)

The extended gradient, also known as the common-image gathers (CIGs, [10]) in the

geophysical literature, is the gradient of the objective function in Equation A.6 with respect

to the extended model parameter when the objective is linearized at diag(x):

g =
∂ϕ

∂X

∣∣∣∣
X=diag(x)

= ∇F(diag(x))⊤
(
F(diag(x))− y

)
= ∇F(diag(x))⊤ (F(x)− y) .

(A.7)

For simplicity,∇F(diag(x)) is written as∇F(x) in Chapter 6.

190



APPENDIX B

MORE RESULTS FOR CHAPTER 6

B.1 Summary

This section is structured as follows: First, we provide a more detailed analysis of the

case studies on the Compass model. Next, we introduce an additional case study on the

CurveFault-A dataset from Open FWI dataset [11].

B.2 Compass

In the Compass case study, WISE showcases its ability to generate velocity models con-

sistent with the observed shot data. Here, we delve into a detailed analysis of these results

in this section to affirm its superior performance. To benchmark WISE against traditional

FWI methods, we initiate by conducting FWI on the 1D initial model depicted in Figure

1(b) in the main text. Subsequently, we examine several posterior samples from WISE,

focusing on the analysis of CIG focusing.

B.2.1 Full-waveform inversion from the 1D initial model

We conducted an FWI on the 1D initial model depicted in Figure 1(b) in the main text, us-

ing 200 iterations of gradient descent. In each iteration, we selected 4 random OBNs with

replacement to determine the update direction. The entire inversion amounts to 12.5 dat-

apasses. To address cycle-skipping, we employed a frequency continuation strategy, pro-

gressively inverting data from low to high frequencies [12]. The FWI result, presented in

Figure B.1(a), reveals mispositioning of several major reflectors and poor recovery of lay-

ers beneath the unconformity. This issue becomes more pronounced in the vertical profiles

shown in Figure B.2. The cycle-skipping problem led to the FWI’s failure in accurately es-

191



(a) (b)

Figure B.1: (a) FWI result using Figure 1(b) in the main text as a starting model; (b) ground
truth velocity model.

timating the bottom of the velocity “kick-back” layer at approximately 800m depth, result-

ing in mispositioned layers, including the unconformity at about 2200m depth. Conversely,

the conditional mean estimate from WISE closely matches the ground truth velocity trend,

and the 95% confidence interval successfully encompasses the ground truth velocity model

at nearly all locations.

B.2.2 Common-image gathers of posterior samples

To evaluate the focusing of CIGs for all posterior samples, we calculated the percentage of

energy within near offsets (specifically, between −60,m and 60,m) as

∥energy in near offsets∥2/∥energy in all offsets∥2.

The CIGs derived from the initial 1D velocity model (depicted in Figure (1)b of the

main text) contained only 73.6% of their energy in near offsets, whereas the conditional

mean estimate from WISE (illustrated in Figure (1)d) accounted for 81.6% of the en-

ergy. This quantitatively confirms the enhanced focusing of the conditional mean estimate.

Moreover, we computed the focused energy percentage in near offsets for CIGs produced

by all posterior samples, resulting in an average of 74.3% — an improvement over the ini-

tial 1D velocity model. The standard deviation among these measurements was 0.005%.

Three example CIGs are presented in Figure B.3, which, while not as sharply focused as

the conditional mean estimate CIGs (shown in Figure 1(f) in the main text), exhibit visibly
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(a)

(b)

Figure B.2: Vertical profiles.

better focusing than those generated by the 1D velocity model (shown in Figure 1(e) in

the main text). For further analysis, practitioners might choose posterior samples based on

this metric or other criteria, such as the curvature of gathers determined by migration ve-

locity analysis. We propose to explore these alternative selection methodologies in future

research.

B.3 Open FWI

We present a case study using the CurveFault-A models in the Open FWI dataset, which

is a public deep learning benchmark dataset for FWI. The CurveFault-A dataset comprises

velocity models with significant variability across samples, which poses challenges for

deep learning methods. This is further compounded by faults and dipping events while

observations contain only reflected energy. Testing on this dataset allows us to test WISE’s

velocity-model generation capabilities.
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(a)

(b)

(c)

Figure B.3: CIGs for three posterior samples from WISE.
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B.3.1 Dataset generation and network training

We select 2800 velocity models of 640 m by 640 m, each with 64 equally spaced receivers at

10m tow depth and 16 randomly placed sources. The surface is assumed absorbing. Using

a 15Hz central frequency Ricker wavelet with energy below 3Hz removed for realism,

acoustic data is simulated with Devito [2, 3] and JUDI.jl [13]. Uncorrelated band-limited

Gaussian noise is added (S/N 12dB) before migrating each dataset with a 1D initial FWI-

velocity model calculated by averaging the corresponding true model horizontally. CIGs

are computed for 101 horizontal subsurface offsets ranging from −250m to +250m. Two

CNFs are trained: one with velocity-RTM pairs and another with velocity-CIGs pairs.

B.3.2 Results

Results on two tested samples by our CNFs are included in Figure B.4 and reveal notable

variation in the posterior samples for sharp boundaries and smooth transitions in the ve-

locity. While the conditional mean estimate does not fully replicate the true velocity, the

standard deviations meaningfully correlate with the errors, indicating that the uncertainty

represented by the standard deviation is informative. Across 50 test samples, the mean

SSIM score for CIGs-based statistics is 0.87, surpassing the 0.85 mean for RTM-based

statistics. We also observe that CIGs better inform the posterior compared to RTM in both

test samples.
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Figure B.4: Applying WISE for two unseen test samples in Open FWI CurveFault-A
dataset. y denotes the type of summary statistics.
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