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SUMMARY

This thesis investigates the intersection of machine learning-based generative models

with physics-based methods to address imaging problems, with an emphasis on accelerat-

ing computations while incorporating uncertainty quantification. Throughout the chapters,

a key conclusion emerges: machine learning methods, though powerful, are insufficient

when used in isolation. They must be combined with the trusted domain knowledge con-

tained in numerical physics simulations to achieve robust results. The methods presented

bridge two of the most impactful areas in modern computer science: numerical simula-

tions methods rooted in linear algebra and the transformative potential of deep learning,

particularly as exemplified by recent advancements in generative modeling.

The focus of this work is on scenarios where the underlying physics is computation-

ally expensive, requiring frugal use of simulations. This is particularly relevant in high-

dimensional, ill-posed inverse problems, such as those encountered in the applications

shown in this thesis: medical imaging and seismic exploration, where the forward oper-

ator is governed by complex partial differential equations (PDEs).

To address these challenges, this thesis introduces techniques that blend practical ma-

chine learning approaches with theoretical insights, particularly through the use of physics-

based summary statistics. These statistics enable efficient extraction of meaningful in-

formation from physics simulations, reducing computational overhead while preserving

the critical elements of the physical model. Theoretical foundations underpin the design

choices, ensuring that the methods are both efficient and ameliorate the potential bias that

would arise from using physics-based summary statistics instead of raw observations.

As an engineering-focused work, the thesis places a strong emphasis on practicality

and robustness. The proposed methods are stress-tested through validation experiments, on

increasingly complex scenarios with a clear pathway toward deployment in the real-world.

This applied perspective reflects the ultimate goal of leveraging these methods to create

xxii



tangible, impactful changes in domains such as healthcare and geophysics. By bridging

the gap between advanced machine learning and trusted physics-based methods, this work

contributes to the development of innovative tools that balance computational efficiency,

uncertainty quantification, and practical applicability.
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CHAPTER 1

INTRODUCTION

The goal of this thesis is to develop and analyze scalable algorithms for solving high-

dimensional, ill-posed inverse problems, particularly in the context of imaging. These

problems are ubiquitous in fields such as medical imaging and seismic exploration, where

the unknown parameters of interest cannot be directly observed but must instead be inferred

from indirect measurements. The connection between the unknowns and observations is

established through a forward operator, which, in the applications studied in this thesis,

involves solving a partial differential equation (PDE). This forward operator simulates how

the observed data would be generated from the underlying parameters. However, solving

PDEs is computationally intensive, often requiring significant time and resources.

Given the high cost associated with these PDE-based forward models, any algorithm

designed to solve the corresponding inverse problems must use these computations spar-

ingly. This is further compounded by the fact that many inverse problem-solving methods

also rely on the adjoint of the forward operator, which itself requires solving another PDE.

In large-scale applications, such as reconstructing a high-resolution medical image or build-

ing a detailed subsurface seismic model, these computational demands can quickly become

a bottleneck, making traditional approaches infeasible.

In addition to the computational challenges, the inverse problems addressed in this

thesis are fundamentally ill-posed. This means that the solutions to these problems are

not unique; there are often many different parameter sets that could explain the observed

data equally well. This ambiguity arises from the inherent limitations of the measurement

process, such as noise, incomplete data, or the smoothing effects of the forward operator.

As a result, simply seeking a single ”best” solution is insufficient. Instead, it becomes

necessary to consider a range of possible solutions, each consistent with the observed data
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to varying degrees.

To address this, we adopt a probabilistic framework that allows us to capture and quan-

tify the inherent uncertainty in the solutions. Specifically, we use a Bayesian approach,

which provides a systematic way to incorporate prior knowledge about the unknown pa-

rameters (expressed as a prior distribution) and to update this knowledge in light of the

observed data (via the likelihood function). The result is a posterior distribution, which

represents the family of solutions that are both consistent with the prior information and

supported by the observed data. Each sample from this posterior distribution corresponds

to a plausible solution to the inverse problem, and collectively, these samples provide a

comprehensive characterization of the uncertainty. This is crucial in practical applications,

where decision-making often relies not only on the most likely solution but also on an un-

derstanding of the confidence or uncertainty associated with that solution such as medical

imaging where a practitioner must take uncertainty into consideration when making pre-

scriptive decisions based on images of patient or risk-aware business when making choices

based on imaged subsurface data.

However, a significant challenge in applying Bayesian methods to large-scale inverse

problems is the computational cost of sampling from the posterior distribution. Traditional

sampling methods, such as Markov Chain Monte Carlo (MCMC), require a large number

of forward and adjoint evaluations, making them impractical for problems involving ex-

pensive PDE solvers. To overcome this, we focus on developing scalable algorithms that

reduce the reliance on repeated forward and adjoint computations. By leveraging advanced

generative models, we aim to make Bayesian uncertainty quantification feasible for large-

scale imaging applications.

I will summarize this work into a single thesis statement:

Generative models are a scalable tool to perform uncertainty quantification of

high-dimensional seismic and medical imaging.

For the remainder of this document I will define what I mean be each of the terms and
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design experiments that will defend it. We begin by laying out the imaging problem setup

and introduce the notation and methods that will be used throughout the thesis. I tackle

inverse problems that are solutions of the forward problem:

y = G(F(x), ε) ε ∼ p(ε). (1.1)

The goal of an inverse problem is to recover the unknown parameter x by indirectly

observing them through a forward operator F (here considered to be nonlinear but can also

be linear) and noise operator G, parameterized by the noise instance ε. The noise can take

various forms, including additive or multiplicative.

1.1 Imaging problems

Inverse problems present significant challenges, since the unknown parameter x is high-

dimensional. This is often the case in imaging applications, where the unknown represents

an image or volumetric data. Such data naturally resides in either 2D space, x ∈ Rn×n,

or 3D space, x ∈ Rn×n×n, where n can range from 128 to 1024 or even higher in some

of the target applications discussed in this thesis. For instance, in medical imaging, the

unknown might be a high-resolution MRI scan, while in seismic imaging, it could be a

detailed model of subsurface structures.

The high dimensionality of x introduces two critical challenges. First, it necessitates

the development of efficient software capable of handling such large-scale data. Algorithms

that work well on smaller problems often fail to scale effectively when faced with high-

dimensional data, leading to prohibitive computational costs and memory requirements.

This is especially true in inverse problems involving PDE-based forward models, where

each evaluation of the forward operator or its adjoint is computationally expensive.

Second, the high dimensionality strongly influences the choice of machine learning ar-

chitectures used in solving these problems. Certain architectures and layers are better suited
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for high-dimensional data, promoting desirable characteristics such as sparsity, locality, and

hierarchical feature extraction. For example, convolutional layers are particularly effective

in image processing tasks because they exploit spatial hierarchies and reduce the number

of parameters while preserving the ability to capture local features [1]. Similarly, invertible

architectures such as normalizing flows offer a promising avenue for probabilistic model-

ing in high dimensions by enabling posterior sampling while maintaining computational

efficiency of the GPU training phase.

1.1.1 Seismic Imaging

The goal of seismic imaging is to invert for subsurface properties described by the acoustic

wave equation. Specifically, in this case the forward operator F in Equation 2.1 is the

solution to the wave equation PDE:

1

ρ(x, y)c(x, y)2
∂2

∂t2
u(x, y, t)−∇ · 1

ρ(x, y)
∇u(x, y, t) = q(t, x, y). (1.2)

In (Equation 1.1.1), ρ(x, y) represents density as a function of space, c(x, y) is the

acoustic velocity which when expressed as a gridded function will be the target unknown

image x and example of which is shown in Figure 1.1b. u(x, y, t) is the acoustic pressure as

a function of space and time, ∇ denotes the spatial derivative, and q(t, x, y) is the acoustic

source term.

This equation governs wave propagation in the subsurface, and seismic imaging aims

to recover the subsurface velocity model c(x, y) from recorded wavefields. An example

of the observed wwavefields is shown in Figure 1.1a where it has been organized such that

each row of the data matrix corresponds to the pressure amplitude observed by one receiver

and the vertical axis is time. The practical need for seismic imaging arises in several ap-

plications such as: hydrocarbon exploration [2], monitoring of CO2 storage projects [3],

geothermal energy projects [4] and various other applications [5]. The inverse problem is
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inherently ill-posed: many velocity models can produce similar observations. This is exac-

erbated by the limitations of seismic acquisition, such as sparse sampling, limited aperture,

and noise in the data.

(a) Seismic observation (b) Image of subsurface

Figure 1.1: Wave-based imaging of the subsurface.

Traditional methods like Full-Waveform Inversion (FWI) tackle this problem by mini-

mizing a data misfit function, often expressed as the ℓ2 norm between observed and simu-

lated shot gathers. However, due to the ill-posedness, such methods often converge to local

minima, resulting in suboptimal solutions. Moreover, they provide only a single determin-

istic estimate without quantifying uncertainty.

Our attempts to solve the FWI problem for seismic imaging culminate in Chapter 5

with the use of the ASPIRE algorithm towards synthetic datasets representing complex

salt plays in the Gulf of Mexico in and towards field data where the outputs was posterior

sampling on images of size (512× 7024)

1.1.2 Medical Imaging

In this thesis, I will explore a variety of medical imaging modalities, including Magnetic

Resonanse Imaging, (MRI), Computed Tomography (CT), Photoacoustic Imaging, and Ul-

trasound Computed Tomography. These techniques represent a broad spectrum of imaging

methods, each with unique characteristics and challenges. The range of these modalities in-

clude, linear and non-linear inversions, Forward operators that require: solving wave equa-

tion PDEs, Radon transforms, and the Fourier transform. Also different noise assumptions
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such as Gaussian or Poison. Despite their differences, these modalities share a common

goal: to provide detailed, high-resolution images of internal structures for diagnostic and

therapeutic purposes.

While there is an remarkable correspondence between seismic imaging and wave-based

medical imaging, there are some key differences that influence their workflows. The fore-

most of these differences is the requirement for faster time-to-solution in medical imaging.

In seismic imaging, projects can span months or even years as data is meticulously pro-

cessed to form an accurate image of the subsurface. In contrast, medical imaging demands

rapid turnaround times, often ranging from a few minutes to real-time solutions [6]. This

is driven by several factors: the comfort and safety of the patient, the operational efficiency

and cost-effectiveness of healthcare facilities, and the need for practitioners to make timely,

informed decisions based on imaging results.

Another major difference lies in the underlying physics of the forward operators. For

instance, in photoacoustic imaging, the PDE is not defined by an ”exploding reflector”

model typical in seismic workflows. Instead, it involves an initial value problem where the

initial pressure distribution, induced by optical absorption, serves as the starting condition

for the wave equation. This distinction necessitates modifications in both the mathemat-

ical modeling and the computational algorithms used for inversion as I implemented in

PhotoAcoustic.jl.

(a) Wave propagation (b) Observation (c) Image of brain

Figure 1.2: Wave-based imaging through the human brain.

Despite these differences, the core computational techniques for wave-based imaging
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remain remarkably similar between seismic and medical applications. Many of the methods

developed in the seismic industry can be directly applied to medical imaging. In fact, the

chapters of this thesis rely on the same computational frameworks, such as those provided

by JUDI and Devito [7, 8], originally designed for seismic imaging but adapted here to

address medical imaging challenges. The poster child application for medical imaging in

this thesis will be a wave equation based method for imaging through the human skull as

shown in Figure 1.2a, where the goal is to take the wave observation shown in Figure 1.2b

and invert for an image of the acoustic properties of the brain as shown in Figure 1.2c. This

imaging problem is particularly difficult because of the high acoustic contrast created by

the skull. In chapter 4, we will explore how the iterative algorithm ASPIRE slowly builds

up first the skull model and then can use this skull model to peer inside the skull and image

the soft tissue of the brain.

1.2 Methodology

1.2.1 Bayesian uncertainty quantification

In the case of noisy observations and ill-posed forward operators [9], a single deterministic

solution to the inverse problem fails to characterize the full space of possible solutions.

Bayesian inverse problem solutions [10], on the other hand, offer a more complete char-

acterization of the solution space by adhering to a probabilistic framework. Here the goal

is to find a statistical distribution for the parameters that explains the data. The grail is to

sample from the conditional distribution p(x|y), the so-called posterior distribution. This

distribution is given by Bayes’ rule

p(x | y) ∝ p(y | x)p(x).

In words, Bayes’ rule states that a Bayesian solution is formed by updating our prior

beliefs of the unknown parameter (prior p(x)) with new information given by the observa-
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tion y, expressed by the data likelihood, p(y | x). This likelihood, p(y | x), encodes our

domain knowledge in the form of the forward operator F and the noise process captured

by the noise operator G, and the noise distribution p(ε). Thus, posterior samples are the

”parameters that are likely under the prior and also likely under the data likelihood—i.e.

they explain the observed data”.

Exact posterior inference—i.e., calculating samples from the posterior distribution or

its statistics (mean, (co)variance or higher order moments), is in general computationally

intractable [11]. The intractable nature of posterior sampling arises from: the curse of

dimensionality when dealing with high-dimensional parameters, the expense of forward

operator evaluation related to the data likelihood, and multimodality of the distribution,

etc. [12]. For specific cases, such as linear forward operators and Gaussian or conjugate

priors, the posterior distribution has an analytical form. For example, linear operators,

Gaussian noise, and Gaussian priors lead to Gaussian posteriors with known means and

covariances [13]. But in many real-world applications, the forward operator is expensive

and/or nonlinear and there does not exist a known prior. In these cases, more advanced

methods are required for posterior inference. These advanced methods can be divided

into two types: the first type of methods are sample based. These include Markov-chain

Monte Carlo (McMC) and its various counterparts [14, 15, 16]. On the other hand, there

are optimization based methods, such as expectation maximization [17], the Laplace ap-

proximation [18], and variational inference (VI) [19]. Here, we consider VI because it can

naturally exploit the ability of deep neural networks to learn high dimensional distributions.

1.2.2 Variational Inference

The technique of VI optimizes an approximate distribution, pθ(x | y), θ ∈ Θ. The param-

eters of these distributions are chosen to match the unknown target distribution p(x | y).

Due to its connection with maximum likelihood methods [13], and its relatively easy to op-

timize objective, the mismatch between the approximate and target distribution is typically
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measured by the Kullback-Leibler (KL) divergence [20]. Because this divergence metric is

non-symmetric, it allows for two complementary VI formulations, namely non-amortized

VI, which uses the backward KL divergence KL(pθ(x | y) || p(x | y)) and amortized VI,

which involves the forward KL divergence KL(p(x | y) || pθ(x | y)) [21]. These two for-

mulations have different requirements, costs, and benefits, which we will discuss. Firstly,

we will describe the most commonly implemented form: non-amortized VI.

Non-amortized variational inference

Because the backward KL divergence entails evaluation of the log-likelihood conditioned

on a single observation, yobs, its minimization requires knowledge of the forward operator

F and its gradient. The inference is non-amortized since it is carried out with respect to

a single observation. To understand these statements, let us consider the case where the

noise is Gaussian with standard deviation σ for which the log-likelihood can be written out

explicitly, yielding

minimize
θ

KL
(
pθ(x | yobs) || p(x | yobs)

)
= Epθ(x|yobs)

[
− log p(x | yobs) + pθ(x | yobs)

]
= Epθ(x|yobs)

[ 1

2σ2
∥F(x)− yobs∥22 − log p(x) + pθ(x | yobs)

]
.

From these expressions, we first note that the optimization is indeed performed for a sin-

gle observation, yobs. This implies that when inference results are desired for a different

observation, the optimization must be repeated, which may be an expensive proposition

in situations where F and its gradient are expensive to evaluate. For instance, when F

and its gradient require the solution of a partial differential equations (PDE) over a high-

dimensional parameter space, their repeated evaluation as part of gradient descent often

becomes the most expensive computation when minimizing the backward KL divergence.

Finally, minimization of the backward KL divergence also requires evaluation of the prior,
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p(x), and its gradient. This imposes a difficulty because, in many cases, this prior is not

known analytically and must be approximated [22, 23].

There are a variety of implementations of non-amortized posterior inference, includ-

ing those based on Langevin dynamics [24, 15] and those that make use of normalizing

flows [25]. Other examples include methods based on the Stein discrepancy [26, 27] and

randomize-then-optimization methods [28, 29]. While these non-amortized inference tech-

niques have shown promise, their online application can be rendered ineffective when ap-

plications call for a rapid time-to-solution as may be the case in medical imaging. We will

address this situation by presenting an inference technique where most of the computational

costs are incurred off-line, so the inference is fast for different observations.

Amortized variational inference

Guiding distributional optimization with the forward KL divergence as a mismatch met-

ric between the target distribution and the approximate distribution leads to a formulation

called amortized VI. To arrive at this formulation, let us first write out the expression for

the forward KL divergence:

minimize
θ

KL
(
p(x | y) || pθ(x | y)

)
= Ep(x|y)

[
− log pθ(x | y) + p(x | y)

]

and quickly note that evaluating this expression depends on having access to samples

from the ground-truth posterior distribution p(x | y). As these posterior samples are typ-

ically not available, we marginalize over the distribution of observations instead—i.e., we

have
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minimize
θ

Ep(y)

[
KL

(
p(x | y) || pθ(x | y)

)]
= Ep(y)

[
Ep(x|y)

[
− log pθ(x | y) + p(x | y)

]]

= Ep(x,y)

[
− log pθ(x | y) + p(x | y)

]
= Ep(x,y)

[
− log pθ(x | y)

]
. (1.3)

To arrive at the final expression, we made use of the law of total probability and the fact

that the optimization is only over parameters θ. See also [21]. From this final expression

, the requirements of training amortized VI become clear: we need samples of the joint

distribution x,y ∼ p(x,y) and a parametric conditional density estimator. In this work,

we obtain samples of the joint distribution using a simulation-based inference framework

[30], and train a generative neural network as a conditional density estimator [31] for the

posterior.

Amortized VI is so-called ”amortized” because its strength lies in its reusability. Once

optimized during off-line training, the approximation is not exclusive to a single observa-

tion but rather can be applied across numerous observations. This means that the com-

putational expenses involved in the initial optimization phase are effectively ”spread out”

over multiple inference tasks, making the inference for any new observation significantly

cheaper. As we will see in the methods section, this ”spread out” practically refers to learn-

ing inference tasks over a set of training examples. By learning from examples, the method

can remember important features that can be reused at inference time for many unseen

observations [32]. Table 1.1 summarizes the main requirements and benefits of amortized

approaches compared to non-amortized ones.

The demand for rapid imaging solutions motivates much of the work in this thesis. I

explore techniques borrowed from seismic imaging and adapt them for faster execution,

ensuring their applicability to the medical domain. One of the key contributions of this

work is the development and application of the ASPIRE algorithm. ASPIRE aims to ap-
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Table 1.1: Comparing requirements and benefits of amortized versus non-amortized poste-
rior inference

Amortized posterior inference Non-amortized posterior inference
Reusable on many observations Yes No
Forward operator Only evaluations Evaluations and gradients
Needs prior Only samples Density calculations

proximate computationally intensive, non-amortized solutions like those in WISER but at a

fraction of the computational cost. By doing so, it brings uncertainty-aware machine learn-

ing methods, which were previously deemed too slow, into the realm of clinical viability.

My approach to enabling and accelerating these techniques for medical imaging is

two-pronged. First, I developed specialized software, InvertibleNetworks.jl [33],

which facilitates the training of Normalizing Flows on image sizes previously considered

intractable. While prior studies suggested that normalizing flows could not scale beyond

image dimensions of (256 × 256) [34, 35], we identified that this limitation was not in-

herent to the architecture itself but rather a consequence of software inefficiencies. By

implementing gradient calculations that fully exploit the invertibility of normalizing flows,

we demonstrated their scalability to much larger image sizes, including (1024 × 1024) as

in the CT examples presented in Chapter subsection 7.3.3.

Second, I developed a suite of algorithms—WISE [36], ASPIRE [37], and WISER [37,

38]—which span a spectrum of computational cost versus posterior inference quality. An

overfiew of this paradigm is shown in Figure 1.3. These algorithms provide users with

flexible options depending on their specific needs and computational resources. WISE

is optimized for minimal computational overhead, making it suitable for scenarios where

speed is paramount. WISER, on the other hand, prioritizes high-quality posterior inference

and is suitable for cases where computational resources are less constrained. ASPIRE

strikes a balance between these extremes, offering a practical middle ground. Each of these

algorithms is designed with scalability in mind and can in principle be employed to deliver

fast, high-quality imaging solutions in medical applications.
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Figure 1.3: The WISE, ASPIRE, WISER paradigm.

1.3 Thesis outline

My technical contributions of this thesis consist of six chapters which progressively build

up to the algorithm ASPIRE by adding layers of algorithmic complexity and then conclude

with two tangential but important problems related to Bayesian inference with machine

learning: optimal experimental design and the use of patches in machine learning-based

imaging. I will now summarize each chapter, my contribution and its publishing venue.

• Chapter 2 Adjoint operators enable fast and amortized machine learning based

Bayesian uncertainty quantification. This work represents the initial exploration of

our ideas surrounding physics-based summary statistics. In this chapter, we focused

on imaging problems where the forward operators are linear, such as in Photoacoustic

and CT imaging. Linear forward models provide a useful foundation for developing

and testing new methods, as they offer mathematical tractability and well-understood

properties. In particular, we demonstrated that when the noise in the observations is

additive Gaussian, the resulting posterior distribution is completely unbiased. Be-

yond the theoretical contributions, we also conducted a series of empirical studies to

evaluate the practical benefits of our approach. One of the key findings was a sub-

stantial speed-up during the training phase. This preprocessing step effectively trans-

forms the raw data into a more informative representation, allowing the model to con-
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verge faster. Additionally, we observed that this preprocessing reduced the amount

of training data required to achieve a given level of accuracy. While the results in

this chapter are promising, they also highlighted some limitations. The linearity of

the forward operator simplifies many aspects of the problem, but real-world imaging

applications frequently involve nonlinear dynamics. Recognizing these challenges,

we were motivated to extend our ideas to nonlinear problems in the next chapter. A

version of this chapter was published in SPIE Medical Imaging [39]

• Chapter 3 Amortized normalizing flows for transcranial ultrasound with uncer-

tainty quantification. In this chapter, we extended the ideas developed for linear

inverse problems to the nonlinear domain of Full-Waveform Inversion (FWI). Our

target application was ultrasound imaging through human skulls, a problem charac-

terized by significant nonlinearity and high dimensionality. Unlike in the previous

chapter, where theoretical analysis was feasible due to the linearity of the forward

models, the nonlinear nature of FWI necessitated a shift in approach. Specifically,

we focused on using summary statistics, with an emphasis on the score function—the

gradient of the log-likelihood—as a key tool for guiding the inversion process. The

results demonstrated the potential of this approach. However, the inherent challenges

of FWI, particularly its sensitivity to the starting model, became evident. For the

ultrasound application, we leveraged a known acoustic skull model as our initial

guess, which proved essential for achieving convergence. This highlights the well-

known dependency of FWI on accurate starting models, especially when tackling

high-dimensional, nonlinear problems.To address this dependency, we were moti-

vated to adopt an iterative strategy leading to the development of the ASPIRE algo-

rithm in the next chapter. A version of this chapter was published in PMLR Medical

Imaging with Deep Learning [40].

• Chapter 4 ASPIRE: Iterative amortized posterior inference for Bayesian inverse
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problems. Motivated by the shortcomings of the previous chapter—specifically, the

reliance on a good initial acoustic model of the human skull—we developed an iter-

ative method that progressively refines the model. This method uses the output from

each iteration as the starting point for the next, effectively improving the solution

with each step. While this approach requires the forward and adjoint operators at

every iteration, it remains computationally efficient due to the relatively low number

of iterations required. By combining elements of both amortized and non-amortized

methods, this approach retains the speed advantages of amortized techniques while

achieving performance closer to that of non-amortized methods. This balance makes

the method well-suited for scenarios where computational efficiency and solution

quality are both critical. A version of this chapter is in revision stage at IOP Inverse

Problems and has a preprint [37].

• Chapter 5 Machine learning enabled velocity model building with uncertainty

quantification. This chapter demonstrates the high-level application of the ASPIRE

algorithm to seismic imaging, showcasing two key innovations. First, we verify that

ASPIRE is generative model agnostic by employing diffusion models instead of nor-

malizing flows. This flexibility highlights ASPIRE’s adaptability across different

generative frameworks, broadening its potential applications. Second, we test the

robustness of ASPIRE by applying it to extremely large-scale field data. This step

is crucial, as field data presents unique challenges such as noise, incomplete cover-

age, and computational demands far beyond those encountered in synthetic datasets.

By successfully handling these challenges, ASPIRE demonstrates its scalability and

effectiveness in real-world seismic scenarios, marking a significant milestone in its

development. A version of this chapter has been submitted to TLE Special Section

on Generative and physics-informed AI.

• Chapter 6 Probabilistic Bayesian optimal experimental design using conditional
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normalizing flows. An important consideration for both medical and seismic imag-

ing is the optimal design of the experiment that generates the observations. In medi-

cal imaging, this means minimizing the time a patient spends undergoing the imaging

procedure, which is critical for patient comfort, safety, and throughput. In seismic

imaging, the focus shifts to reducing costs associated with expensive hardware and

extensive field operations. Both contexts demand efficient experimental designs that

maximize information gain while minimizing resource usage. In this chapter, we

explore a scalable approach to experimental design that accommodates a large num-

ber of design variables. This is particularly important in high-dimensional settings,

where traditional methods struggle to balance computational feasibility with the com-

plexity of the design space. Through a brief theoretical analysis, we demonstrate

that the optimization objective used in normalizing flows—specifically, maximizing

the exact likelihood—can be directly applied to optimize the Expected Information

Gain (EIG) without requiring any modifications. This dual-purpose objective not

only simplifies the implementation but also ensures that the experimental design pro-

cess aligns seamlessly with the underlying probabilistic framework. The results val-

idate the scalability and effectiveness of this approach, making it a practical solution

for optimizing experimental design in both medical and seismic applications [41].

By leveraging the exact likelihood evaluation capabilities flexibility of normalizing

flows, this method provides a unified framework for simultaneously providing un-

certainty aware solutions and reducing the costs associated with data acquisition. A

version of this chapter was presented SIAM UQ 2024 and has a preprint [42].

• Chapter 7 Exploiting long-range correlations: the pitfalls of patch training for

uncertainty quantification in large scale imaging. This chapter addresses a com-

mon and practical question about the software I developed, InvertibleNetworks.jl,

which enables training on large input sizes: ”Why use the full image during training

when smaller patches could suffice?” This question arises primarily due to the mem-
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ory limitations of training on GPUs, which can make working with full-size images

challenging or even infeasible. To explore this, we investigate the implications of

training on image patches instead of full images. Through a series of experiments,

we systematically demonstrate the potential pitfalls of this approach. Each exper-

iment highlights specific scenarios where training on patches leads to suboptimal

performance. The chapter concludes with a significant breakthrough: the develop-

ment of a probabilistic solution for 3D photoacoustic imaging, a first of its kind. This

solution leverages the strengths of InvertibleNetworks.jl while addressing

the challenges posed by patch-based training, demonstrating the feasibility of scaling

probabilistic imaging methods to high-dimensional 3D applications.
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CHAPTER 2

ADJOINT OPERATORS ENABLE FAST AND AMORTIZED MACHINE

LEARNING BASED BAYESIAN UNCERTAINTY QUANTIFICATION

2.1 Summary

Machine learning algorithms are powerful tools in Bayesian uncertainty quantification

(UQ) of inverse problems. Unfortunately, when using these algorithms medical imaging

practitioners are faced with the challenging task of manually defining neural networks that

can handle complicated inputs such as acoustic data. This task needs to be replicated for

different receiver types or configurations since these change the dimensionality of the in-

put. We propose to first transform the data using the adjoint operator —ex: time reversal

in photoacoustic imaging (PAI) or back-projection in computer tomography (CT) imaging

— then continue posterior inference using the adjoint data as an input now that it has been

standardized to the size of the unknown model. This adjoint preprocessing technique has

been used in previous works but with minimal discussion on if it is biased. In this work,

we prove that conditioning on adjoint data is unbiased for a certain class of inverse prob-

lems. We then demonstrate with two medical imaging examples (PAI and CT) that adjoints

enable two things: Firstly, adjoints partially undo the physics of the forward operator re-

sulting in faster convergence of a learned Bayesian UQ technique. Secondly, the algorithm

is now robust to changes in the observed data caused by different transducer subsampling

in PAI and number of angles in CT. Our adjoint-based Bayesian inference method results in

point estimates that are faster to compute than traditional baselines and show higher SSIM

metrics, while also providing validated UQ.

18



2.2 Description of Purpose

The power of machine learning methods bring accelerated and high fidelity solutions for

inverse problems in a variety of fields [43]. On the downside, many machine learning meth-

ods are black boxes with failure cases that are difficult to predict and interpret. This is one

of the reasons that their adoption in safety critical settings is hampered. Our purpose is to

increase trustworthiness of machine learning (ML) for medical imaging by enabling uncer-

tainty. This is important since applying ML under distribution shifts or poor training can

cause instabilities and even hallucinations that could lead to incorrect diagnoses [44, 45].

Uncertainty quantification (UQ) alleviates this problem by communicating to practitioners

when a method is confident in its result versus when it should not be trusted.

We describe a practical Uncertainty Quantification framework based on adjoint opera-

tors and amortized variational inference (AVI). These two concepts marry powerful data-

driven methods with physics knowledge allowing us to amortize over unseen data and also

different imaging configurations. By amortizing, we mean that the framework trades an

expensive pretraining phase for fast inference results on unseen observations. The particu-

lar class of algorithms we study, can be trained given only examples of the parameters of

interest x and their corresponding simulated data y. In medical imaging, data y can contain

complex physical phenomena such as acoustic waves in photoacoustic imaging. Under the

hood, an ML-based algorithm learns to undo the complex physical phenomena when pro-

viding an estimate of x. This can lead to long training times and large training data quotas

which we would like to ameliorate. We are also interested in creating an algorithm that is

robust to changes in the dimensionality of the observations y such as when changing the

number of transducers. To solve both problems, we propose preprocessing the data y with

the adjoint operator.

We first show that the posterior given data is equivalent to the posterior given data pre-

processed with the adjoint in the case of linear forward operators and Gaussian noise. Many
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medical imaging modalities fall in this category i.e. photoacoustic imaging, CT and MRI.

Equipped with this theoretical result, we demonstrate that this method solves our two prob-

lems since it accelerates training convergence of AVI with conditional normalizing flows.

This is a welcome result since normalizing flows are notoriously costly to train (40 GPU

weeks for the seminal GLOW normalizing flow [46]). Second, the adjoint brings data to the

model space and therefore standardizes data size, enabling us to learn a single amortized

normalizing flow that can sample the posterior for a variety of imaging configurations. We

demonstrate these results using two medical imaging applications.

2.3 Methods

2.3.1 Bayesian Uncertainty

Given our quantity of interest x ∈ X called the model, the forward problem is described

by a linear operator A : X → Y whose action on x gives observations y ∈ Y . Here, we

consider linear problems with additive Gaussian noise term εεε—i.e.,

y = Ax+ εεε. (2.1)

Upon observing data y, traditional methods in inverse problems create a single point es-

timate of the x that produced y. In the absence of noise and for invertible operators this

point estimate is enough to describe the solution of the inverse problem. However, This ap-

proach fails to fully characterize the solution space in ill-posed problems [9], where there

is no guarantee of a unique solution. In this scenario, it is important to be able to answer

questions such as: Can we trust the solution or is this estimate affected by the null space

of the operator? If there is more than one solution, what is the variability between these

solution? These are questions that are answered by UQ.

At the forefront of uncertainty quantification (UQ) for inverse problems are Bayesian

methods[10]. In a Bayesian framework, we try to find the set or distribution of solutions
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that all explain the data. This set of solutions is encoded by the conditional distribution

p(x | y) called the posterior distribution and is the end goal of Bayesian inference . It

contains all information needed to estimate x given y while providing UQ. Calculating

the posterior distribution can be done with two main type of algorithms: first, sampling

based algorithms such as Markov chain Monte Carlo (MCMC) algorithms [14] and second,

optimization based algorithms such as variational inference (VI) [47]. MCMC can be a

costly method due to the amount of sampling required [11], especially in high-dimensional

problems. We instead explore variational inference (VI) [47] to sample the posterior since

it allows for amortized training costs.

2.3.2 Variational Inference for Posterior Distribution Learning

To reduce the overall costs of posterior sampling, VI methods reduce the sampling problem

into an optimization problem by finding a approximate distribution that best fits the desired

distribution [47]. The goodness of fit is typically measured by the Kullback-Leibler (KL)

divergence. Among the various VI methods, normalizing flows [48] have been shown to

be flexible, efficient and powerful while working on a variety of distributions including

conditional distributions [46, 49]. For our case, the goal is to find the normalizing flow fθ

parameterized by θ that makes a learned conditional distribution pθ(x | y) approximate the

desired posterior distribution p(x | y). We measure the “closeness” with the KL-divergence

making the optimization objective

θ̂ = argmin
θ

KL ( pθ(x | y) || p(x | y)). (2.2)

Previous work has been put into VI with normalizing flows that involves costly optimization

for each incoming observed data y [50, 51, 52, 53]. The optimization is costly because

learned parameters of fθ typically parameterize neural networks that are costly to optimize.

On top of that, these VI objectives requires online use of the forward operator A and its
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adjoint A∗ during optimization. With this formulation, VI is not efficient enough to enable

quick inference. Quick results are particularly important in medical imaging settings since

they extend the abilities of a given modality for example by enabling the use of hand-held

probes [54, 55]. In general, minimizing turnover time makes the difference in providing a

timely diagnosis [6].

A different formulation of VI called amortized variational inference (AVI) [56, 57,

58, 59, 60] aims to obtain fast inference on test data without having to re-optimize an

objective. This is accomplished by an intensive pretraining phase that optimizes a (KL)

divergence based objective averaged over different data y sampled from the distribution

p(y): θ̂ = argminθ Ey∼p(y) [KL (p(x | y) || pθ(x | y))] . One can optimize a simplified

objective that only requires samples from the joint distribution x,y ∼ p(x,y) [31, 61]. For

a conditional normalizing flow (CNF) fθ, our objective becomes

θ̂ = argmin
θ

1

N

N∑
n=1

(
∥fθ(x(n);y(n))∥22 − log |detJfθ |

)
(2.3)

where N is the size of a training dataset D = {(x(n),y(n))}Nn=1 and Jfθ is the Jacobian of

the CNF. This objective is particularly simple to implement with conditional normalizing

flows since they allow for tractable computation of the determinant Jacobian term detJfθ

by design.

Our goal is to generalize our CNF for a variety of imaging configurations. Then we

must consider that a different imaging configuration Ai can change the size of yi. These

different data sizes can arise from changing receiver settings such as number of receivers

or view angles. To handle a set of imaging configurations {i = 1 : M} (where M is the

number configurations), one would need to define a network fθi , for all M configurations

i.e. manually defining downsampling layers. Standardizing observations to a single size

would allow practitioners to only need to define a single network fθ since now all inputs to

the network are the same size regardless of their imaging configurations. The adjoint A∗
i
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offers a physics informed way of standardizing data inputs to a single size, namely the size

of the model.

Standardizing the size of incoming data is related to the concept of a summary statis-

tic [62, 31] so can we interpret the adjoint as a physics-informed summary statistic. We

will show that on top of being robust over different imaging configurations, adjoints also

accelerate the convergence of the training objective in Equation 2.3. Before demonstrating

these two practical advantages of using the adjoint, we present our main contribution: a

theoretical discussion showing when preprocessing data with the adjoint will not affect the

result of posterior inference.

2.3.3 Adjoint Data is Bayesian Sufficient

As noted in the previous section, there are good reasons to use the adjoint operator as a

preprocessor. This leads to an important question that we phrase using the language of [63]:

can we condition on adjoint data without introducing bias into the inference procedure? We

will answer this question in the affirmative by using Proposition 1 from [64] and specifying

a class of inverse problems that satisfies the proposition with adjoint preprocessing.

Proposition 1:[64] If B is injective on the range of Π then p(x | BΠy) will be equal to

p(x | y) if and only if the information lost by observing Πy instead of y is conditionally

independent of x given Πy:

p(x | BΠy) = p(x | y) ⇐⇒ x ⊥⊥ y − Πy | Πy. (2.4)

Proposition 1a: Given data y (created as in (Equation 2.1)), the posterior conditioned on

adjoint-preprocessed data p(x | A∗y) will be equal to the original posterior p(x | y) if the

additive noise εεε is Gaussian.

Proof: We use Proposition 1 from [64] and set B = A∗; and Π = AA+ where A+

is the Moore-Penrose inverse. Since p(x | BΠy) = p(x | A∗AA+y) = p(x | A∗y)
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then our proof is complete if we show that the following conditional independence is true:

x ⊥⊥ y −AA+y | AA+y.

To show this, we note that the noise εεε can be decomposed as the sum of two independent

components – one that lives in ran(A) (the range of A) and another that lives in ran(A)⊥

: εεε = εεεran + εεε⊥. Assuming this structure, the observed data is y = Ax+ εεε⊥ + εεεran. Since

AA+ is the orthogonal projector onto ran(A) then whenever AA+ interacts with y it will

make the contribution from εεε⊥ vanish:

x ⊥⊥ y −AA+y | AA+y

= x ⊥⊥ (Ax+ εεε⊥ + εεεran)−AA+(Ax+ εεε⊥ + εεεran) | AA+(Ax+ εεε⊥ + εεεran)

= x ⊥⊥ Ax+ εεε⊥ + εεεran −AA+Ax−AA+εεε⊥ −AA+εεεran | AA+Ax+AA+εεε⊥ +AA+εεεran

= x ⊥⊥ Ax+ εεε⊥ + εεεran −AA+Ax− εεεran | AA+Ax+ εεεran

= x ⊥⊥ Ax+ εεε⊥ + εεεran −Ax− εεεran | Ax+ εεεran

= x ⊥⊥ εεε⊥ | Ax+ εεεran. (2.5)

By the d-separation criterion [65], Equation 2.5 is true because εεε⊥ is independent of all

other elements, including εεεran as per the assumption. Thus we prove that for linear prob-

lems with Gaussian additive noise p(x | A∗y) = p(x | y) meaning adjoint preprocessing

does not change the posterior inference.

Corruption noise is often approximated as Gaussian additive in medical modalities in-

cluding our applications in photoacoustic imaging and CT [66]. Our proof does not cover

non-Gaussian noise, multiplicative noise or noise correlated with A or x. We leave those

for future work.

2.4 Results

We show three main results. First, that adjoint preprocessing accelerates the convergence

of a conditional normalizing flow training to sample from the posterior distribution. Sec-
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ondly, we demonstrate that the adjoint operator enables amortization over varying imaging

configurations while using the same underling neural network. Finally, we validate the

learned UQ by demonstrating posterior consistency through three tests.

2.4.1 Adjoint Accelerates Convergence:

We design a photoacoustic simulation and CNF architecture to compare two scenarios,

namely learning pθ(x | y) by training on pairs D = {(x(n),y(n))}Nn=1 or adjoint prepro-

cessed learning of pθ(x | A∗y) with D∗ = {(x(n),A∗y(n))}Nn=1. As noted in our moti-

vations, creating a CNF fθ that can accept raw data y as an input is a laborious task but

we do this for one imaging configuration to provide a fair comparison. This task involves

manually defining downsampling layers in the CNF that bring y to the appropriate dimen-

sionality. Then we can proceed to train two CNF’s where both underlying networks have

the same architectures (with addition of the downsampling layer) and are trained using the

same hyperparameters.

(a) (b)

Figure 2.1: Convergence plots. (a) Posterior learning objective for data without (dashed)
and with preprocessing with the adjoint A∗. The adjoint accelerates convergence. (b)
MSE of the conditional mean yielding improved Bayesian inference with less training time
(juxtapose solid and dashed line for raw and preprocessed data).

Figure Figure 2.3 shows that for equivalent base architectures and training, learning

pθ(x|A∗y) is accelerated compared to learning pθ(x|y). We also plot the mean squared

error (MSE) between the calculated conditional mean xcm and the ground truth xgt. While

MSE is not the training objective, it is still an important proxy since the conditional mean
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of the true posterior is the one that gives the lowest expected error [67, 68]. Here and

throughout, the conditional mean xcm and the variance (our UQ) is estimated using an av-

erage of 64 generated samples from the posterior. The training logs in Figure Figure 2.3

are averages of an unseen validation set Nval=192 created by a 10% split from the training

dataset of N=2048 pairs.

We emphasize that our posterior sampling after training is fast. After applying the

adjoint, the CNF is conditioned on A∗y then the user generates the desired quantity of

posterior samples (10 millisec/sample on our GPU). The time to create a point estimate

with the conditional mean xcm (around 2 seconds with 64 posterior samples) is favorable

compared to traditional least-squares approaches that require several forward and adjoint

evaluations.

In Figure Figure 2.2, we show images of results from posterior sampling on limited-

view CT after training with adjoint preprocessing. For training and testing, we used the

lodopab-ct dataset in the original resolution of 360 × 360 [69]. For CT forward and ad-

joint simulations we use [70]. Our experimental setup, follows [71] for limited-view CT

with SNR = 40dB additive Gaussian noise. It has been said that bijective methods were

not viable for a resolution of 256 × 256 [71]. We did not find this to be the case, our

conditional normalizing flow is completely bijective and the implementation from Invert-

ibleNetworks.jl [33] we did not see any out-of-memory problems training this method on

the original 360× 360 resolution.

For the baseline CT, we use the simultaneous iterative reconstruction technique (SIRT)

as described in [72, 73]. Compared to the baseline Figure Figure 2.2b, our method Figure

Figure 2.2c produces cleaner images that can deal with the substantial null-spaces due to

limited-views. Importantly, structures in the null-space are illuminated by our UQ Figure

Figure 2.2h pointing to reduced confidence in those areas.
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(a) Ground truth (b) SIRT (c) Our conditional
mean

(d) Posterior sample

(e) A∗
120y120 (f) SIRT error (g) Our error (h) Our UQ

Figure 2.2: Computer tomography 360 × 360 images with uncertainty quantification. (a)
Ground truth image; (b) Reconstructed image using SIRT baseline with 300 iterations; (c)
Our image reconstruction made by averaging 64 samples from the learned posterior; (d)
A single posterior sample from our method; (e) The adjoint data that has been brought to
image space; (f) Error made by the SIRT baseline; (g) Error made by our conditional mean;
(h) Our UQ calculated from the variance of posterior samples; Note: error plots and the
UQ plot have the same colorbar limits [0, 0.014]

2.4.2 Adjoint Generalizes Different Imaging Configurations:

Data that is preprocessed with the adjoint A∗y will always live in the space of the image.

Thus we can use a single network to learn the posterior for different imaging configura-

tions by augmenting our training dataset with examples from the desired configurations

(x(n),A∗
iy

(n)
i )}Nn=1.

Receivers in photoacoustic imaging: We generalize over four photoacoustic imaging con-

figurations consisting of data collected with 8, 16, 32, and 64 receivers. These different con-

figurations are encoded by forward and adjoint operators Ai,A
∗
i with i ∈ {8, 16, 32, 64}.

We train our CNF with N=2048 examples for each imaging configuration. Training took
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14 hours on P1000 4GB GPU.

(a) (b)

Figure 2.3: (a) Amortized training of neural networks capable of sampling from posterior
distributions for differently sized observations yi. As the number of receivers is increased,
the samples show posterior contraction, a Bayesian phenomenon [74] that says increasing
the amount of data should decrease the width of the posterior. (b) The baseline method
(TV-projected gradient descent) fails to image vertical vessels.

After training, we sample from the learned posterior for unseen test data examples, yi

for varying numbers of receivers. The results demonstrate proper posterior contraction[74].

Visually, this is confirmed in Figure Figure 2.3a since uncertainty (quantified via pointwise

variance) goes down when we increase receivers from 16 to 64. To quantitatively capture

the global variation of these UQ images, we use the sum of pointwise variances: Var Sum =

∥Var∥1 or equivalently the trace of the covariance matrix [75]. As the uncertainty reduces,

the quality of the estimates increase, thus the posterior is contracting on the ground truth.

We quantitatively verify this statement in the next section. Importantly, uncertainty is high

where we expect, namely for vessels that are close to being vertical. These vertical events

are in the null-space of the forward operator because the receivers are only located at the

top of the model.

We compare our point estimate xcm with TV-projected gradient descent (TV-PGD)

[76, 77] xtv. Timing and quality metrics averaged over a test set of 96 samples are in

Table Table 3.1. Across all receiver configurations, we show better Structural Similar Index

Measure (SSIM). Also our method, produces the image reconstruction in less time.
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Table 2.1: Photoacoustic image reconstruction timing and quality metric comparison.

Photoacoustic imaging
Timing (Seconds) Quality metric (SSIM)

Nrec = 64 Nrec = 8 Nrec = 16 Nrec = 32 Nrec = 64

TV-proj GD xtv 16.78 0.27 0.36 0.42 0.44
Our conditional mean xcm 1.72 0.62 0.74 0.80 0.81

View angles in computer tomography: To demonstrate generalization in CT, we train a

single normalizing flow to sample from the posterior of three different quantities of views

60, 90 and 120 degrees. We add 40dB Gaussian noise to measurements. The raw data

measurements y60,y90,y120 are shown in Appendix Figure ??. To train, we use 4000

images for each of the three configurations for a total of 12000 training images.

The results of the CT application show similar behaviour to the photoacoustic case.

Bayesian contraction is clearly shown in Figure Figure 2.4 since the uncertainty is reduced

as more angles are observed. Also the uncertainty is physically consistent with our under-

standing of the imaging system since higher uncertainty is placed on the view angles that

are unseen. We compare the quality of our CT generalized normalizing flow by compar-

ing with the SIRT baseline. In Table Table 2.2, we show timing results for the maximum

amount of angles and SSIM metrics for all tested angles. SSIM metrics are averages over

a test set of 50 images. Our method is faster since the SIRT needs various applications of

the forward and adjoint CT simulation while our method uses a single adjoint.

Table 2.2: Limited-view computer tomography image reconstruction timing and quality
metric comparison.

Computed tomography
Timing (Seconds) Quality metric (SSIM)

Nang = 120 Nang = 60 Nang = 90 Nang = 120

Baseline xSIRT 41.32 0.59 0.69 0.75
Our conditional mean xcm 1.21 0.78 0.84 0.88
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2.4.3 Validation of Uncertainty Quantification:

Since our problem does not have Gaussian priors, we can not analytically verify that our

converged posteriors have reached the ground truth posterior. We can use three tests on the

photoacoustic application to check that our posteriors are consistent and useful.

(i) posterior contraction by testing the CNF for different amount of data to check

whether the posterior demonstrates contraction to the ground truth when increasing the

amount of observed data. This contraction ultimately points to posterior consistency[74];

(ii) posterior calibration by checking whether our UQ correlates with regions in the

image with large errors. This important check of UQ is called calibration and is established

qualitatively by visually juxtaposing errors with UQ in Figure Figure 2.3a. For a more

quantitative test, we plot a calibration line by using σ-scaling [78, 79];

(iii) simulation-based calibration (SBC) by testing for uniformity in the rank statistic

when comparing various samples drawn from the proposed posterior with the known prior

[31, 80].

The results of these three tests are included in Figure Figure 2.5 and show our learned

posterior is consistent and approximates the true posterior. For this reason, we argue that a

practitioner is justified in using our posterior for uncertainty quantification.

2.5 Conclusions

For linear operators and Gaussian noise, we prove that adjoint preprocessing posterior is

equivalent to the original posterior p(x|A∗y) = p(x|y). Although the distributions are

ultimately the same, learning them poses different computational burdens for ML training.

We showed that the adjoint accelerates convergence of CNFs for AVI. We also demonstrate

that the adjoint allows us to train a single network to handle many different imaging con-

figurations thus saving costs associated with designing network architectures for individual
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configurations. Our amortized posterior gives physically meaningful uncertainties that we

also validate.
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(a) A∗
60y60 (b) xcm SSIM =

0.79
(c) Error MSE =
0.71

(d)
UQ Sum Var =
75

(e) A∗
90y90 (f) xcm SSIM =

0.87
(g) Error MSE =
0.25

(h)
UQ Sum Var =
38

(i) Ground truth (j) A∗
120y120 (k) xcm SSIM =

0.92
(l) Error MSE =
0.13

(m)
UQ Sum Var =
23

Figure 2.4: Generalizing computer tomography over different view angles. (a,b,c,d) The
first row shows results of our method for 60 view angles. (e,f,g,h) The second row shows
results of our method for 90 view angles. (j,k,l,m) The third row shows results of our
method for 120 view angles.
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(a) (b) (c) (d)

Figure 2.5: Validation of uncertainty quantification (a) Posterior contraction when increas-
ing the amount of data. (b) Posterior contraction towards the ground truth as measured by
MSE. (c) Our posterior calibration is close to perfect calibration showing that our UQ is
correlated with error made. (d) The uniformity of the SBC test shows that our marginalized
posterior samples recover the prior distribution.
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CHAPTER 3

AMORTIZED NORMALIZING FLOWS FOR TRANSCRANIAL ULTRASOUND

WITH UNCERTAINTY QUANTIFICATION

3.1 Summary

We present a novel approach to transcranial ultrasound computed tomography that utilizes

normalizing flows to improve the speed of imaging and provide Bayesian uncertainty quan-

tification. Our method combines physics-informed methods and data-driven methods to

accelerate the reconstruction of the final image. We make use of a physics-informed sum-

mary statistic to incorporate the known ultrasound physics with the goal of compressing

large incoming observations. This compression enables efficient training of the normaliz-

ing flow and standardizes the size of the data regardless of imaging configurations. The

combinations of these methods results in fast uncertainty-aware image reconstruction that

generalizes to a variety of transducer configurations. We evaluate our approach with in sil-

ico experiments and demonstrate that it can significantly improve the imaging speed while

quantifying uncertainty. We validate the quality of our image reconstructions by comparing

against the traditional physics-only method and also verify that our provided uncertainty is

calibrated with the error.

3.2 Introduction

Transcranial ultrasound computed tomography (TUCT) is a non-invasive, non-toxic imag-

ing technique that aims to create images of internal brain tissue by transmission and re-

ception of acoustic waves [81]. Its clinical applications range from hemorrhage detection

to tumour imaging [82]. Previous approaches to TUCT utilized time-of-flight methods

such as B-mode ultrasound [83]. These methods are limited in their imaging resolution
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for a variety of reasons, the foremost of which is due to their approximate treatment of

wave physics [84]. Following the pioneering work by [85], it was shown that modeling

all aspects of the acoustic wavefield enables high-resolution imaging of brain structures

and anomalies. Since then, many works [86, 87, 88, 89, 90] are demonstrating increasing

evidence from both in silico and controlled laboratory experiments that these full wave-

field methods are capable of producing reliable brain images bringing this novel approach

closer to clinical viability. These full wavefield methods are denoted full-waveform inver-

sion (FWI) and are adapted from sophisticated seismic imaging methods [91, 92]. On the

downside, FWI methods are computationally intensive since they require the application

of forward and gradient operators related to expensive partial differential equation (PDE)

solutions. This limits the clinical use of FWI methods towards TUCT since they can take

up 36 hours to form an image [85]. In addition, the imaging process is affected by in-

complete measurements, noise and other sources of uncertainty that can limit the accuracy

and reliability of TUCT. To alleviate these problems and facilitate the adoption of this new

imaging modality, we propose a data-driven approach to TUCT that leverages normalizing

flows to dramatically improve the speed of imaging and provide uncertainty quantification

(UQ). While deep learning has tremendous potential in accelerating computational imaging

[43], we identify the limitation that ultrasound measurements in TUCT are impractically

large and contain complex relationships that are difficult to undo without the aid of the un-

derlying physics model. We propose to solve these problems by using a physics-informed

summary function that takes the physical wave model into account. For our data recording

setup, this summary compresses the size of observations by a factor of 70× allowing the

use of GPU hardware accelerators. Figure 3.1 contains a schematic of our full proposed

framework.

35



Figure 3.1: Proposed transcranial image reconstruction framework with normalizing flows
for uncertainty quantification.

3.3 Methods

3.3.1 Ultrasound modeling

Our imaging approach, solves the inverse problem of finding acoustic properties of internal

brain tissue that match observed ultrasound data. To model the propagation of ultrasound

waves through a human skull, we use the scalar acoustic wave equation with variable den-

sity.

We express the data recording process (solving the wave equation PDE followed by a

restriction of the wavefield to the transducer locations) by the discrete nonlinear operator,

F , acting on the ith known source represented by the vector qi. This nonlinear forward

model is parameterized by the unknown acoustic impedance, discretized on a Nx×Ny grid

(with Nx = 512, Ny = 512) and represented by the vector, x ∈ RNx×Ny . For each source,

qi, data is collected at Nr receivers for Nt time steps yielding

yi = F(x)qi + εεεi, (3.1)

with y[1:Ns] = {yi}Ns
i=1 being the full observation over Ns sources. To account for errors in

the measurements, an additive noise term is included as εεε ∈ RNr×Nt . Typical 3D hardware

setups have Ns = 1024 sources and for our 2D simulation we use up to Ns = 32 sources.

This makes the full observation y[1:Ns] ∈ RNr×Nt×Ns . Figure 3.2b shows data of a single
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source experiment with the acoustic impedance shown in Figure 3.2a. In our setup, we

model Nr = 256 transducer receivers around the skull, of which Ns = 32 also act as

sources. They record for Nt = 2377 time steps. Given observed transcranial ultrasound

data, y[1:Ns], our aim is to invert for internal structures x. We solve this inverse problem

in a Bayesian framework so uncertainty due to incomplete measurements, modeling errors,

and noise, can be quantified systematically.

3.3.2 Bayesian transcranial ultrasound

Upon receiving observations y, solving a Bayesian inverse problem involves sampling the

conditional distribution of x given y [10]. This conditional distribution p(x|y) is called

the posterior distribution. This posterior gives the full set of acoustic models x that explain

the observations y. To form an image reconstruction, one can use posterior samples to

calculate high-quality point estimates such as the maximum a posteriori (MAP) and the

minimum mean squared error (MMSE) estimator, while also providing uncertainty of those

estimates. In general, the posterior distribution p(x|y) is computationally costly to sample

from. Traditional methods like Markov chain Monte Carlo (McMC) require thousands

of iterations, each of which needs to evaluate the expensive forward operator F [16, 12].

This makes these methods impractical for clinical use scenarios that require fast results

[6]. In this paper, we suggest a variational inference method [19] that accomplishes fast

posterior sampling by exploiting the distribution learning capabilities of generative models

[93]. We will explain how our method derives from amortized density estimation where an

expensive offline pre-training phase leads to fast posterior sampling at inference time for

any in-distribution observation.

3.3.3 Amortized normalizing flows for posterior distribution sampling

Our goal is to sample from the distribution p(x | y) so that we can study the variation of

different x that explain the observed data y. Normalizing flows are a deep learning tech-
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nique that have shown to be capable of learning to sample from complicated distributions

[94, 48]. This method works by learning to map samples from the target distribution to

standard white Gaussian noise using an invertible neural network fθ with learned layers

parameterized by θ. Once trained, the inverse of the network f−1

θ̂
is evaluated on realiza-

tions of standard white Gaussian noise to generate new samples from the target distribution.

Due to multi-scale transformations, normalizing flows scale favorably with dimension of

the target distribution and allow for fast sampling [95] making them a good candidate for

our high-dimensional medical image reconstruction task.

The posterior distribution p(x | y) we want to sample from is a conditional distribution

so we use conditional normalizing flows [96, 97]. These learn to sample from a distribution

conditioned on an observation y by minimizing the following objective:

θ̂ = argmin
θ

1

N

N∑
n=1

(
∥fθ(x(n);y(n))∥22 − log |detJfθ |

)
(3.2)

where Jfθ is the Jacobian of the network and {(x(n),y(n))}Nn=1 are training pairs given by

Equation 3.1 and samples x ∼ p(x) drawn from the prior. Intuitively, Equation 3.2 learns

the posterior distribution by maximizing the likelihood of the x conditioned on y under the

normalizing transformation fθ. The first term is the likelihood in Normal distribution (ℓ2

norm). Because the transformation is invertible, the change of variables formula is used to

evaluate the likelihood in Normal space by controlling for volume changes caused under the

normalizing transformation fθ as quantified by the second Jacobian term. Mathematically,

Equation 3.2 minimizes the Kullback-Leibler divergence between the learned posterior and

the true posterior [31, 56, 61]. Crucially to our application, this method learns the posterior

in an amortized fashion since it minimizes the objective over a distribution of y. After

training, the conditional normalizing flow can sample the posterior for unseen y at the

cheap cost of passing noise through the inverse network. See Figure 3.1 for a schematic of

the sampling process from noise.
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Normalizing flows, due to their architecture, have closed-form inverses (up to numerical

precision), that cost the same as forward evaluation and the term |detJfθ | can be efficiently

calculated. In general, training pairs needed to optimize Equation 3.2 are generated in

the simulation-based inference framework [98] but for our ultrasound application, y is

complicated acoustic data and is too large for GPU training thus we explore a physics-

informed method to extract important features and compress its size.

3.3.4 Physics-informed summary statistic

For our ultrasound application, we identify three difficulties of working with acoustic data

y. First, the observation for all sources y[1:Ns]
is too large (Nt × Nr × Ns ≈ 19 × 106)

to fit in a GPU for training. Second, different experimental configurations (i.e. varying

number of sources) change the size of observations meaning generalization on data space

requires sophisticated architectures [31]. Finally, imaging complicated structures directly

from acoustic data is a difficult task [99]. These considerations motivate the need of a

function h that reduces the size and “summarizes” the observation ȳ = h(y[1:Ns]
) while

preserving information it carries about x. These summaries are formally known as sum-

mary statistics [62, 31]. In the context of maximum likelihood estimation, [100] proposed

the score of the likelihood as a summary statistic. This score is defined as the gradient of

the log-likelihood L = log p(y | x) with respect to x. [100] proved that the score is asymp-

totically maximally informative of x. Inspired by this approach, we explore using the score

as a summary function for posterior sampling. We assume a Gaussian noise model leading

to the gradient being the Jacobian adjoint J⊤ on the data residual:

ȳ = h(y[1:Ns]) := ∇x0L =
Ns∑
i=1

J(x0,qi)
⊤(F(x0)qi − yi) (3.3)

where x0 is a starting point at which the gradient is calculated. Note, Equation 3.3 involves

evaluating the forward physical model F and its Jacobian adjoint J⊤. Thus this summary

is informed by the physics (domain knowledge). As a result, the summarized data ȳ lives

in the reduced Nx × Ny image space (reduction factor of about 70). According to [101],
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the informativeness of this summary statistic also implies that p(x | y) = p(x | ȳ) thus

we propose to use the same conditional distribution learning objective as Equation 3.2 but

replace the data y with the summary ȳ. One of the assumptions is that the starting point

x0 needs to be carefully chosen as it will affect how informative the summary statistic

will be. For our application, x0 is the acoustically correct model of the skull bone and

a constant acoustic model inside the skull since the soft tissues inside the skull are the

clinically relevant structures we care to image. Inclusion of the skull is needed so that the

physical operators create meaningful results that inform the posterior. In practice, acoustic

values of skull bone can be calculated from CT scans [102]. See Figure 3.2c for an example

of x0 and Figure 3.2d for the physics-informed summary ȳ it creates.

(a) x∗ (b) Data yi (c) Starting model, x0 (d) Summarized data ȳ

Figure 3.2: 2D transcranial ultrasound imaging setup.

While previous work has used the adjoint operator and pseudo-inverse to summarize

data [68, 64] to the best of our knowledge this is the first work that explores based on

theoretical arguments the use of the score of the likelihood as a summary statistic for di-

rect posterior sampling in a inverse problem with an expensive physics-based nonlinear

operator.

3.4 Experiments and Results

3.4.1 Normalizing flow training

To create training pairs, we require samples from the prior distribution p(x) of ground truth

brain acoustic impedance models. We derive ours from the FastMRI dataset [103] using
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an automatic process. For training and testing, we use 250 3D acoustic brains models each

containing 11 512 × 512 slices. Out of these, we used 90% for training, 5% for validation

and 5% for testing. We simulated the forward wave propagation F and its Jacobian adjoint

J⊤ using Devito [104, 105] and JUDI [7].

The conditional normalizing flow is implemented with InvertibleNetworks.jl [106].

Each epoch takes about 20 minutes and we trained for a total of 18 hours on a 32GB

A100 GPU.

3.4.2 Image reconstruction from posterior samples

Once trained, our conditional normalizing flow can generate samples from the posterior

with algorithm 1. The computational cost of posterior sampling is dominated by the cal-

culation of the physics-informed summary ȳ. This takes ≈ 1 second per source and 44.8

seconds in total for all 32 sources (on 4 core Intel Skylake CPU). This calculation only

needs to be done once per ultrasound experiment after which many posterior samples can

be generated each at the cheap cost of one inverse network evaluation (20ms/sample).

With these posterior samples, statistical point estimates can be calculated including the

minimum mean squared error (MMSE) estimator given by the posterior/conditional mean

xPM = Ex[ p(x | ȳ)] that serves as our image reconstruction.

Algorithm 1: Amortized posterior inference (given unseen observation y[1:Ns])
Need: starting point x0

Calculate gradient summary ȳ =
∑Ns

i=1 J(x0,qi)
⊤(F(x0)qi − yi)

Sample Npost Gaussian normal noise z ∼ N (0, I)
Pass z’s through inverse of normalizing flow f−1

θ̂
(z; ȳ) to generate posterior

samples.

For UQ, we look at the intra-sample variation between posterior samples. To visualize

UQ on the entire image reconstruction we use the posterior variance Var[ p(x | ȳ)]. The

posterior mean (and variance) is calculated by approximating their expectations with an

average over Npost = 128 posterior samples

41



xPM = Ex[ p(x | ȳ)] ≈ 1

Npost

Npost∑
i=1

xi where xi = f−1

θ̂
(zi; ȳ) and zi ∼ N (0, I).

In this work, we concentrate on the posterior mean because it is the estimator with minimal

mean squared error [50]. Figure 3.3 contains an example of the input and output of the

proposed image reconstruction algorithm including UQ.

Figure 3.3: Image reconstruction with UQ using our method including samples from the
posterior.

To assess the performance of our reconstruction, xPM, we compare with two baseline

methods, namely physics-only FWI, yielding xFWI obtained by gradient descent, and a

supervised U-Net xUNET [107] trained on the same N data pairs {(x(n), ȳ(n))}Nn=1 as our

method. Compared to the learned methods, which incur off-line training costs prior to

inference, FWI is computationally intensive since it requires ∼ 40 calls to the forward and

gradient for each source while our method only requires one gradient per source.

From Figure 3.4, we make the following observations: (i) our result contains fewer arti-

facts compared to FWI; (ii) it performs better than U-Net; (iii) it captures the full posterior

yielding pointwise variances that correlate well with error; (iv) due to averaging over pos-

terior samples our result blurs a few details as compared to FWI. For a more quantitative

comparison of the reconstruction quality, refer to Table 3.1 in which the average quality

metrics for peak signal to noise ratio (PSNR); structural similarity index metric (SSIM);

and root mean squared error (RMSE) are computed from 50 unseen test slices. Our method

shows high performance on all metrics while keeping the online inference time signifi-

cantly lower than the FWI method. For more direct comparison, we avoided measurement
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Figure 3.4: Comparison with physics-only and data-only methods of FWI and supervised
U-Net. Note that areas in our pointwise variance correlate well with areas of high error.

Table 3.1: Image reconstruction timing and quality metric comparison

Method Timing (seconds) PSNR ↑ SSIM ↑ RMSE ↓

FWI (xFWI) 2100 33.25 0.9450 0.0215
Supervised UNet (xUNET) 44.8 + 0.02 35.63 0.9332 0.0168
Our posterior mean (xPM) 44.8 + 3.23 38.67 0.9646 0.0119

noise.

3.4.3 Generalization over experimental configurations

In Figure 3.5, we show how our method generalizes over different source configurations.

Aside from handling different acquisition constraints, practitioners can also quickly proto-

type different configurations to decide which one meets their threshold of uncertainty.

Related work: The gradient we calculate for our summary statistic is connected to re-

verse time migration from seismic imaging [108]. For accessing uncertainty information

in TUCT, [90] use the mean-field Gaussian approximation. Their method uses gradient

descent with many expensive forward/gradient calls and assumes a Gaussian prior on the
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Figure 3.5: Generalization over different imaging configurations. The three FWI results
took ≈1.5 hours, but the three posterior means and UQ were calculated in ≈3 minutes. We
observe that our method shows better results than the pure-physics FWI when there is less
source coverage.

ground truth images while neglecting correlations between pixels. Our work, instead makes

no underlining assumptions on the posterior/prior distributions and requires only one set

of forward/gradient calls during inference. [31] explored learned summary statistics for

posterior inference. Here we exploit knowledge of the underlying physics by introducing

physics-informed summary statistics. Instead of including physics in learned simulations

as in physics-informed neural networks, we include the physics in the data summary, which

makes sense when dealing with inverse problems where observed data serves as input.

Future work: Normalizing flows are likelihood models so they allow for natural anomaly

detection [109]. We will explore the possibility of evaluating our method on brains with

anomalies for automatic detection of tumors or hemorrhages.

We highlight that our method assumes access to good starting points x0. In future

works, we would like to find ways to be robust against poor starting points.
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Conclusions: The application of machine-learning methods and systematic uncertainty

quantification to ultrasound imaging has been extremely challenging because of the high-

dimensionality and high computational costs associated with handling the correct wave

physics. Through the combination of conditional normalizing flows with physics-informed

summary statistics, we arrive at a formulation capable of producing high-fidelity images

with uncertainty quantification. By incurring an off-line pretraining cost, our method is

faster than traditional physics-only methods.

45



CHAPTER 4

ASPIRE: ITERATIVE AMORTIZED POSTERIOR INFERENCE FOR BAYESIAN

INVERSE PROBLEMS
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SUMMARY

Due to their uncertainty quantification, Bayesian solutions to inverse problems are the

framework of choice in applications that are risk averse. These benefits come at the cost

of computations that are in general, intractable. New advances in machine learning and

variational inference (VI) have lowered the computational barrier by learning from exam-

ples. Two VI paradigms have emerged that represent different tradeoffs: amortized and

non-amortized. Amortized VI can produce fast results but due to generalizing to many

observed datasets it produces suboptimal inference results. Non-amortized VI is slower

at inference but finds better posterior approximations since it is specialized towards a sin-

gle observed dataset. Current amortized VI techniques run into a sub-optimality wall that

can not be improved without more expressive neural networks or extra training data. We

present a solution that enables iterative improvement of amortized posteriors that uses the

same networks architectures and training data. The benefits of our method requires ex-

tra computations but these remain frugal since they are based on physics-hybrid methods

and summary statistics. Importantly, these computations remain mostly offline thus our

method maintains cheap and reusable online evaluation while bridging the approximation

gap these two paradigms. We denote our proposed method ASPIRE - Amortized posteri-

ors with Summaries that are Physics-based and Iteratively REfined. We first validate our

method on a stylized problem with a known posterior then demonstrate its practical use on

a high-dimensional and nonlinear transcranial medical imaging problem with ultrasound.

Compared with the baseline and previous methods from the literature our method stands

out as an computationally efficient and high-fidelity method for posterior inference.

4.1 Introduction

Inverse problems are fundamental across various scientific and engineering disciplines,

where the objective is to infer causative factors from observable effects. Our practical ex-
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ample involves complex medical imaging, where we infer the internal structures of the

brain from ultrasound measurements through the skull. Given the need for rapid imaging

in diagnostic medical applications [6], we seek a method that generalizes to unseen ob-

servations—referred to here as “amortized”. While current amortized methods are fast,

they often fail to resolve crucial details in high-dimensional and nonlinear problems, as

shown in Figure 4.1. In contrast, a fully non-amortized approach, tailored to individual

observations, provides high-resolution solutions but incurs prohibitive computational costs

at imaging time. The method we explore represents a middle ground, aiming to deliver fast

and also reliable solutions. The importance of such solutions in medical imaging, where

they directly influence potentially life-saving diagnostic decisions, cannot be overstated.

Figure 4.1: Our algorithm ASPIRE is a middle ground between amortized and non-
amortized variational inference with the goal of providing a generalized method for fast
yet reliable imaging.

Because non-amortized inference focuses on one single observation, its inference typi-

cally outperforms amortized inference [21]. Unfortunately, this improvement often comes

at the expense of prohibitively high computational costs at inference time, rendering non-

amortized inference impractical in situations where fast turn-around times are needed, such

as in many medical imaging fields [6]. Amortized VI methods, on the other hand, while

fast [30] at inference may suffer from the so-called amortization gap, a phenomenon that

has been studied theoretically [110] and confirmed empirically from comparisons between
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amortized and non-amortized VI [21, 50, 58]. In that sense, there is a trade-off between

runtime and quality at inference time. One either spends more on computations at inference

time, or one accepts inferior inference quality in situations where fast turn-around times are

essential. While trading quality for speed may be acceptable in some situations, it becomes

problematic in circumstances where amortized VI produces unacceptable results, e.g., in

cases where the inference problem is high dimensional and complicated by nonlinear for-

ward operators. Currently, the following remedies exist: (1) increase the expressiveness

of the parametric family used to approximate the posterior [111] or (2) add more samples

to the training set [112]. In this work, we will explore a third complementary option to

narrow the amortization gap. To this end, we propose an iterative amortized inference ap-

proach during which physics-based summary statistics are refined in tandem with neural

posterior estimators thus bootstrapping the quality of the approximated posterior. We call

this approach: ASPIRE - Amortized posteriors with Summaries that are Physics-based and

Iteratively REfined. To motivate this approach, we will first explore the implementation

of amortized posterior inference via neural density estimation, followed by physics-based

gradient summary statistics, and their iterative refinement.

4.2 Contributions and related work

1. Motivated by gradient-based, maximally informative summary statistics we intro-

duce the ASPIRE algorithm, which iteratively refines amortized posterior inference

while maintaining low online costs. ASPIRE builds on top of current amortized Bayesian

inference frameworks such as [31] that introduced the concept of the summary network,

which is optimized under the same objective as a normalizing flow. Our approach extends

this concept into what we term a “physical summary network”, where each refinement iter-

ation enhances the summary statistic effectively bootstrapping the approximation quality.

Although not iterative and for different modalities [113] demonstrated one of the first uses

of normalizing flows for medical imaging.
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2. Theoretical proof and discussion of the conditions under which the posterior

mean can improve on the current reconstruction for an illustrative linear inverse

problem. We chose to update intermediate reconstructions with the posterior mean of

the current posterior approximation as opposed to the similar work from [114], which

proposes a method for solving Bayesian inverse problems that resembles loop-unrolling

augmented with Bayesian network layers. We acknowledge their contributions and note

key differences: [114] employ Bayesian networks that model distributions on the network

weights, which can impose restrictive assumptions on the distribution families that can be

learned akin to mean-field approximations. In contrast, our use of normalizing flows aims

to directly learn the Bayesian posterior, and theoretically, as universal approximators [115,

116], offer greater flexibility.

3. Evaluation of our method’s performance on a realistic and challenging tran-

scranial medical imaging inverse problem with ultrasound, focusing on the accuracy

of the posterior mean and the effectiveness of our uncertainty in predicting recon-

struction errors.

4. Introduction of a second novel non-amortized inference method to serve as

a “gold standard” that we denote WISER. To illustrate the gains that our amortized

method ASPIRE makes towards approaching the quality of non-amortized methods, we

take as inspiration non-amortized methods from the literature [21, 117, 27] and introduce

a novel non-amortized method that represents the best possible performance we can expect

from our setting due to extra calculations of the forward physics operator and its adjoint.

5. Qualitative and quantitative comparisons of ASPIRE against a current litera-

ture baseline [90], and our “gold standard” non-amortized inference method. We have

identified a single other work in the literature that probabilistically solves the transcranial

medical imaging inverse problem [90]. Crucially, this method is not learned so we also

compare with the “gold standard” non-amortized method that is learned. To accelerate the

development of inference techniques for transcranial medical imaging [118], we introduce
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benchmarks with accompanying datasets and code.

6. Cost-benefit analysis of the computational costs associated with offline training

versus the rapid online capabilities of the amortized method. Our work also shares

similarities with DEEPGEM by [119], which utilizes Expectation Maximization to solving

inverse problems. Their process involves optimizing a non-amortized normalizing flow

to sample from a posterior based on current nuisance parameter estimates, followed by

Maximum A-Posteriori optimization. Vitally, our method is different as it is amortized,

eliminating network retraining or costly optimization at inference time. Additionally, our

method requires few online gradients (3-4), compared to the numerous ones needed by

DEEPGEM, thereby significantly reducing compute.

4.3 Method

To close the amortization gap, we describe an iterative approach to posterior inference

where learned physics-based summary statistics are refined with Conditional Normalizing

Flows (CNFs). VI with CNFs is reviewed first. Its improvement with learned physics-based

summary statistics is discussed next, including addition of the crucial refinement step.

4.3.1 Amortized variational inference with conditional normalizing flows

While our method can, in principle, be applied to any generative model (GAN, diffusion,

VAE), we focus on normalizing flows [48]. Thanks to their simple maximum-likelihood

training objective, low training memory requirements [33], and fast sampling, CNFs have

become one of the generative methods of choice when inverse problems are concerned.

CNFs learn to sample from a target distribution by learning invertible transformations from

the target distribution to the standard Normal distribution. By taking advantage of the

change of variables formula [56], CNFs can be trained with a relatively simple objective:

θ̂ = argmin
θ∈Θ

1

N

N∑
n=0

(
1

2
∥fθ(x(n);y(n))∥22 − log

∣∣ detJfθ

∣∣) ,
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where fθ is the CNF implemented as a network that takes a training pair x and y as

input, has output in the same dimension as the target unknown x, is invertible with respect

to the input x

f−1
θ (fθ(x;y);y) = x ∀θ ∈ Θ

and has a Jacobian, Jfθ , that is tractable to compute. Designing invertible archi-

tectures with these characteristics is the focus of many works in the literature [97, 96].

Please refer to [21], for a derivation of the training objective subsection 7.2.1 from the

amortized posterior objective in Equation Equation 1.3. The training pairs, collected in

D = {x(n), y(n)}Nn=0, are generated by sampling from the prior, {x(n)}Nn=0 ∼ p(x), fol-

lowed by a forward simulation. After the optimization is completed, the CNF with opti-

mized weights, θ̂, can be used to sample from the approximate posterior pθ̂(x | yobs) by

sampling Gaussian noise and passing it through the inverse network that is conditioned on

an observation yobs.

x ∼ pθ̂(x | yobs) = f−1

θ̂
(z;yobs) where z ∼ N (0, I).

Contrary to non-amortized VI, the above posterior sample generation holds for any

observation, yobs, as long as the observations remain close—i.e., the yobs are produced by

applying the forward operator to samples of the prior, x ∼ p(x). From posterior samples,

Monte Carlo estimates of the posterior statistics can be calculated. As short hand, statistic

estimates from the distribution p are:

E p := Ep(x|y) [x]
√
V p :=

√
Ep(x|y)

[(
x− Ep(x|y)

)2]
.
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For example, the posterior mean calculated from samples from the above trained ap-

proximate posterior pθ̂ is referred to as E pθ̂. However, the quality of the posterior ap-

proximation, and therefore the quality of its samples— x ∼ pθ̂(x | yobs), depends on

the complexity of the posterior that is being approximated. This in turn depends on the

complexity of prior samples and the likelihood. To account for realistic situations where

both the prior and likelihood are complicated, CNFs demand increases in the size of the

training set and the expressive power of the specific architecture used to define the CNF

fθ(·), a requirement we like to avoid. For this reason, we will introduce the concept of

summary statistics that allows us to improve the quality of the posterior approximation in

these situations.

4.3.2 Gradient-based summary statistics

While CNFs are in principle capable of capturing complex data-to-image space mappings,

amortization can be challenging to achieve in situations where the mapping is complex,

or the observed data are heterogeneous—i.e., the observed data differ in dimension. To

overcome these challenges, statisticians introduced so-called summary statistic. These of-

ten hand-derived summary statistics are designed to capture the main features in the data,

reduce and homogenize its dimensionality, while posterior distributions remain informed

[31, 120]. For posterior distributions to remain informed, we mean that the condition-

ing by the summary statistic, denoted by y, minimally changes the original conditional

distribution—i.e., we have

p(x|y) ≈ p(x|y).

When this approximate equality holds exactly, the summary statistic is known to be a

sufficient summary statistic. Since equality can not always be met, there also exists the

notion of being close to sufficient. To be more specific, a summary statistic remains maxi-
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mally informative [62] with respect to a set of summary statistics y′ ∈ Y when some dis-

tance measure between the summarized and original posterior distributions is minimized.

For a distance measure given by the KL divergence, this amounts to finding the minimum

of the following objective:

y = argmin
y′∈Y

KL ( p(x | y′) || p(x | y)) .

Alternatively, one can also measure the informativeness of a certain summary statistic

by its Fisher information [121]. The Fisher information matrix corresponds to the expected

variance of the gradient of the data log-likelihood

I(x) = E
[
(∇x log p(y | x)) (∇x log p(y | x))⊤

]
,

and says how much information y contains of x. We can relate this measure of infor-

mation to summary statistics with the information inequality

V(y) ≥ (∇xE(y))⊤I(x)(∇xE(y))

which provides a bound on how much information a summary statistic can contain

about the unknown x [122]. Note that in subsection 4.3.2 the covariance V and expectations

E are taken with respect to the unknown x.

In attempt to maximize informativeness as measured by the Fisher information, [100]

proposed the gradient of the log-likelihood ∇x log p(y | x) as a maximally informative

summary statistic. Under the mild assumption that the gradient is defined for all y in the

support of the likelihood, it can be shown that the information inequality subsection 4.3.2 is

saturated by the gradient of the log-likelihood, in other words that no other summary statis-

tic can have more Fisher information [100]. In general, this summary statistic is defined as
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the gradient of the log-likelihood calculated at a fiducial point x0

y0 = ∇x log p(y | x)
∣∣∣
x0

.

The subscript 0 is added in our notation to indicate that the summary statistic, y0,

derives from the evaluation of the gradient at the fiducial point x0. This fiducial point

represents a trusted guess of the unknown parameter. The gradient of the log-likelihood

is an attractive summary statistic because it allows for the inclusion of knowledge on the

forward operator, F , and its Jacobian, ∇F . For instance, if the noise is additive Gaussian

with covariance Cε then the summary statistic is given by the action of the adjoint of the

Jacobian, ∇F⊤[x0] on the residual y0 = ∇F⊤[x0]C
−1
ε (F(x0)− y).

To train a CNF with this gradient summary statistic, the objective of subsection 7.2.1 is

minimized on a new training set obtained by applying subsection 5.5.3 to the observations

collected in D, yielding D0 = {x(n),y
(n)
0 }Nn=0 where each summary statistic y(n)

0 is derived

from the original simulated observation y(n) and a chosen fiducial point x(n)
0 .

The quality of gradient summary statistics is contingent on two key factors, namely the

quality of the assumed likelihood and the quality of the fiducial points. The quality of the

former depends on choices for the noise distribution and the forward operator, F . When

misspecified, or poorly calibrated, these choices may affect the quality of the summary

statistic. We assume in this work that the forward problem and noise model are well speci-

fied. The second factor that determines the quality concerns choices for the fiducial points

themselves. Because the fiducial point is used to calculate the gradient then its choice cor-

relates with the information content of the resulting gradient. Thus, the choice for these

fiducial points determines the quality of the summary statistic, which in turn determines

the quality of the posterior inference itself. The quality of a fiducial point depends on if it

is close to the maximum likelihood:
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xML = argmax
x

p(y | x)

the estimator that aims to solely fit the data by maximizing the likelihood of the un-

known under the data likelihood. As shown by [100], a fiducial point that is close to the

maximum likelihood leads to a gradient-based summary statistic that is maximally infor-

mative with respect to the Fisher information. However, in the situation where the fiducial

points are not close to the maximum likelihood this property may no longer hold, render-

ing gradient-based summary statistics less informative. As in many practical situations,

we unfortunately do not always have access to high-quality fiducial points, a situation we

will remedy in the next section where data-driven learning will be combined with gradient-

based summaries.

4.3.3 Refining summary statistics

Notwithstanding the fact that gradient-based summary statistics represent a natural ap-

proach to inference problems that involve well-understood physics, the reliance on good

fiducial points—i.e., fiducial points that are close to their respective maximum likelihoods,

remains problematic and must be discussed. Instead of performing expensive, and poten-

tially local-minima prone [123], Gauss-Newton updates to bring the fiducial points closer

to the maximum likelihood points, as suggested by [124], we propose an iterative scheme

during which CNFs are trained then sampled to improved fiducial points.

The iterations, outlined in algorithm 4.3.3, proceed as follows: given the current it-

erate for the fiducial points, this would be {x(n)
j }Nn=0 at the j-th iteration, gradient-based

summary statistics {y(n)
j }Nn=0 are computed with subsection 5.5.3 and a paired dataset is

made yielding Dj = {x(n),y
(n)
j }Nn=0. Then a CNF is trained on Dj by minimizing subsec-

tion 7.2.1. This minimization produces an optimized CNF, fθ̂j
, which is used to draw mul-

tiple samples from the posterior, via subsection 5.5.2. Next, these posterior samples are av-
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Algorithm 2: ASPIRE Training
Input: Prior samples {x(n)}Nn=0, likelihood simulator p(y|x), conditional sampler
fθ, initial fiducials {x(n)

0 }Nn=0.
for n = 0 to N :

Simulate observation: y(n) = p(y|x(n))

Calculate gradient at fiducial: y(n)
0 = ∇x log p(y

(n) | x)
∣∣∣
x
(n)
0

Add pair to dataset: D0 = {y(n)
0 ,x(n)}

for j = 0 to J :
Train conditional sampler: fθ̂j = Train(fθj ,Dj)
for n = 0 to N :

Posterior mean as new fiducial: x(n)
j+1 = E

p
θ̂j
(x|y(n)

j )
[x]

Calculate gradient at new fiducial: y(n)
j+1 = ∇x log p(y

(n) | x)
∣∣∣
x
(n)
j+1

Update dataset: Dj+1 = {y(n)
j+1,x

(n)}
Output: Trained samplers fθ̂0 , fθ̂1 , . . . , fθ̂J .

eraged, {x(n)
j+1 = E

p
θ̂j
(x|y(n)

j )
[x]}Nn=0, for each gradient-based summary statistic, separately.

This averaging, which corresponds to approximating the posterior mean for each summary

{y(n)
j }Nn=0, produces the next, and arguably improved set of fiducial points, {x(n)

j+1}Nn=0.

These new fiducial points are used to create a new set of gradient-based summary statistics

that can be used to train the next CNF and the process is repeated J times. As long as the

new set of fiducials points moves closer to the respective maximum likelihood points, the

quality of the gradient-based summary statistic can be expected to improve [100]. These

improvements in turn produce better posterior inferences by the CNFs. The above iterative

scheme hinges on the assumption that the fiducial points refined by the posterior mean in-

deed improve—i.e., they are closer to the maximum likelihood points. To motivate why we

expect the approximated posterior mean to represent a better fiducial point, we show that

the true posterior mean would indeed be a better fiducial point in a linear inverse problem.

Theorem 1. For a linear inverse problem with forward operator A ∈ Rm×n, an unknown

x with Gaussian prior N (µx,Cx), and additive Gaussian noise N (0,Cε), if the ℓ2 norm

between the current fiducial x0 and the maximum likelihood estimate ∥x0 − xML∥2 is at
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least

K · ∥µx − xML∥2 ≤ ∥x0 − xML∥2,

where K =
∥∥∥(C−1

x +A⊤C−1
ε A

)−1
∥∥∥
2
·
∥∥C−1

x

∥∥
2
,

then forming the posterior with the gradient-based summary p(x | y0) and using the pos-

terior mean x1 = Ep(x|y0)[x] as the next fiducial will yield an estimate with a smaller ℓ2

norm distance to the maximum likelihood estimate

∥x1 − xML∥2 ≤ ∥x0 − xML∥2.

We outline a proof of Theorem 1 in section .1, where we derive the closed-form expres-

sion for the summarized posterior and compare its mean with the closed-form expression

for the maximum likelihood. Note that the constant K depends on the covariance of both

the posterior and the prior, highlighting the conditions under which it is appropriate to use

the posterior mean as the next fiducial point. Specifically, the matrix norm of the posterior

covariance should not be too large relative to that of the prior covariance; otherwise, the

posterior mean is not a suitable candidate for the next fiducial point. Assuming that the

CNFs used in ASPIRE are properly trained and accurately approximate the posterior, The-

orem 1 demonstrates the desired behavior of improving the starting fiducial by using the

posterior mean. To support the feasibility of accurate posterior approximation, we refer to

the work of [115, 116], which proves the universality of normalizing flows for approximat-

ing conditional distributions. A detailed discussion on the theoretical behavior of ASPIRE

for nonlinear operators is beyond the scope of this paper, but our numerical results confirm

its empirical performance on both linear and nonlinear inverse problems.

As motivated by Theorem 1, initial (potentially poor) summary statistics computed for

the fiducials points, {x(n)
0 }Nn=0, can be improved by training a CNF to generate new fidu-

cial points, {x(n)
1 }Nn=0. Since these new fiducial points are closer to their corresponding
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maximum likelihood then the new summary statistics will be more informative, improv-

ing inference during the next iteration where the CNF is trained on improved summary

statistics.

After training is completed, we obtain J + 1 trained CNFs, each with their own

set of optimized weights, {θ̂j}Jj=0. Because these networks are trained on the datasets

Dj = {(x(n)
j , y

(n)
j )}Nn=0 for j = 0 · · · J , these networks have been generalized to perform

J refinements, given a new unseen observation, yobs. Pseudocode for the online inference

phase is included in algorithm 4.3.3. Note that each refinement incurs the cost of a gradi-

ent calculation. In practice, J = 3 to 4 refinements are often adequate resulting in a total

online computational cost that is significantly lower than non-amortized inference, which

can result in 10000’s of gradients [53].

Algorithm 3: ASPIRE Inference
Input: Field observation yobs, trained conditional samplers fθ̂j , and initial fiducial
x0

for j = 0 to J − 1:
yj = ∇x log p(y

obs | x)
∣∣∣
xj

xj+1 = Epθ̂j
(x|yj)[x]

yJ = ∇x log p(y
obs | x)

∣∣∣
xJ

Output: pθ̂J (x | yJ), Posterior sampler for observation

In summary, by pairing the theory of [100] with Theorem 1, we arrived at a formulation

where the refined fiducial points yield improved summary statistics and refine amortized

VI at limited additional online computational costs. To verify this claim, we will first

evaluate our method on a stylized example for which the analytical posterior is known.

This example will show that the improvements thanks to refined summary statistics indeed

converge to the correct posterior distribution. To demonstrate our amortized VI in a more

practical setting, we will also evaluate its performance on a realistic ultrasound transcranial

medical imaging problem.

59



4.3.4 Stylized example

To build trust in our method, we first demonstrate it improves the quality of the posterior

approximation by testing on an inverse problem with a known posterior distribution. One

such inverse problem is the linear Gaussian inverse problem where: the forward operator A

is a known matrix Rm×n, the prior and noise comes from Gaussian distributions with known

means and covariances. We chose the unknown parameter vector to have size n = 16 and

the data as size m = 80. Given these settings, it is possible to calculate samples from

the analytical posterior distribution [13]. We use samples from the analytical posterior

distribution to compare against our posterior sampling results with ASPIRE.

We train our method using N = 1000 samples from the Gaussian prior and use the

forward operator to form training pairs. Since the forward operator is linear, the gradient-

based summary statistic is calculated from the transposed operator. After training, we

evaluate our method on an unseen observation, yobs, simulated from a known ground-truth

parameter x∗. We first observe that after each ASPIRE iteration the posterior mean E pθ̂j

(using short hand described in subsection 4.3.1) becomes a better reconstruction of the

ground truth x∗ as seen in Figure 4.2.

Figure 4.2: The quality of the proposed amortized posterior approximation improves at
each iteration as measured by the estimated posterior mean with respect to the analytically
known ground truth posterior mean.
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Furthermore, Figure 4.3 shows the empirical covariance derived from our method’s

posterior samples, compared to the analytically calculated covariance matrix. It is clear

that each iteration improves the approximation of the estimated covariance and it is al-

most exactly correct at the third iteration, J = 3. While this stylized example confirms

that amortized inference with ASPIRE is feasible, the real challenge is to apply this con-

cept to medical ultrasound where problems are high dimensional and forward modeling is

computationally expensive to evaluate.

Figure 4.3: Comparison of full covariance matrix from our method as compared to the ana-
lytical ground truth posterior covariance. After three iterations of our method, the estimated
posterior covariance is close to the ground truth covariance.

4.4 Medical wave-based imaging

Transcranial Ultrasound Computed Tomography (TUCT) is a non-ionizing, non-radiative

imaging modality that creates images of brain tissue from measurements of impinging

ultrasound waves due to contrast in tissue acoustic properties. Unlike other ultrasound

imaging targets, like breast imaging [125, 126], TUCT faces the challenge of high acous-

tic contrast in the cranial bone, leading to scattering unsuitable for traditional traveltime

tomography methods [84]. Tomographic methods require high frequencies for higher res-

olution imaging, but attenuation through the skull is exacerbated at higher frequencies thus

preventing high-resolution imaging when relying on traveltime methods. This challenge

has hindered ultrasound’s application to brain imaging until recent developments when

[85] identified that similar challenges exist in transcranial ultrasound imaging as with sub-
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salt imaging used by exploration seismology. The main reason seismic techniques are

capable of imaging through high-acoustic contrast salt is because these sophisticated inver-

sion methods model the full physics of the wave equation to make sense of the scattered

waves. Whereas traditional ultrasound only uses arrival times, seismic imaging techniques

model all waveforms allowing for higher effective resolutions at lower frequencies that

experience less attenuation through the skull. These methods are denoted Full-Waveform

Inversion (FWI) since they model and match the full observed waveform, see Figure 4.4c

for an example of the full waveform.

4.4.1 Medical ultrasound with full-waveform inversion

Since the groundbreaking work of [85], FWI techniques for TUCT are showing promise as

a high-resolution imaging modality with potential clinical applications ranging from early

hemorrhage diagnosis to tumor imaging [127, 128]. The TUCT inverse problem involves

reconstruction of the acoustic velocity, x, of brain tissue from acoustic data, y, collected

as shown in Figure 4.4a. In this setup, ultrasound transducers placed around the patient’s

head perform multiple experiments, with each involving a tone-burst transmission by one

transducer and recording by all others, as simulated in Figure 4.4c. Experiments proceed

by transducers transmitting from different positions until all transducers have transmitted,

providing a full coverage from many angles. The forward operator F that maps the acoustic

parameters to the observed data is simulated with the numerical solution of the second-

order wave equation with varying acoustic velocity in two space dimensions:

1

c(x, y)2
∂2

∂t2
u(x, y, t)−∇2u(x, y, t) = qs(x, y, t).

where the acoustic velocity c(x, y) is parameterized by a gridded array of values in

the unknown vector x and the transducers are modeled by Ns different source terms

{qs(x, y, t)}s=Ns
s=0 . Although the forward operator F is technically defined for each source
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as F(x; qs), for simplicity, we denote it as F(x), representing the collection of PDE solu-

tions for all transducer sources that contribute to all the observations collected in y and the

restriction of the solution wavefields to receiver positions. Given the set of observations,

traditional FWI workflows setup the variational problem

minimize
x

∥F(x)− y∥22

and minimize this data-misfit objective with stochastic gradient descent by using ran-

domized subsets of the sources to calculate the gradient of each descent step beginning from

the starting parameter vector, x0. This, of course, assumes access to an efficient routine for

calculating the gradient of F , which we will discuss further in subsubsection 4.4.2. Under

controlled assumptions, such as a good starting parameter x0 and calibrated transducers

[129], FWI is known to produce high-resolution images [130, 85]. However, clinical adop-

tion of FWI is hampered by the prohibitively long runtime of full physics modeling and

the parasitic local minima related to the non-convex optimization [87]. Previous literature

has explored the regularization of the FWI optimization with handcrafted priors such as the

Total-Variation norm [131, 132] and model extensions [133, 123]. Our approach, ASPIRE,

addresses these issues by reducing physics computations, giving data-driven regulariza-

tion of the non-convex optimization, and providing uncertainty-aware solutions crucial for

clinical applications by sampling the Bayesian posterior.

4.4.2 Transcranial Ultrasound Computed Tomography with ASPIRE

To abridge, we will use ASPIRE to solve TUCT by generating samples from a realistic

brain velocity prior x ∼ p(x), use a wave PDE solver F to simulate acoustic data y and

use the gradient of the simulator at a fiducial point x0 as the gradient-based summary

statistic for training a CNF with subsection 7.2.1. Our test results demonstrate that iterative

refinement of this summary statistic through ASPIRE significantly enhances the accuracy

of the posterior approximations. Now, we detail how each of these experiments and tests
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(a) 3D setup. (b) Acoustic velocity x. (c) Observation y.

Figure 4.4: Experimental setup: (a) Transcranial ultrasound 3D setup as used in field,
blue dots indicate transducers. (b) Transcranial ultrasound 2D synthetic experimental setup
used in this work. (c) Simulated waveform from a single source synthetic experiment y.
Each column corresponds to acoustic-pressure amplitudes measured at one transducer for
a single experiment.

are implemented.

Brain prior samples

The first step of implementing ASPIRE concerns obtaining samples from a realistic prior

for the target parameter vector x ∼ p(x), in this case, gridded velocity parameters of

human brains and skulls. The parameters collected in the MIDA dataset [134] correspond

to a single 3D volume for the acoustic velocity collected from a single subject and will

unfortunately not be appropriate to train a neural model that will generalize to other human

patients. As far as we know, there is no dataset that includes acoustic velocity collected

from many patients, so we made our own dataset based off the multi-subject FASTMRI

dataset [103]. This custom dataset, detailed in Appendix section .2, comprises N=1000

diverse acoustic velocity parameters collected from different human patients, {x(n)}1000n=0 .

This size of datasets facilitates generalization of the amortized posterior sampler across

different datasets collected from unseen patients. The dataset is accessible via the GitHub

ASPIRE.jl.
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Wave simulations

Our synthetic TUCT experiment, based on the configuration from [85], models the un-

known parameter as discretized acoustic velocity on a 512 × 512 grid, with a 0.5 [mm]

discretization. We modeled transducer sources as point sources with a three-cycle tone-

burst signature with central frequency of 400Khz and 240 [microseconds] recording time.

The transducers are placed in a circular arrangement around the skull, the setup, with 16

sources and 256 receivers, mimics a 2D slice of the 3D experiment shown in Figure 4.4b.

The forward operator, F(x), corresponds simulating the forward waveforms and their re-

striction to the receiver locations. The wave equation and its Jacobian were solved using

the open-source software packages Devito and JUDI [105, 104, 7], which automatically

generate optimized C code and leverage GPU accelerators, thereby facilitating scalability

to realistic problem sizes. To simulate noise corruption, we used additive Gaussian noise,

ε, with a 35dB Signal-Noise-Ratio, matching lab values [85]. A synthetic observation,

y = F(x) + ε, is displayed in Figure 4.4c.

TUCT summary statistic:

The gradient-based summary statistic y, is calculated as in subsection 5.5.3, which requires

the action of the Jacobian adjoint on the data residual at the fiducial point, x0. For com-

putational efficiency, the adjoint-state method [135, 91] is used wherein only two PDE

solves are required to calculate the gradient. To avoid the inverse crime (refers to using the

same model to generate observed data and to invert it, which can lead to overly optimistic

results), the observed data is simulated with finer time discretization and a higher-order

spatial finite-difference stencil than those used in the residual calculation and adjoint sim-

ulation. Each transducer defines a source term in subsection 4.4.1, so we sum the gradient

over all 16 sources into the final summary statistic.
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4.4.3 Traditional amortized inference

To illustrate the limitations of amortized VI, we train a CNF on pairs {(x(n),y(n))}Nn=0

without evoking iterative improvements by ASPIRE. We emphasize that the observations

y are the raw unsummarized waveforms similar to that shown in Figure 4.4c. After training

by minimizing subsection 7.2.1, the CNF with weights θ̂, provides an amortized approxi-

mation of the posterior, pθ̂ ≈ p(x | y), from which we can sample (cf. subsection 5.5.2).

The results, shown in Figure 4.5, demonstrate that the samples from pθ̂, for an unseen test

observation, yobs, lack distinct features beyond an unrealistic skull and unresolved internal

tissue structure. A comparison of these samples and the posterior mean, E pθ̂, in Figure 4.5c

with the ground truth, Figure 4.5d, highlights the poor quality of this approximation. Note,

throughout this exposition we calculate the posterior statistics (i.e. mean and standard de-

viation) over 512 samples. This experiment underscores the challenge of directly learning

the probabilistic inverse mapping from the acoustic data y to the velocity parameters, a

difficulty previously noted in the literature [39, 136]. We address this problem with the

gradient-based summary statistic employed by ASPIRE.

(a) x ∼ p
θ̂

(b) x ∼ p
θ̂

(c) E p
θ̂

(d) Ground truth

Figure 4.5: Baseline amortized inference. (a),(b) Posterior samples. (c) Posterior mean. (d)
Ground-truth velocity parameters paired to test observation yobs = F(x∗)+ε. The samples
have poor quality since it is difficult to learn the direct mapping from acoustic waveforms
to the unknown parameter.
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4.4.4 Amortized inference with gradient-based summary statistics

To overcome the end-to-end inference problem, we apply one iteration of ASPIRE by train-

ing a CNF on pairs, D0 = {x(n),y
(n)
0 }Nn=0, where the y

(n)
0 ’s represent the gradient-based

summary statistics at the fiducial points, x(n)
0 , taken to be the uniform water velocity for

all samples. An example of this initial summary statistic is shown in Figure 4.8a. While

the outer edge of the skull is reasonably well delineated, the inner edge of the skull is still

poorly resolved and details inside the skull are mostly absent. However, the inference based

on these initial summary statistics, shown in Figure 4.6c, present a significant improvement

over the baseline (cf. Figure 4.5c), despite the presence of strong imaging artifacts in the

summary statistics. The improvements concern the skull’s structure in particular, although

details within the skull remain elusive due to the summary statistic’s limited information.

To enhance fidelity further, ASPIRE 2 (shorthand for ASPIRE at iteration J = 2) is applied

by recalculating the gradient at the new posterior mean estimate for each training sample.

Given these new training pairs, the next CNF is trained. While posterior sampling is effi-

cient with CNFs (using subsection 5.5.2), recalculation of the gradient for each sample is

computationally intensive, a topic we address in subsection 4.6.6.

(a) x ∼ p
θ̂1

(b) x ∼ p
θ̂1

(c) ASPIRE 1 E p
θ̂1

(d) Ground truth

Figure 4.6: The first iteration of our method learns the mapping from the summarized data
y to unknown parameter x. (a),(b) Posterior samples. (c) Posterior mean. (d) Ground-truth
velocity parameters. Our method has learned to reconstruct a reasonable estimate of the
skull outline by making use of the summary statistic.
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4.4.5 Amortized inference with iterative refinements

After the refinements of ASPIRE 2, significant improvements are evident in the posterior

samples, particularly in capturing the structures within the brain tissue itself. The mean

of these posterior samples, displayed in Figure 4.7c, is clearly enhanced in resolution and

details. We attribute these enhancements to the increased informativeness of the summary

statistic in the second iteration compared to the information yielded by the initial iteration.

A detailed inspection of the second summary statistic (shown in Figure 4.8b) reveals more

detail on the internal brain structures. Unlike the first summary statistic (cf. Figure 4.8a),

which primarily delineated the skull, the second iteration’s summary statistic better ’illumi-

nates’ the softer tissues within the brain, offering a more informative image for the posterior

network. Thanks to accounting for the scattering at the skull, the acoustic illumination of

the brain is improved significantly. Accurately resolving the skull structure is an important

consideration as noted by [137].

(a) No summary (b) ASPIRE 1 (c) ASPIRE 2 (d) ASPIRE 4 (e) Ground truth

Figure 4.7: The posterior approximation improves as measured by the posterior mean qual-
ity. (a) Posterior mean without use of any summary statistics. (b) Posterior mean from
ASPIRE 1 where the observation is preprocessed with the gradient as summary statistic.
(c) Posterior mean from ASPIRE 2 where the summary statistic has been refined using the
posterior mean from the first iteration. (d) Posterior mean from ASPIRE 4. (e) Ground-
truth.
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(a) Initial summary statistic y0 (b) Refined summary statistic y1

Figure 4.8: Gradient-based summary statistics. (a) First summary statistic calculated at the
x0 fiducial consisting of constant water velocity. (b) Second summary statistic calculated at
the fiducial point, x1, derived from the first CNF posterior mean. Thanks to the improved
fiducial point, we can ”illuminate” the inside of the skull.

As one can observe from Figure 4.7, the reconstruction quality improves for increasing

number of refinements of ASPIRE. By virtue of the iterative recalculation of the gradient-

based summary statistic, the method is progressively able to discern finer details within the

brain albeit the updates become less pronounced as the number of refinements increases.

Practically, a user of ASPIRE can decide on the number of refinements based on the amount

of compute available or by refining until there are diminished returns on enhancements.

4.4.6 Reconstruction quality

To quantitatively assess enhancements of each ASPIRE iteration, we compare the posterior

means with their corresponding ground truths, using a test set comprising 50 unseen obser-

vations. By calculating the Root Mean Squared Error (RMSE) for these comparisons, we

establish a metric to quantify the improvements across iterations. At each iteration we plot

the RMSE for all examples in the test set and plot a box plot. We emphasize that testing on

this many samples was only tractable since the posterior sampler is amortized. The trend,

as showcased in Figure 4.9, confirms that on average each iteration reduces the RMSE,

indicating an increasingly precise approximation of the true posterior means. We hypoth-
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esize that we are observing the effect known as Bayesian contraction [74], a phenomena

in which increasing the amount of observations contracts the posterior towards the ground

truth, since each summary statistic is extracting more information from the observations.

Figure 4.9: Image quality metric measured over a 50-sample leave-out test set. The quality
of the posterior mean improves after each ASPIRE refinement.

While the reconstructions in Figure 4.7 clearly improve as the number refinements in-

creases, certain areas remain smooth, especially near the top and lower-right corner. This

smoothing effect of the posterior mean is well-known and arises from relative strong vari-

ations among the samples in certain areas. Variations between samples are a reflection of

inconsistent reconstructions by the posterior samples and correspond to areas of increased

uncertainty. This phenomenon is a direct result of treating ultrasound medical imaging as

an inference problem that produces posterior distributions instead of a single answer.

4.5 Uncertainty quantification

Due to the risk of hallucinations, generative AI for imaging inverse problems benefits from

uncertainty awareness. Furthermore, an uncertainty-aware approach becomes crucial in

medical applications, as underscored by [138]. Fortunately, Bayesian posterior sampling

provides a natural sense of uncertainty, reflected in the spread of the samples. ASPIRE is

designed with amortized posterior sampling in mind to quickly deliver crucial uncertainty

quantification. By providing both the mean and a uncertainty information, our method
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offers a dual perspective, namely a robust reconstruction of the tissues, complemented

by an insight into the statistical variations of each pixel’s value. This dual analysis is

particularly valuable in medical diagnostics, where understanding both the image and the

associated uncertainty is crucial for decision making.

4.5.1 Amortized uncertainty quantification

To visualize uncertainty, we calculate uncertainty images by taking the pixel-wise standard

deviations
√
V as defined in subsection 4.3.1 with 512 posterior samples. Figure 4.10 shows

uncertainty images for four iterations of ASPIRE alongside the error of the posterior mean

from the ground truth. From these figures, we make the following qualitative observations:

(1) uncertainty images increase in resolution with each ASPIRE refinement (2) refinements

increase correlations between the uncertainty and the error. Specifically, the errors concen-

trate near the top and lower-right of the internal brain tissue. The reason being that high

acoustic contrast in these areas is creating multiple reverberations of the wavefield inside

the brain impeding accurate imaging, importantly these are areas that are highlighted by

the uncertainty. Correlations between the uncertainty and the error constitute important

empirical evidence of the trustworthiness of the uncertainty. To more rigorously quan-

tify this correlation, and quantitatively validate the uncertainty quantification, we study the

calibration of our uncertainty in the following section.
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(a) Posterior standard deviations
√
V p

θ̂j

(b) Error |x∗ − E p
θ̂j
|

Figure 4.10: Posterior standard deviation compared to predictive error. (a) Posterior stan-
dard deviations of ASPIRE with increasing iterations 1 through 4 from left to right. (b)
Same but with error of the posterior mean. Each ASPIRE refinement uncovers higher
resolution details; furthermore, the apparent correlation between the uncertainty and error
increases. All plots are shown on the same colorbar from 0 [m/s] to 50 [m/s].

4.5.2 Calibration of the uncertainty

To assess the calibration of our method’s uncertainty quantification against errors, we em-

ploy the calibration test described by [79, 78]. This test involves comparisons between er-

rors — defined by the Euclidean distance between the posterior mean estimates, x̂ = E pθ̂,

derived from samples of the posterior conditioned on the observations, y, and the ground-

truth parameters, x∗ — and the inferred uncertainty in terms of the square-root of the

posterior variance, σ̂ =
√
Vpθ̂. Given predictions, x̂, derived from observations, y, and a

measure of uncertainty, σ̂, the calibration test seeks to verify the relationship:

Ex∗,y

[
∥x∗ − x̂∥22 | σ̂ = σ

]
= σ {∀σ ∈ R | σ ≥ 0}.

This expression implies that uncertainty is properly calibrated when the uncertainty is
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proportional to the error. For instance, if a set of gridpoints has an uncertainty of 10[m/s],

their expected error should be 10[m/s]. The calibration benchmark follows as such, first

the set of uncertainty values for each pixel in σ̂ =
√
Vpθ̂ is categorized into K bins of

equal width, the uncertainty at each bin Bk is calculated as:

UQ(Bk) :=
1

|Bk|
∑
i∈Bk

σ̂i

the average error (with x̂ = E pθ̂) is also calculated at the same bins:

Error(Bk) :=
1

|Bk|
∑
i∈Bk

(x∗
i − x̂i)

2.

The uncertainty UQ(Bk) and error Error(Bk) at each bin is then plotted against each

other. If there is a high correlation between these values we expect the plot to match the

45◦-degree angle. For details on this test see [78].

Figure 4.11: Calibration plot of four refinements from ASPIRE. The quality of uncertainty
quantification of ASPIRE improves as measured by the calibration with respect to the error.

The resulting calibration curve from ASPIRE 4, included in Figure 4.11, exhibits the

expected behavior by closely following the expected line. This means that our method is
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well calibrated for error magnitudes up to 30[m/s]. More importantly, each iterative refine-

ment of ASPIRE improves the calibration. To quantify these improvements, we calculate

the Uncertainty Calibration Error (UCE), which represents the average absolute difference

between the predicted error and actual uncertainty across all bins. A lower UCE indicates

a more precise calibration, and according to our experiment, ASPIRE manages to reduce

the UCE by a factor of three from a value of 1.61 to 0.49. This significant improvement

underscores the ability of our iterative refinement approach to produce reliable uncertainty

estimates in complex imaging scenarios. By confirming the calibration of our uncertainty,

we build trust in our method to properly inform downstream tasks that require access to the

Bayesian posterior.

4.6 Discussion

Our main goal is to convince the reader of ASPIRE’s ability to close the amortization

gap with iterative refinements. We were able to show that significant improvements were

achieved compared to the baseline (e.g. juxtapose Figure 4.7b and Figure 4.7d). To fur-

ther substantiate our claims, we place our amortized method’s performance in a broader

context that includes comparisons to non-amortized inference. These comparisons illus-

trate our strides towards narrowing the gap between these two paradigms. Although a wide

range of non-amortized VI techniques are available, our application in medical ultrasound

presents unique requirements and challenges — absence of an analytical prior and the need

for short time-to-solution challenged by the computational intensity of the forward/adjoint

operators – limit our options for comparison. For this reason, we selected two methods: the

mean-field approximation and a non-amortized normalizing flow. Through this compara-

tive analysis, we aim to highlight our method as an efficient alternative to scenarios where

non-amortized methods may be impeded by computational demands.
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4.6.1 Mean-field approximation

Perhaps, the method with the most comparable aims in the current literature for uncertainty

quantification in TUCT is the recent work by [90]. This approach employs a mean-field ap-

proximation of the posterior, and assumes the posterior covariance matrix to be diagonal for

computational reasons. While understandable from a computational perspective, the estab-

lished FWI literature cautions against this assumption because of the non-diagonal nature

of the wave-equation Hessian [91], which introduces correlations in the errors. Our method

does not make statistical assumptions on the prior or likelihood and is designed to capture

the complete statistics of the posterior distribution, including long-range correlations in the

covariance as evidenced in Figure 4.3.

Given a single set of observations, yobs the mean-field algorithm by [90] directly out-

puts estimates for the posterior mean, µm, and point-wise posterior standard deviation,

σm. This approach hinges on a relative simple modification of traditional FWI — it multi-

plies updates of gradient-descent with a Gaussian field. Because the computational cost of

the mean-field approximation roughly correspond to that of traditional FWI that includes

100s of forward and adjoint calls, we argue that our method offers a distinct computational

advantage at inference time. —i.e., ASPIRE achieves online inference at approximately

1/100th the online computational cost of the mean-field approximation. For a detailed dis-

cussion on computational costs, please refer to subsection 4.6.6.

4.6.2 Non-amortized inference with normalizing flows: WISER

We also compare with a non-amortized method deriving from the same prior knowledge

in the form of training samples. Given the problem size and expensive to evaluate wave-

physics based forward operators and gradients, these comparisons are made with respect

to a novel computationally efficient inference method inspired by recent work of [21, 117].

Instead of starting from scratch with a non-informative prior [27], which proves to be com-

putationally prohibitively expensive, the proposed approach optimizes network weights, ϕ,
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of a non-amortized normalizing flow (NF), gϕ(·) that acts in the latent space of a pre-trained

amortized CNF, fθ̂(·). Given a single set of observations, yobs, the objective reads:

min
ϕ

KL
(
p (hϕ(z)) ∥ p(z | yobs)

)
= Ez∼N (0,I)

[
1

2σ2

∥∥∥F ◦ f−1

θ̂

(
gϕ(z);y

obs
)
− yobs

∥∥∥2

2

+
1

2
∥gϕ(z)∥22 − log

∣∣detJgϕ(z)
∣∣] .

(4.1)

The fθ̂(·) denotes the pre-trained CNF, optimized as per subsection 7.2.1 and
∣∣detJgϕ

∣∣
is the determinant of the second network’s Jacobian. By minimizing this objective, the

network gϕ(·) is trained to generate latent codes that further minimize residuals in data-

misfit objective, which involves the nonlinear forward operator, and a ℓ2-norm penalty

term, which ensures that the network output stays close to Gaussian distributed, therefore

respecting the prior defined by the pre-trained network fθ̂(·). To avoid having to calculate

the forward map and its gradient at each iteration, we follow [139] and replace the strong

constraint in Equation 4.1 by a weak constraint that allows for an outer-inner-loop opti-

mization algorithm. The optimization alternates between an expensive outer loop with L

iterations during which Linner ≫ L iterations of an inexpensive inner loop are performed.

The forward operator and its gradients are only calculated once during each outer loop iter-

ation while the inner loop contains several updates to the networks. Through Monte-Carlo

approximation of the above expectation, we arrive at this weak formulation by introducing

Np slack variables, x1:Np , that alongside the network weights are minimized in the follow-

ing objective:

minimize
x1:Np ,ϕ

1

Np

Np∑
n=0

[
1

2σ2

∥∥F(x(n))− yobs
∥∥2

2
+

1

2γ2

∥∥∥x(n) − f−1

θ̂

(
gϕ(z

(n));yobs
)∥∥∥2

2

+
1

2

∥∥gϕ(z(n))∥∥2

2
− log

∣∣detJhϕ
(z(n))

∣∣] (4.2)

where γ is the slack factor and if γ → 0 the strong formulation is recovered. We treat
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the result of this optimization as the “gold standard” since it produces the best results but

needs access to prior samples and to a large amount of non-amortized compute in the form

of forward and adjoint PDE solves.

To assess the efficacy of posterior inference between our amortized methods and the

non-amortized methods, we devised benchmarks inspired by the prescriptions in [118] to

accelerate the incremental development of this class of algorithms. Firstly, we evaluate

the image reconstruction quality of the point estimate generated by each method. Sec-

ondly, we conduct a qualitative review of the uncertainty images they produce. Lastly, we

quantitatively analyze their uncertainty calibration using the same calibration test outlined

in subsection 4.5.2. Due to the expensive nature of the non-amortized methods, we are

only able to compare results on a single unseen observation, but we expect these results to

generalize to other observations.

4.6.3 Benchmark I: Comparing reconstruction quality

Our first comparison evaluates the posterior means from each method against the ground

truth. For a baseline, we include the maximum a posteriori (MAP) from a traditional FWI

with total-variation regularization. From Figure 4.12, we observe that the mean-field esti-

mate contains strong artifacts in the soft tissue due to overfitting the noise as it lacks prior

knowledge. As expected, our non-amortized normalizing flow method’s posterior mean

exhibits a superior point estimate compared to our amortized approach. However, this im-

provement comes with significantly higher computational costs since this result requires

800 online evaluations of the forward operator and its adjoint when solving the optimiza-

tion in Equation (Equation 4.2), compared to only four online evaluations for amortized

ASPIRE 4. This difference in computational expense highlights the trade-off between ef-

ficiency and point-estimate quality. This example shows we can achieve results that are

close to those by the non-amortized method while using only a small fraction of the online

compute.
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(a) FWI TV (b) Mean-field (c) ASPIRE
(d) Non-
amortized (e) Ground truth

Figure 4.12: Reconstruction from benchmarked methods. (a) Traditional FWI with Total-
Variation regularization. (b) Mean-field approximation µm. (c) Our amortized ASPIRE
4 E pθ̂4

. (d) Our non-amortized gold standard E pϕ̂. (e) Ground truth x∗. As expected,
our non-amortized method shows the highest quality, while ASPIRE shows similar quality
albeit missing some details on the lower right.

4.6.4 Comparing uncertainty estimates

The posterior standard deviation of the methods tell a similar story to the posterior means.

The structure of the standard deviation from the mean-field approximation Figure 4.13a

comes mainly from the physics of the problem therefore correctly concentrates in the lower

parts of the parameters where high-contrast has created complicated wavefield reverbera-

tions, but the method has failed to warn of errors due to noise artifacts throughout the

reconstruction shown in Figure 4.13d.
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(a) Mean-field σm (b)
√
V p

θ̂4
(c)

√
V p

ϕ̂

(d) Error |x∗ − µm| (e) Error |x∗ − E p
θ̂4
| (f) Error |x∗ − E p

ϕ̂
|

Figure 4.13: Comparing uncertainty of methods. The first row shows the posterior stan-
dard deviation from: (a) Non-amortized mean-field approximation sigma value. (b) Our
amortized method. (c) Our non-amortized gold-standard method. The second row shows
the corresponding errors. All plots have the same colorbar from 0 to 50[m/s].

To perform a close inspection on the uncertainty of the VI methods, we take a single

trace through the posterior means (the diagonal trace going from the top left to the bot-

tom right). Figure 4.14 shows that the mean-field method has large errors compared to the

ground truth and that its uncertainty band does not contain the ground truth. Here we have

chosen a 2σ band around the mean. On the other hand, both ASPIRE and the non-amortized

method produce high-fidelity estimates of the ground truth. Furthermore, when our meth-

ods have high error, the uncertainty bands expand such that they contain the ground truth

with high fidelity.

79



Figure 4.14: Comparison for a single trace. (Top figure) Estimated parameters juxtaposed
with the ground truth. (Bottom figure) Same plot with zoomed vertical axis. While our
posterior estimates have relatively high error in the area with coordinates 300 to 350, the
uncertainty increases, suggesting the uncertainty is well calibrated.

4.6.5 Benchmark II: Comparing uncertainty calibration

Following the method in subsection 4.5.2, we compare the calibration curves of the three VI

methods under consideration. Since the two non-amortized methods are compute intensive,

we are only able to compute the calibration curve for a single test example Figure 4.12. This

contrasts with the more extensive evaluation carried out in Figure 4.11, which encompasses

a range of test cases thanks to the cheap online cost of our method. The calibration of the

three methods is shown in Figure 4.15. We observe that the mean-field method shows

poor calibration while our method achieves better calibration that is close to the one of the

non-amortized method. This final observation aligns with our thesis that we can achieve

approximation quality similar to an expensive non-amortized method at a fraction of the

cost making it a compelling choice in scenarios where time-to-solution is a limiting factor.
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Figure 4.15: The mean-field approximation shows poor calibration, and the gold standard
non-amortized method has the best calibration as expected. Our amortized method is close
to the gold standard while using a small fraction of the compute cost.

4.6.6 Benchmark III: Computational cost

The primary computational cost in the above methods lies in executing the physics-based

forward operator F and its gradient, especially in wave-based imaging where F requires

solving PDEs. This step is much more demanding than posterior sampling, which involves

just a single neural network pass for normalizing flows. Thus, in this section, we measure

computational costs in terms of PDE solves. For clock times, please refer to Appendix

Table 1.

Offline phase:

In amortized VI, the bulk of computational expenses occur during the offline phase. Sim-

ilar to other simulation-based inference methods, synthetic observations are generated by

evaluating the forward operator. Our method also requires the computation of the gradient

for each training sample, which equates to two more forward operators. Additionally, each

refinement requires recalculating the gradient. However, a few iterations (3-4) are generally

sufficient for satisfactory results. Although the initial training phase is resource-intensive,

the amortized model, once trained, becomes cost-effective with repeated use across various

datasets.
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Online phase:

The main cost during the online phase is also PDE solves. Each refinement iteration, re-

quiring a gradient calculation, incurs a cost of 2 PDEs subsubsection 4.4.2. Compared to

earlier Bayesian methods that required 1000 − 10000 online PDE [53], our method sig-

nificantly reduces this to less than 10 online PDEs, nearing real-time imaging. In medical

applications where timely results are crucial [6], fast online inference is essential.

Compute break-even:

Despite the high cost of the offline phase, our method becomes cost-effective after a certain

number of evaluations. The number can be estimated from Table 4.1. For instance, for

TUCT, compared to a mean-field solution requiring 600 PDEs, our method—with N =

1000 and J = 4—incurs 9000 offline and 8 online PDEs for a total of 9008 PDEs. Thus

becomes cost-effective after about 15 test cases, not accounting for improved estimates and

uncertainty.

When juxtaposed with our proposed gold-standard non-amortized method, our amor-

tized approach breaks-even more rapidly. For the non-amortized method, we use a pre-

trained ASPIRE 1 network, which requires 1000 + 2 × 1000 × 1 = 3000 offline PDEs,

followed by 2 × 1 = 2 online PDEs. The optimization of (Equation 4.2) uses L = 400

outer loop iterations leading to online 800 PDEs. The total cost is 3802 PDEs, which

means the amortized method pays itself back when used on 9008
3802

≈ 3 test cases.

Table 4.1: Costs measured by evaluations of forward operator. N is the number of training
samples, J are refinement iterations, and L are online gradient steps.

Method Offline cost Online cost

ASPIRE N + 2×N × J 2× J
Our non-amortized method N + 2×N × J 2× J + 2× L
Mean-field approximation None 2× L
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4.7 Future work

The superior posterior mean achieved by the non-amortized method compared to our so-

lution indicates that further information could be extracted from yobs through additional

refinement iterations. Although we proposed some heuristics, determining the optimal

number of refinement iterations to maximize performance remains an area of research. Our

technique is compatible with any conditional density estimator. While we have utilized

Normalizing Flows in our implementation, the framework can easily adapt to other condi-

tional density estimators such as Variational Autoencoders (VAEs) [140], GANs [141], and

diffusion models [142].

Due to out-of-plane effects of acoustic modeling, the TUCT problem is best treated in

3D. Although TUCT was demonstrated here in 2D, ASPIRE is not limited to 2D prob-

lems. Particularly, when empowered by memory-frugal normalizing flows [33] ASPIRE

can achieve full volume Bayesian inference for 3D inverse problems. For our TUCT exam-

ple, the limiting factor was the absence of a 3D training dataset but in seismic imaging (a

field that appreciates the importance of 3D modeling and inference) we used the 3D Com-

pass dataset [143] and share the results of solving 3D FWI in Figure 4.16. Setup details are

similar to the TUCT problem. A detailed study of the 3D capabilities of ASPIRE is being

prepared for future work but here we succinctly report that for a 128× 128× 128 inference

problem, offline training took 1 day on a single GPU and that the uncertainties shown in

Figure 4.16e were pleasingly correlated with structures that are known to be difficult to

image i.e. structures that are: deeper, vertical or close to the edge.
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(a) Ground truth (b) Ground truth slices

(c) Our posterior mean (d) Our posterior mean slices

(e) Our posterior deviation (f) Our posterior deviation slices

Figure 4.16: ASPIRE for 3D inverse problems. (a) Ground truth 3D render. (b) Ground
truth folded out slices. (c) Our posterior mean 3D render. (d) Posterior mean slices. (e)
Our posterior deviation 3D render. (f) Posterior deviation slices. The ASPIRE 2 shows
physically viable probabilistic estimates for a 128× 128× 128 FWI problem.

4.8 Conclusions

We introduced a method that iteratively improves on approximations to Bayesian posteriors

in the context of inverse problems. Our method brings together concepts from generative
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modeling, physics-hybrid methods, and statistics. Practically our algorithm achieves higher

performance by iteratively extracting more information from the observed data. The math-

ematical interpretation of our method is to make a gradient-based summary statistic more

informative by moving the fiducial points closer to the maximum likelihood estimates. Our

method forms an interesting middle ground between amortized VI and non-amortized VI.

Importantly, the offline training phase makes it such that the online costs are small ren-

dering our approach suitable for applications that demand fast online turn-around times.

Our experiments demonstrate improvements in estimated posteriors on a stylized example

where the posterior is known analytically. In a realistic medical transcranial ultrasound

imaging application, the online cost is many times cheaper than non-amortized methods

while demonstrating high-quality amortized inference. We believe that this approach rep-

resents a step forward in the field, offering a computationally efficient solution for Bayesian

inference in high-dimensional inverse problems with expensive to evaluate forward opera-

tors.
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CHAPTER 5

MACHINE LEARNING ENABLED VELOCITY MODEL BUILDING WITH

UNCERTAINTY QUANTIFICATION

86



SUMMARY

Accurately characterizing migration-velocity models is crucial for a wide range of geo-

physical applications, from hydrocarbon exploration to monitoring of CO 2 sequestration

projects. Traditional velocity-model building methods such as Full-Waveform Inversion

(FWI) are powerful but often struggle with the inherent complexities of the inverse prob-

lem, including noise, limited bandwidth, receiver aperture and computational constraints.

To address these challenges, we propose a scalable methodology that integrates generative

modeling, in the form of Diffusion networks, with physics-informed summary statistics,

making it suitable for complicated imaging problems including field datasets. By defin-

ing these summary statistics in terms of subsurface-offset image volumes for poor initial

velocity models, our approach allows for computationally efficient generation of Bayesian

posterior samples for migration-velocity models that offer a useful assessment of uncer-

tainty. To validate our approach, we introduce a battery of tests that measure the quality

of the inferred velocity models, as well as the quality of the inferred uncertainties. With

modern synthetic datasets, we reconfirm gains from using subsurface-image gathers as the

conditioning observable. For complex velocity-model building involving salt, we propose

a new iterative workflow that refines amortized posterior approximations with salt flood-

ing and demonstrate how the uncertainty in the velocity model can be propagated to the

final product reverse-time migrated images. Finally, we present a proof of concept on field

datasets to show that our method can scale to industry-sized problems.

5.1 Introduction

Subsurface characterization of the earth’s subsurface is important for hydrocarbon explo-

ration [2], monitoring of CO 2 storage projects [3], geothermal energy projects [4] and

various other applications [5]. Generally, subsurface characterization is achieved by ob-

serving the interaction between specific physical phenomena (such as electrodynamics,
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gravity, and acoustic wave propagation) and subsurface properties. This tomographic in-

formation is then resolved into images that are analyzed for different characterization re-

quirements. Although our framework is generally applicable, we focus on characterization

of acoustic properties by means of probing the subsurface with acoustic waves. Out of the

various methods, FWI stands out as a powerful tool due to its ability to resolve high-quality

acoustic images in complex structures [144]. In spite of its advantages, FWI still has short-

comings due in part to the nature of the problem but also due to the specific computational

challenges that FWI brings since it requires solving many wave-equation partial differential

equations (PDEs).

The particular challenges of the FWI inverse problem are that the observations are cor-

rupted by noise, are limited in frequency bandwidth, computational simulations will always

contain some approximation to the true physics and due to practical engineering considera-

tions are mostly restricted to sensing the upcoming waves at the surface so will suffer from

some sort of limited aperture. All of these factors contribute to FWI’s ill-posed nature in the

sense that many subsurface scenarios are capable of explaining the limited data available.

Traditional workflows approach this challenge by introducing prior information to regular-

ize the vast search space, such as Total Variation (TV) [132]. While this has served well to

produce deterministic solutions, it does not express the multi-solution nature of FWI and

does not represent a realistic prior of the multiscale complexity of Earth structures.

We use Bayesian inference as a principled framework to combine observable data (seis-

mic shot gathers) with prior knowledge (training samples) and output a family of Earth

models that give users practical uncertainty quantification (UQ). One of the major gaps in

geophysical inversion is the difficulty of computing Bayesian posterior distributions that are

grounded in useful prior information and incorporate the complex physics of the problem.

Existing approaches either are too expensive to scale to large-scale problems (sampling-

based methods), fail to capture the full extent of uncertainty (local methods), or rely on

approximations that weaken the physical fidelity of the results (convolution-based meth-
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ods).

As a form of variational inference [19], our approach sidesteps the computational prob-

lem of sampling the posterior distribution by optimizing instead for an amortized (read

generalized) approximation to the posterior that is learned from training examples and can

be applied computationally efficiently at test time with small compute (as measured by

PDE solves) on various datasets.

5.2 Chapter outline

First, we introduce the wave-based inversion problem that we aim to solve. Due to the ill-

posed nature of the problem, we use a Bayesian formulation to solve it. Then, we discuss

related work that has solved various aspects of this problem, highlighting the gap in this

literature that we aim to fill. We explain our particular methods, which include simulation-

based inference (SBI) and conditional Diffusion networks as the core generative network.

We then explain the use of physical summary statistics to efficiently incorporate the wave

physics into the method. To evaluate the quality of our posterior distributions, we propose

four distinct metrics, each targeting a different aspect of UQ. These metrics are applied to

assess the improvements gained from using Common-Image Gathers (CIGs) in comparison

to Reverse-Time Migrations (RTMs, which are CIGs at zero subsurface offset). Next, we

address the challenges presented by the complex salt structures in the SEAM model [145].

To overcome these, we recognize the need for additional guidance from the physics and

propose an iterative algorithm, ASPIRE, that leverages the wave PDE while minimizing

the total number of PDEs at inference time. Finally, we test the robustness and scalability

of our method by applying it to field datasets. The results demonstrate that the method

is adaptable to changes in the test distribution and can handle large-scale 2D inversion

problems (e.g., 512× 7024 grid sizes).
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5.3 Problem statement

The core of subsurface characterization involves solving an inverse problem where the

objective is to infer unknown subsurface properties from observational data. In this context,

the forward process, represented as

y = F(x) + ε,

describes how the observations (shot records) y are generated from the underlying sub-

surface properties x, with ε representing bandwidth-limited noise. Here, we focus on

wave-based inversion, where the forward operator F corresponds to the solution of the

wave-equation PDE with the wavefield being restricted to the positions of the receivers.

The complexity of this problem arises from the null-space present in the forward operator,

compounded by noise in the measurements, which makes direct inversion unreliable as it

fails to characterize the full solution.

To model the noise in the system, one would assume that the noise ε follows a known

distribution, such as a normal distribution N(0, σ). This leads to a likelihood function

p(y | x), which quantifies the probability of observing the data y given the unknown

parameters x. If the noise is additive, the likelihood can be written as a well-known ℓ2-

normed misfit, p(y|x) = 1
2σ2∥F(x)− y∥22. Minimizing data misfits of this form underpins

FWI and other variational methods that use the forward model’s fit to the data, but on their

own, it is insufficient to fully resolve the inverse problem due to the non-uniqueness of

solutions and the presence of possibly adverse parasitic local minima.

In this paper, we address this limitation by adopting a Bayesian approach to the inverse

problem. Our target in this paper is that given an observation from the field y we aim to

find samples from the posterior distribution xpost ∼ p(x|y), which can be defined using

Bayes’s rule as the combination of the prior and the data likelihood p(x | y) ∝ p(y |
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x)p(x). This posterior distribution combines the prior information about the subsurface

properties, encoded in p(x), with the likelihood of observing the data, p(y | x), resulting in

a probabilistic representation of the subsurface model that accounts for both the uncertainty

in the data and the prior knowledge. This Bayesian framework allows for a more robust

characterization of subsurface properties, as it provides not just a single estimate but a

distribution of plausible solutions, incorporating uncertainty into the interpretation.

5.4 Related work and our contributions

The literature on solving the FWI problem with uncertainty has primarily focused on im-

plementations of Stein Variational Gradient Descent (SVGD) methods. The foundational

work in this area was introduced by [53], who applied Bayesian seismic tomography using

normalizing flows. Later, the same authors extended their method to 3D inversion [27],

though this approach still required numerous forward and adjoint PDE solutions for each

observation, which made it computationally expensive.

In an effort to reduce the computational burden of SVGD methods, [146] proposed a

technique that minimizes the number of optimization iterations by carefully defining the

prior distribution. This approach begins with solving the FWI problem under the assump-

tion of convergence and then adds perturbations to the solution to create a prior distribution.

This prior is used as an initial ensemble in an SVGD technique to optimize toward individ-

ual maximum likelihood estimates (MLEs) that do not collapse into the same solution due

to a repulsion term in the method. Although the authors did not use true prior terms—thus

these solutions are not precise Bayesian samples—they presented samples that revealed in-

teresting variations between them and were mostly focused on the areas of the image with

low illumination from the source-receiver configuration. [147] extended these concepts

by combining ideas from the Deep Image Prior (DPI) with conditional networks. They

performed an SVGD-like update starting from an ensemble of models that surrounded a

precomputed FWI solution, as in [146], to fine-tune the weights of a pretrained conditional
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network. This pretraining process enabled them to sample various Earth models by post

hoc changes to the network conditions. While this takes regularization benefits of both the

untrained DPI and the features learned during pretraining, it also does not have a clear prior

used during optimization, so does not correspond to true Bayesian samples over the target

in this case the uncertainty over network parameters.

In the context of defining realistic Earth priors, [148] assumed constrained Gaussian

distributions over the prior, which were fitted to real Earth data. They then implemented a

secondary optimization that bypasses the likelihood, making it efficient to swap different

priors at inference time. [149] explored another important aspect of UQ by employing

importance sampling and ensemble methods. Their objective was to capture uncertainty

stemming not only from the ill-posed nature of the inverse problem but also from epistemic

uncertainty in the network weights.

Similar work using normalizing flows includes [150], which targets time-lapse inver-

sion. They formed training samples by performing FWI inversion on prior examples to

construct the training dataset. The prior samples assumed access to a non-cycle-skipped

starting model, to which various perturbations were added, resulting in a diverse set of

training samples. In a related approach, [151] utilized invertible networks with a maximum

mean discrepancy (MMD)-based loss. Given that MMD estimation requires large batch

sizes, the authors applied model and data reduction techniques to minimize memory usage

and make the training feasible. Though not specifically aimed at UQ, [152] presented a

method similar to our iterative refinement, by using an iterative scheme to refine the migra-

tion velocity models. Targeting our same application of salt velocity model building, [153]

combine trained convolutional neural networks with FWI updates to automatically build

salt velocity models. Here, we aim to deliver automatic salt model building but without the

cost associated with FWI workflows, while also providing uncertainty quantification.

This paper builds on the methods introduced in previous literature of applying varia-

tional inference methods towards seismic imaging [21, 37] that have the goal of calculating
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Bayesian samples while making frugal use of the physical operator by defining an expen-

sive offline training phase to achieve a cheap online inference phase. In particular, we build

on the WISE framework [36] with the use of conditional Diffusion networks to improve

results by leveraging the prior learning capabilities of Diffusion [154]. While Structural

Similarity Index Metric (SSIM) [155] and Root Mean Squared Error (RMSE) can com-

pare the quality between image reconstructions, it remains unclear in the literature how to

compare two results for uncertainty. We therefore propose and discuss a battery of metrics

that can be used to benchmark the quality of the uncertainty. Furthermore, we discuss a

method to improve on amortized results with minimal extra computation at test time and

then demonstrate these methods on field data in preliminary proof of concepts.

Our key contributions include:

1. Extending the WISE framework to incorporate conditional Diffusion networks.

2. Proposing four benchmark metrics to assess the quality of UQ.

3. Testing our method on the Compass and ‘Synthoseis‘ training datasets, demonstrat-

ing the value of using Common Image Gathers (CIGs) over Reverse Time Migrations

(RTMs) alone from the standpoint of image quality and also uncertainty quality.

4. Introducing the iterative ASPIRE algorithm for seismic inversion, particularly for

complex salt structures, such as those in the SEAM model.

5. Presenting a proof-of-concept application on field datasets to demonstrate the scala-

bility of the method.

5.5 Methods

Our approach builds on the simulation-based inference (SBI) framework [98], a power-

ful tool for solving inverse problems that leverages numerical simulations and conditional

generative networks to approximate posterior distributions. While SBI is, in principle, a
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general method, directly applying it to the complex problem of seismic subsurface char-

acterization presents significant challenges due to the intricacies of waveform data. To

address these challenges, we incorporate conditional Diffusion networks as the generative

backbone, enabling the learning of an expressive prior and scalable posterior sampling.

Additionally, we employ physics-based summary statistics to compress observational data

while preserving crucial information about the subsurface properties.

5.5.1 Simulation-based inference

SBI combines the strengths of numerical simulations and conditional generative modeling,

providing a powerful framework for solving complex inverse problems [98]. Numerical

simulations are used to generate data pairs, D = {xi,yi)}Ni=0, where each pair consists of

a set of subsurface properties xi and the corresponding simulated observation yi derived

using the forward simulation section 5.3. These data pairs are then used to train a condi-

tional generative network which learns the posterior distribution of the unknown properties

given the observations. By integrating physics-based simulations with modern generative

modeling techniques, SBI provides an amortized method—that is, it generalizes over all

data simulated from the realizations of the prior. This means that after an initial training

phase, inference is inexpensive and can be done on many unseen test observations without

retraining or expensive applications of the forward/adjoint operator.

5.5.2 Conditional generative modeling with Diffusion networks

Diffusion networks are density estimation algorithms based on learning the score of the

target distribution ∇x log p(x) [142]. Specifically, we define a family of mollified dis-

tributions ∇x log p(x, σ(t)), where σ(t) represents a noise schedule such that, as time t

increases, the distribution is mollified towards the Gaussian distribution. After learning the

score for all time steps t, Diffusion networks can evaluate likelihoods [156] and sample

new generative instances from the target distribution p(x). To learn the score, Diffusion
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networks use one of the many forms of the denoising objective [157],

θ̂ = argmin
θ

Ex∼p(x)En∼N (0,t2I)∥sθ(x+ n; t)− x∥22

where the approximation the score at time t is given by the evaluation of the trained

network sθ̂(x, t). New samples from the target distribution can be generated by solving the

following stochastic differential equation (SDE):

dx = −σ̇(t)σ(t)∇xp(x;σ(t))dt.

Here, we use the formulation in [157] to simplify terms. Many strategies exist for

solving this SDE. Here, we follow the method in [157] and use a procedure similar to the

predictor-corrector sampler of [142].

To extend Diffusion networks towards conditional distributions, we aim to find the

conditional score ∇x log p(x|y). Based on the theory laid out in [158] and [159], we can

approximate this conditional score with a simple modification of Diffusion networks by

incorporating the observation y as an additional condition to the denoising network

θ̂ = argmin
θ

Ey∼p(y|x)Ex∼p(x)En∼N (0,t2I)∥sθ(x+ n,y, t)− x∥22.

In many cases, implementing a conditional Diffusion network involves simple modifi-

cations to existing non-conditional Diffusion networks. In [put GitHub link], we share our

conditional Diffusion implementation derived from non-conditional networks from Elu-

cidating Diffusion Models [157]. In practice, we approximate the expectation over prior

samples with a set of ground truth examples and sample from the likelihood by running the

simulator in section 5.3 to form a paired dataset D = {(xi,yi}Ni=0, then perform stochastic
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gradient descent on the following objective:

θ̂ = argmin
θ

L(D, θ) = argmin
θ

N∑
i=0

En∼N (0,t2I)∥sθ(xi + n,yi, t)− xi∥22.

After training, conditional Diffusion generates samples from the posterior p(x | yobs)

by conditioning the network on yobs and following the reverse process on the same SDE as

in subsection 5.5.2 to generate a posterior sample xpost. While the physics of the inverse

problem is present in the formation of the dataset, this is insufficient in the case of complex

forward operators associated with the wave equation [39]. Therefore, we will explore a

method to alleviate this challenge next by incorporating more physics into the methodology.

5.5.3 Physics-based summary statistics

While simulation-based inference (SBI) has shown promise across various fields, applying

it to problems with complex forward operators, such as seismic inversion, presents unique

challenges. These challenges stem from the difficulty of extracting the rich information

contained in waveforms. To address this, we employ summary statistics that compress the

data while preserving information needed to infer unknown subsurface properties. Sum-

mary statistics can either be hand-crafted by domain experts or learned by exploiting prob-

abilistic symmetries within the data [160]. In this work, we follow the methods of [39] and

[36] by using physics-based summary statistics derived from the physical forward operator.

Specifically, we utilize the gradient of the data likelihood, which allows us to inject physics

into the generative process at the cost of a single PDE solve per set of posterior samples,

where the PDE corresponds to the computations required for a single migration.

Using this gradient serves as a natural way to undo the complexity of the waveforms

since it brings the data into the model space. Theoretically, this approach is well-founded,

as it optimally saturates the information inequality [100], a bound that limits how much
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information a summary statistic can extract about an unknown variable. Empirical results

have shown that incorporating these summary statistics accelerates training and improves

convergence with fewer data samples [39]. Given an observation y and a migration-velocity

model x0, the summary statistic is calculated as follows:

y := h(y) = ∇F(x0)
⊤(F(x0)− y),

where ∇F is the subsurface-offset extended Jacobian, following the method of [161,

36]. y contains the CIGs, which represent the summarized waveform but transformed to

model space, while preserving more information compared to RTMs in situations where

the migration-velocity model is poor. We summarize all training data yi = h(yi) and form

a new training dataset D = {xi,yi}Ni=0 and train a conditional Diffusion network with sub-

section 5.5.2. At inference time, the observation yobs is summarized in the same manner,

yobs = h(yobs) and then passed into the same sampling process as subsection 5.5.2. The

computational cost of this approach is low because it requires only a single extended migra-

tion per observation at inference time, making it more computationally efficient than non-

amortized methods that typically demand hundreds of PDE solves [53] for each dataset.

Our approach is also amortized and therefore can be applied to many unseen observations

without repeating the costly training process.

5.6 Stylized examples

We separate our experiments into two parts. First, we train our generative networks on

synthetic seismic model sets and validate them on unseen datasets from the same synthetic

distribution as used during training. Secondly, we apply these trained networks to field

datasets to assess their robustness in practical scenarios and also to understand the prior

that they learn.

97



5.6.1 Training dataset generation

For the synthetic experiments, the migration-velocity models used are intentionally not

kinematically accurate. For the two salt imaging experiments, we first remove the salt

body from the model, replace it with the average velocity of the sedimentary layers, and

then smooth the resulting model using a Gaussian kernel. To minimize artifacts from to-

mographic updates, the migrations are generated using the inverse-scattering imaging con-

dition (ISIC) [162], which implies that our method is purely reflection-based. The sources

are given by Ricker wavelets that are filtered to remove unrealistically low frequencies be-

low 3 Hz. When noise is added to the simulated shot gathers, we apply a filter to ensure

the noise contains the same frequency content as the source wavelet. We use JUDI and

Devito for wave simulations [162, 8, 163]. The extended Jacobian operator was created

using [164] with a subsurface range that was chosen to contain the majority of the non-zero

offset energy.

Across all experiments, we create between 700–800 training pairs. The Diffusion net-

works are trained until the image quality metrics (RMSE, SSIM) for the posterior means

stop improving on a validation set held out during training. To calculate posterior statistics,

we generate N posterior samples and calculate Monte Carlo estimations of the posterior

mean, xmean =
∑N

i=0 x
i
post/N , and standard deviation, xstd =

√∑N
i=0(x

i
post − xmean)2/N .

The number of posterior samples to use is decided by increasing the number until the pos-

terior standard deviation converges; in our case, N = 64.

5.6.2 Compass model

Our evaluation begins by using the Compass model [143]. The training dataset consists

of the same velocity and CIGs pairs as in WISE [36]. These include N = 800 training

pairs of velocity models of size (512× 256) that are discretized with 12.5 m and CIGs that

are generated with 50 equally spaced offsets between −500 m to 500 m without ISIC. The

migration-velocity models for the Compass dataset are created using a single 1D veloc-
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ity profile that is derived from the training dataset. Our only modification is that we use

conditional Diffusion as the generative network instead of conditional normalizing flows.

Training took 14 GPU hours, while posterior sampling takes 440 sec for the 64-shot CIGs

in addition to 2 sec for each posterior sample. The results summarized in Figure 5.1 con-

firm the observation from [36] that CIGs drastically improve posterior sampling perfor-

mance. As we discuss later, these results improve on the normalizing flow results from

[36]. Overall, we observe increasing error and uncertainty with depth. Additionally, there

is correlation between the complexity of the velocity model and the error and uncertainty.

Aside from uncertainty near the strong lateral variation along the major unconformity in

the model, we also observe increased errors and uncertainty associated with topology on

the velocity kickback that occurs around 750 m depth on the left side of the model. In the

section on uncertainty benchmarks, we expand this rudimentary analysis and detail how we

can determine which uncertainty is of higher quality according to well-defined metrics.
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(a) Reverse-time migration (b) Ground truth velocity model

(c) Posterior mean w/ RTMs SSIM=0.78 (d) Posterior mean w/ CIGs SSIM=0.84

(e) Error w/ RTMs RMSE=0.13 (f) Error w/ CIGs RMSE=0.10

(g) Posterior standard deviation w/ RTMs (h) Posterior standard deviation w/ CIGs

Figure 5.1: Posterior sampling on Compass dataset. We observe an increase in quality of
the inferred velocity model when using CIGs instead of RTMs.
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5.6.3 Synthoseis models

While the results presented in the previous section are encouraging, the geological setting

in the North Sea Compass dataset lacks sufficient complexity to put our inference method-

ology to the test. In addition, its training was limited to neighboring 2D slices from the

same area and therefore may lack in diversity. To address this potential lack of diversity

and complexity, we consider an example where we train on synthetically generated mod-

els produced by the open-source software package ‘Synthoseis‘[https://github.com/sede-

open/synthoseis]. ‘Synthoseis‘ is an algorithm designed to generate realistic and diverse

synthetic 3D seismic models tailored for deep learning applications [165]. Our approach

specifically uses the algorithm’s velocity-model generation routines, focusing on the cre-

ation of the acoustic velocity property (Vp) of Earth models. The workflow consists of

several key steps, namely initialization of random Earth parameters ranges, generating 3D

depth horizons, embedding of rock property models, and ultimately producing 3D volumes.

In this study, we examine scenarios with Earth models that feature salt bodies. Although

each model produced by the algorithm exhibits full 3D structures, for our experiments, we

extracted 2D slices from the 3D models to manage computational resources needed during

‘Synthoseis‘ generation. It is important to note that while these models are not created by

the same generative model that we train, thus using these samples does not fall under the

regime of autophagy as defined in [166].

To create the training dataset D, we generate N = 800 pairs. Each x has a grid size of

512× 256 with a spatial discretization of 12.5 m. We modeled towed sources at the ocean

surface with an interval of 12.5 m. The receivers are placed on the ocean bottom with an

average sampling of 200 m, they are positioned using a random jittered sampling scheme

[167]. The shot records y are simulated by recording for 3.2 s, while the active sources

are modeled with a Ricker wavelet with central frequency of 20 Hz. The simulated noise

was band-limited to contain the same frequency content as the source and had a magnitude

of 25 dB. To make migration-velocity models, we first replace values where salt is located
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with the average value of the sedimentary layers. Then, we convert the model from depth to

time, smooth in time with an anisotropic Gaussian kernel of size (40×80), and then convert

it back to depth. We follow this nonlinear procedure to intentionally create poor migration-

velocity models. The horizontal subsurface-offset migrations y include 24 equally spaced

offsets between -500 m and 500 m. The conditional Diffusion network was trained for 12

GPU hours. For inference, the algorithm takes 277 sec to generate CIGs for 32 shots and 2

sec for each posterior sample.

After training, we consider an example not seen during training for posterior sampling.

The results are shown in Figure 5.2. Our first observation is that, over both image quality

metrics (SSIM and RMSE) the network trained with CIGs outperforms the network trained

on RTMs only. Furthermore, we are pleased that although there is uncertainty below the

salt structure, as evidenced by the high standard deviation Figure 5.2i,Figure 5.2j and pos-

terior means Figure 5.2e,Figure 5.2f that appear blurred in regions where the uncertainty

is large, the individual posterior samples in Figure 5.2c,Figure 5.2d exhibit an accurate ap-

proximation of the prior in the way the salt is sharply delineated. As before, the posterior

mean xmean and posterior standard deviation xstd are calculated from 64 posterior samples.

Again, we see reasonably good correlation between the errors and uncertainty where as

expected, these occur mainly at the bottom of the salt and in the subsalt areas. It is also

encouraging that the unlapping sedimentary layers are well recovered albeit the inference

struggles in the area beneath the deepest point of the salt.
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(a) Reverse-time migration (b) Ground truth velocity model

(c) Posterior Sample w/ RTMs (d) Posterior Sample w/ CIGs

(e) Posterior mean w/ RTMs SSIM=0.84 (f) Posterior mean w/ CIGs SSIM=0.89

(g) Error w/ RTMs RMSE=0.15 (h) Error w/ CIGs RMSE=0.10

(i) Posterior standard deviation w/o CIGs (j) Posterior standard deviation w/ CIGs

Figure 5.2: Posterior sampling on velocity models generated by ‘Synthoseis‘. Based on the
image quality metrics, the CIGs more accurately inform the posterior inference.103



5.7 Quantitative assessment of UQ

Evaluating the quality of the UQ—i.e., quality of the inference of the posterior, from poste-

rior samples is crucial for understanding how well the network captures the true variability

in the posterior distribution. In this section, we introduce four approaches to assess the

performance of UQ, namely (1) the ability to warn areas with high error; (2) the degree of

correlation between uncertainty and error; (3) the posterior coverage, which is defined as

the proportion of pixels for which the range of posterior samples contains the ground truth;

and (4) the ability of posterior samples to fit the observed shot data. For all metrics, we

take the uncertainty to be the standard deviation between posterior samples and the error

calculated between the posterior mean and a known ground truth velocity model.

5.7.1 Percentage of regions with large errors but low uncertainty

An important feature of UQ is its ability to warn the user of areas that may have high

errors in the reconstruction. By warning, we mean that if an area has high uncertainty, then

that area should have high error. Thus, we want to avoid high errors that are not followed

by high uncertainty, which could be an indication of poor UQ. To quantify and visualize

this, we use the z-score as defined [168] by the pixel-wise division of the error by the

uncertainty: z-score = |x∗ − xmean|/xstd where x∗ is the ground truth velocity, xmean the

average of the posterior samples, and xstd their pixelwise standard deviation. In Figure 5.3,

we show that high errors are ”acceptable” as long as it is followed by high uncertainty in

that same area, while areas with high errors and low uncertainty will have high values for

the z-score in this plot. To highlight these areas, grid points with errors that are 2× larger

than the uncertainty are shown in red.

To ensure good UQ, we want to minimize the total red area. Thus, we define the

quantitative metric as the percentage of pixels that are red and aim for this metric to be

low. In Table 5.1, we show the average z-score percentage over posterior sampling results
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of 50 test unseen observations for both RTMs and CIGs trained networks. From Figure 5.3

we make the following observations: for both models, the total area of the red regions is

significantly smaller when the posterior is conditioned on CIGs. We also observe that red

regions for the Compass model tend to be associated with areas where the velocity kickback

exhibits lateral variations. With few exceptions, we see that red regions for the salt models

generated by ‘Synthoseis‘ are located near steeply dipping events. Overall, percentages of

red area are significantly reduced thanks to the use of CIGs.

(a) Compass w/ RTMs z-score=10.55% (b) Compass w/ CIGs z-score=6.08%

(c) Synthoseis w/ RTMs z-score=7.36% (d) Synthoseis w/ CIGs z-score=4.48%

Figure 5.3: Comparison of the z-score between conditional diffusion networks trained on
RTMs and networks trained on CIGs with 24 non-zero offsets. We desire the z-score (per-
centage of pixels where error is 2× higher than UQ) to be low.

5.7.2 Degree of calibration

While correctly warning of high errors is an indication that the UQ is reasonable, it does

not provide a precise quantitative metric for the correspondence between error and UQ at

various magnitudes. For this purpose, we use the calibration test from [78, 79] to quantify

the correlation between predicted uncertainty and error. By binning the pixels over different

magnitudes, we can build a correlation plot wherein we want pixels that are placed into bins
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of certain errors magnitudes to have similar uncertainty magnitudes. Figure 5.4 shows the

application of this test to the UQ results for the Compass example in Figure 5.1 and the

‘Synthoseis‘ example in Figure 5.2. The uncertainty calibration error (UCE) is a single

scalar summarizing the performance of this test by calculating the area between the red

curve and the optimal calibration on the diagonal dashed line. Therefore, lower UCE values

indicate better-calibrated uncertainty. Again, we observe major improvements due to the

use of CIGs for both models. In Table 5.1, we show the average UCE for posterior sampling

results on 50 unseen test observations for both RTMs and CIGs networks.

(a) Compass w/ RTMs (b) Compass w/ CIGs
(c) ‘Synthoseis‘ w/
RTMs

(d) ‘Synthoseis‘ w/
CIGs

Figure 5.4: Comparison of the uncertainty calibration of a conditional diffusion network
trained on RTMs compared with a network trained on CIGs with 24 non-zero offsets. For
both synthetic datasets, the CIGs-trained network is better calibrated as evidenced by the
lower UCE metric.

5.7.3 Posterior coverage percentage

Next, we quantitatively evaluate the coverage of the posterior samples. Coverage measures

whether the true velocity model is contained within the spread of the posterior distribution.

This is an important characteristic of Bayesian methods, as we want the ground truth ve-

locity model to be included within the posterior samples [169]. To quantify coverage in

percentages, we compute the lower and upper percentiles of the posterior samples at each

pixel and test if the ground truth velocity model is contained within that range. The quanti-

fied metric corresponds to the percentage of pixels for which the calculated range contains

the ground truth velocity model. Ideally, this coverage percentage should be high. Visually

this test is intuitively understood in Figure 5.5 where we plot samples of the posterior over
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a single vertical trace and compare them with the ground truth velocity. For our metric, we

calculate the range using the upper 99% and lower 1% percentiles. Although we only show

a trace in these figures, note that the coverage metric is calculated over all pixels in the

reconstructed velocity models. In Table 5.1, we include the average coverage percentage

over 50 test samples for both RTMs and CIGs trained networks. We want this metric to be

high because we wish our posterior distribution to always contain the ground truth velocity

model.

(a) Traces Compass w/ RTMs
Coverage=82.1%

(b) Traces Compass w/ CIGs
Coverage=90.6%

(c) Traces ‘Synthoseis‘ w/ RTMs
Coverage=87.0%

(d) Traces ‘Synthoseis‘ w/ CIGs
Coverage=89.7%

Figure 5.5: Vertical traces through the posterior samples and the ground truth velocity
model used to calculate the posterior coverage metric.

5.7.4 Shot data residual of posterior samples

Even though the above quantitative assessment of UQ is valuable, it relies on having access

to ground truth velocity models rendering these metric impractical for field data where the

ground truth velocity models are unknown. For this reason, it is as a final check important

to make sure that the proposed velocity-model inference produces synthetic gathers that fit

observed shot gathers. In other words, while the generative samples xpost shown previously
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seem to visually match the correct prior, we will verify that these are indeed Bayesian and

respect the data likelihood p(y | x). We take the posterior samples and pass it through the

nonlinear forward wave operator F(xpost) and analyze the fit to the observed shot data yobs.

In Figure 5.6, we show a pairwise binned comparison between the predicted and observed

shot gather interleaved with increasing receiver coordinate. To quantify the fit, we take the

division between the noise norm and the data residual that we define as ∥ε∥2/∥F(xpost) −

yobs∥2 and report this number as a percentage. With 100% corresponding to the residual

having the same normed magnitude as the noise, in other words, a perfect fit. For both

models, the network conditioned on the CIGs better fits the shot gathers.

(a) Compass w/ RTM data fit 56% (b) Compass w/ CIG data fit 58%

(c) ‘Synthoseis‘ w/ RTM data fit 41% (d) ‘Synthoseis‘ w/ CIG data fit 47%

Figure 5.6: Interleaved comparison between paired bins of observed and synthetic shot
data.

Results of the four performance metrics: (1) percentage of regions with large errors, (2)

degree of calibration, (3) posterior coverage percentage, and (4) posterior fit of shot data are
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included in Table 5.1 for networks trained with RTMs or CIGs. From these results, we con-

clude that conditioning on CIGs improves performance with respect to RMSE and SSIM

for the recovery results themselves, and with respect to these four metrics that reflect the

quality of the UQ. This improvement is due to the CIGs containing more information than

the RTMs, even in situations where the migration-velocity models are poor. As a result,

CIGs provide a more accurate representation of the original posterior that is conditioned on

raw shot records.

We include the performance on the same Compass dataset used in [36], showing that

our Diffusion network with average SSIM of 0.85 outperforms the normalizing flow, which

had an average SSIM of 0.63 [36]. While this increase in performance is encouraging,

we cannot definitively conclude that Diffusion is in general better than normalizing flows

since our Diffusion network uses different architectures than the normalizing flow in [36]

and also has more training costs. A careful comparison between these two frameworks is

beyond the scope of this paper but would be a valuable avenue for future work.

Table 5.1: Image and uncertainty quality metrics on Compass and ‘Synthoseis‘ datasets.

Dataset RMSE ↓ SSIM ↑ Coverage [%] ↑ UCE ↓ z-score [%] ↓ Data fit [%] ↑

Compass w/o CIGs 0.12 0.81 73.8 0.013 10.7 53.7
Compass w/ CIGs 0.11 0.85 74.8 0.011 9.9 54.2
‘Synthoseis‘ w/o CIGs 0.085 0.91 72.5 0.012 7.8 77.1
‘Synthoseis‘ w/ CIGs 0.079 0.92 74.6 0.009 5.4 79.6

5.8 Complex case studies

So far, the stylized examples have exhibited relatively minor complexity, which in part

explains the success of the inference discussed so far where the reconstructed velocity

models significantly bring down the residuals. Due to the the always present amortization

gap [110, 37], which corresponds to a drop in accuracy due to an attempt to generalize the

performance of the network over many velocity models instead of focusing the inference

on a single shot dataset as in non-amortized methods [53, 21, 146], we cannot expect the
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presented amortized approach to perform well on larger models with increased geological

complexity. Using an example involving the SEAM salt model [145], we demonstrate how

our inference approach can be extended to handle complex salt plays. Finally, we also

consider a field dataset to demonstrate the importance of having access to relevant training

data.

5.8.1 Salt flooding with ASPIRE

To ameliorate the amortization gap and to accommodate complexities arising from salt in

the Gulf of Mexico, we adapt and extend methodologies introduced by [37] and retrain

the networks at the next iteration on migrations improved by the average of the poste-

rior samples produced by the current iteration. This type of approach, known as ASPIRE

[37], which can be interpreted as a probabilistic loop-unrolled gradient descent algorithm

[170, 171], remains amortized and has been demonstrated to close the amortization gap

in transcranial ultrasound brain imaging. Motivated by these findings, and by the fact that

ASPIRE lends itself well to iterative workflows, we propose a methodology aimed at im-

proving the large data residuals observed in Figure 5.7a. These residuals are mainly due

to the complexity of the velocity model and the lack of training data, a situation where

amortized methods are known to fail [21, 37].

To remedy this situation and decrease the data misfit, we follow ASPIRE and produce

an improved migration-velocity model based on the average of the posterior samples. With

this improved velocity model, new CIGs y1 are computed, as in subsection 5.5.3, but now

with xmean—i.e., the posterior mean, serving as the migration-velocity model instead of

x0. After calculating CIGs for each training sample, we train a new network on the up-

dated dataset D1 = {xi,yi
1}Ni=0. While this choice of posterior mean (e.g. as opposed to

posterior median) is still open to debate, [37] proved that it leads to significant improve-

ments. Although there are additional offline and online costs associated with this method,

the inference stage remains relatively computationally efficient with the cost of a single
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migration per iteration and a low total number of iterations, in this case two iterations.

(a) ASPIRE 1 data fit 14% (b) ASPIRE 2 data fit 17%

Figure 5.7: Comparison of data misfit of a shot record generated from the posterior samples
for two ASPIRE iterations by interweaving traces from the observed shot and simulated
shot gathers. The second ASPIRE iteration has improved the data fit by using one more
gradient (extended migration) at test time.

Experimental setup

To demonstrate how inference with ASPIRE can be adapted to complex settings, we con-

sider 2D slices through the 3D SEAM model [145], which represents complex salt geom-

etry typical for the Gulf of Mexico. We create a training split of the SEAM model by

selecting a continuous subset of crosslines for training. To avoid similarity between 2D

slices, we skip 2 km between the nearest training slice and the nearest test slice.

When simulating shot gathers, we generate narrow-offset 2D seismic lines with a grid

size of 1744 × 512 and a spatial discretization of 20 m. A marine dataset is created by

simulating shot data with sources and receivers towed at the same depth near the surface.

Surface-related multiples are avoided by applying an absorbing boundary condition at the

surface. Computational costs are reduced by using a coarse source interval of 1000 m,

while receivers are sampled at 20 m and a maximum offset of 6 km. The total recording

time for each shot record is 9 s, and Gaussian noise is added to yield a level of 25 dB in
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a frequency band that matches the source signature. With these settings, 32 shots were

simulated for a model with constant density and varying velocity.

Migration-velocity models are created by first removing the salt from the ground truth

velocity models, followed by smoothing the result with a Gaussian kernel of grid size 25

(see Figure 5.8. To capture most of the energy, the horizontal subsurface-offset migration

utilizes 50 equally spaced offsets, ranging from −2000 m to 2000 m. After imaging the full

seismic line, we extract subsets to create the training pairs by taking sliding windows of

each 2D line, resulting in grids of size 512×512 and a total of 700 training data pairs. Each

ASPIRE iteration takes 12 GPU hours to train. While the conditional Diffusion network is

trained on these smaller patches, at inference time the trained network is evaluated on the

full grid size of (512×1744). This is feasible because our Diffusion network predominantly

relies on convolutional layers, allowing for evaluation on grid sizes larger than those used

during training. At inference, we incur the cost of one extended migration (3 min) per

ASPIRE iteration and then 8 sec per posterior sample.

Algorithmic innovations

To successfully adapt ASPIRE to the complex setting of SEAM, the following innovations

are implemented:

• Utilization of previous iterates. In its vanilla implementation, gradient descent and,

therefore ASPIRE, base its updates on gradients taken at the current model iterate

(read inferred velocity model), ignoring information from previous iterates. Moti-

vated by quasi-Newton optimization methods, [170] proposed to add previous model

iterates to improve convergence and approach reminiscent of quasi-Newton methods

where previous gradients are used to approximate the Hessian. Similarly, we allow

the networks at each iteration to take all previously calculated CIGs and inferred

migration-velocity models as input. In our experiments, including this modification

significantly improved the performance of ASPIRE.
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• Incorporation of domain knowledge with salt flooding. To detect the bottom of

the salt, we employ the well-established method of salt flooding (see [131] and the

references therein) during which top salt is extended downwards. Due to its iterative

structure, ASPIRE can easily accommodate salt flooding, so the bottom of the salt is

clearly delineated by migration on the second iteration.

Preliminary results

In Figure 5.8, we present the results from two iterations of ASPIRE, starting from the

smoothed migration-velocity model depicted in Figure 5.8a. This migration-velocity model

is used to produce the initial CIGs, whose zero-offset section is displayed in Figure 5.8b.

Based on these CIGs, the first trained ASPIRE produces posterior samples, whose aver-

age is plotted in Figure 5.8c. While the top of salt is well recovered, comparison with the

ground truth velocity model depicted in Figure 5.8h shows that important details are miss-

ing in the bottom salt. This, in turn, leads to poorly resolved bottom salt in the zero-offset

migrated section Figure 5.8d. By flooding the salt downwards, as depicted in Figure 5.8e,

this issue is largely mitigated, as observed from the migration included in Figure 5.8f,

where the bottom salt is delineated sharply and includes the main topological features.

This means that the second trained ASPIRE on salt-flooded migrations can correctly infer

the salt bottom as shown in Figure 5.8g. Before comparing the migration in this model to

a baseline derived from the true model, let us first consider the contraction of the inferred

uncertainties resulting from the ASPIRE iterations.
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(a) Initial velocity model (b) Initial migration

(c) ASPIRE 1 model SSIM = 0.70 (d) ASPIRE 1 migration

(e) ASPIRE 1 velocity model w/ flooding (f) ASPIRE 1 migration w/ flooding

(g) ASPIRE 2 model SSIM = 0.72 (h) Ground truth velocity model

Figure 5.8: Comparison of posterior means yielded by two iterations of ASPIRE and their
corresponding reverse-time migrations.

In addition to providing increasingly better estimates for the velocity model, ASPIRE

also includes UQ at each iteration. In Figure 5.9, different aspects of the inferred uncertain-

ties for ASPIRE 1 and 2 are illustrated by means of plots for errors included in Figure 5.9a

and Figure 5.9b; posterior standard deviation in Figure 5.9c and Figure 5.9d; z-score in Fig-

ure 5.9e and Figure 5.9f; and finally plots for the coverage in Figure 5.9g and Figure 5.9h.

From these plots, the following observations can be made: First, errors with respect to the

ground truth velocity model at the bottom salt are greatly reduced by ASPIRE 2 due to the

salt flooding. However, errors remain at both ends of the salt due to a lack of illumination.

As expected, errors remain in the sediments below the salt. Second, as expected, predicted

uncertainties at the bottom salt are reduced for ASPIRE 2 (see Figure 5.9c and Figure 5.9d).
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The uncertainty also correlates reasonably well with the errors. We also observe the ap-

pearance of dirty salt, which can be explained by the fact that the salt in the SEAM dataset

includes dirty salt. Third, with very few exceptions there is a drastic improvement in the

overall z-score plots (figures Figure 5.9e and Figure 5.9f) for ASPIRE 2. Most notably,

z-scores improve significantly at the bottom-salt interface and within the sedimentary lay-

ering under the salt. Finally, the coverage of the posterior samples is also improved. While

the ground truth bottom salt was missed in ASPIRE 1, the posterior samples yielded by

ASPIRE 2 clearly contain the step-out of the salt.

(a) ASPIRE 1 Error RMSE = 0.26 (b) ASPIRE 2 Error RMSE = 0.20

(c) ASPIRE 1 standard deviation (d) ASPIRE 2 standard deviation

(e) ASPIRE 1 z-score = 3.44% (f) ASPIRE 2 z-score = 2.03%

(g) ASPIRE 1 traces coverage = 61.79% (h) ASPIRE 2 traces coverage = 70.24%

Figure 5.9: Comparison between recovery and UQ quality yielded by ASPIRE 1 and 2.

Moreover, visual improvements in the second ASPIRE iteration are supported by quan-

titative uncertainty quality measures listed in the captions of Figure 5.9 and in Table 5.2,
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summarizing performance over eight unseen test 2D lines. Overall, the progression of re-

sults correlates well with the iterative focus of ASPIRE: the first iteration targets the top

of the salt and the second iteration targets the bottom of the salt. The corresponding shot

gathers for the different ASPIRE iterations are included in Figure 5.7 and confirm that the

model improvements lead to improved data fit.

Table 5.2: Image and uncertainty quality metrics on SEAM dataset ASPIRE iterations.

Dataset RMSE ↓ SSIM ↑ Coverage [%] ↑ UCE ↓ z-score [%] ↓ Data fit [%] ↑

ASPIRE 1 0.25 0.71 66.6 0.043 3.44 13.3
ASPIRE 2 0.21 0.73 67.3 0.042 3.96 15.5

Quality assessment

While the recovered velocity models and uncertainty quality metrics show significant im-

provements between ASPIRE 1 and 2, the ultimate goal is to assess the impact of these

improvements on the final product, namely, the migrated image in areas below the salt. For

this purpose, we included Figure 5.10, which contains results of RTM with the ground truth

velocity model; the mean of reverse-time migrations carried out in 16 posterior samples for

the velocities produced by ASPIRE 2; error with respect to the migrated image with the

ground truth velocity model; and the standard-deviation of reverse-time migrations in pos-

terior velocity models. From these plots, the following observations can be made: First, the

migrations in the ground truth velocity model and the inferred mean of the multiple RTMs

are close, even though issues remain. These include: errors in the delineation some areas of

bottom salt and minor shifts in imaged sedimentary layers below the salt. While there are

errors, we emphasize that errors are expected to occur in this ill-posed problem, but that our

solution comes with uncertainty quantification that powerfully points to areas of error (see

figures Figure 5.10c and Figure 5.10d). We observe that the predicted uncertainty is overly

cautious, predicting larger variability than evidenced in the plot of errors with respect to the

migration with the ground truth velocity model. We consider the fact that uncertainty being
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overestimated as advantageous since it offers an additional safeguard to overinterpretation

of imaged reflectors as opposed to being overconfident. Both migrations suffer from an

overprint due to areas of relatively poor illumination due to the interplay between small

offsets and complexity of the salt geometry, which gives rise to (de)focusing effects that

explain variations in the amplitudes of the imaged reflectivity under the salt.
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(a) Migration in ground truth velocity model

(b) Mean of migrations in ASPIRE 2 velocities

(c) Error between mean of migrations and ground truth migration

(d) Standard deviation of migrations in ASPIRE 2 models

Figure 5.10: The migration in our final velocity model is close to the migration in the
ground truth model.

5.8.2 Field data proof of concept

Our aim is to develop ML-enabled workflows for probabilistic velocity model building ca-

pable of scaling to industry-sized seismic datasets. To demonstrate progress and challenges
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toward this goal, we apply the same approach with pre-trained networks from the previous

experiments to a large shallow-water seismic 2D line. The aim of this exercise is twofold:

First, we aim to demonstrate that the presented methodology can be applied to field data.

Second, we aim to showcase the main limitations of the presented approach—i.e., its re-

liance on training datasets that are pertinent to the geological setting under consideration.

Shallow-water field data

As a first attempt to apply the presented workflow to field data, we consider the migra-

tion and velocity models derived from the ”Galactic dataset” made available by Woodside

Energy Ltd under a [Creative Commons license](https://creativecommons.org/licenses/by-

sa/4.0/). These derivatives are obtained with a traditional workflow, consisting of

migration-velocity building with FWI and RTM, as shown in figures Figure 5.11a and Fig-

ure 5.11b. We have not made any modifications to the original work.

The 2D line of the Galactic dataset being considered has a grid size of (512 × 7024).

To produce samples, the migration shown in Figure 5.11b served as input to conditional

neural networks trained on velocity models from the ‘Synthoseis‘ and SEAM datasets. In

this case, we trained a network on ‘Synthoseis‘ samples that did not contain salt. Since

the Galactic dataset does not include non-zero offset migrations, we use the RTM included

in Figure 5.11b as input, producing the posterior means shown in figures Figure 5.11c and

Figure 5.11d. For this large line, each posterior sample takes 30 seconds to generate. Both

estimates are obtained from 64 samples of the posterior.

The posterior mean estimates produced by either network do not seem realistic because

they are strongly biased toward the datasets these networks were trained on. The fact that

the result obtained with ‘Synthoseis‘ looks more reasonable likely stems from the fact that

‘Synthoseis‘ dataset contains more variability in its training set. Still, this example under-

lines the importance of having access to pertinent training data, a topic we will address in

the discussion.
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(a) Migration-velocity model (b) Reverse-time migration

(c) Posterior mean trained on Synthoseis (d) Posterior mean trained on SEAM

(e) 2xUQ trained on Synthoseis (f) UQ trained on SEAM

Figure 5.11: Field-data results trained on Synthoseis versus SEAM. (a) Migration velocity
model used to produce RTM. (b) Observed RTM. (c) Mean of Posterior samples from
Synthoseis. (d) Mean of Posterior samples from SEAM. We recommend zooming in on a
computer screen to see these figures.

5.9 Discussion and future work

Results obtained for the stylized examples and complex case studies suggest that proba-

bilistic velocity model building is possible as long as training pairs in the form of velocity

models and migrated image data are available. However, having access to representative

training velocity models is challenging in practice. The examples presented here fall short

because they are biased by our geological understanding, as expressed in synthetic earth

models. To overcome these limitations and other challenges in applying the proposed

methodology to more realistic settings, we strongly encourage our community to follow

David Donoho’s [172] recipe for success in data science, which includes *(i)* making
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(training) datasets available; *(ii)* releasing research findings that can be reproduced in a

frictionless manner; and *(iii)* establishing benchmarks to compare results based on quan-

titative figures of merit. We argue that this work contributes towards items *(ii-iii)*. Item

*(i)* remains challenging, but below we outline a possible strategy for addressing this item.

By using the latest tools from generative AI, [173] recently developed a framework

to train conditional neural networks to generate realistic Earth models parameterized by

velocity. In their approach, Diffusion networks are trained on pairs imaged field data and

well-log data, both residing in national data repositories such as the one maintained by

the National Transition Authority in the United Kingdom. We are currently in the process

of curating hundreds of 2D seismic image-well pairs, so that a foundational model can

be trained with which realistic synthetic velocity can be generated without ever requiring

access to velocity models themselves. As more curated datasets become available, the

quality of this foundational model will improve, as will machine learning techniques that

rely on training data.

An important avenue for future work is to explore non-amortized methods that would

build on top of the amortized results shown here. Specifically, algorithms that use the for-

ward operator at inference time to specialize to the observation and improve performance

[21, 37, 38]. This approach becomes especially pertinent when applying our method to

field data.

5.10 Conclusions

We implemented machine learning enabled workflows that, through the use of modern

conditional Diffusion neural networks, advance the state of the art in amortized migration-

velocity model building with uncertainty quantification. In this context, amortization means

that our network generalizes across different shot datasets. We also proposed a set of per-

formance metrics as a benchmark to compare the effectiveness of different uncertainty

quantification methods. For complex salt scenarios, we developed a new iterative workflow
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incorporating salt flooding. Using our Bayesian probabilistic approach, multiple migration-

velocity models are generated from poor initial velocity models (e.g., models without salt).

These samples from the posterior distribution produce different reverse-time-migrated im-

ages that contain variability propagated from the uncertainty in the inferred velocity model.

Thanks to machine learning, the proposed approach remains computationally feasible at in-

ference time, with considerable but manageable offline training costs. The results represent

a demonstration of machine learning enabled probabilistic velocity building from short-

offset acoustic reflection-only data. While our evaluation on field datasets is still in its

early stages, the initial results are promising. However, applying the method to field data

revealed a bias toward the synthetic data distribution on which the networks were trained.

This finding highlights the need to curate realistic training datasets to train the next gener-

ation of generative networks for solving geophysical inverse problems.
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CHAPTER 6

PROBABILISTIC BAYESIAN OPTIMAL EXPERIMENTAL DESIGN USING

CONDITIONAL NORMALIZING FLOWS
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SUMMARY

Bayesian optimal experimental design (OED) seeks to conduct the most informative ex-

periment under budget constraints to update the prior knowledge of a system to its posterior

from the experimental data in a Bayesian framework. Such problems are computationally

challenging because of (1) expensive and repeated evaluation of some optimality criterion

that typically involves a double integration with respect to both the system parameters and

the experimental data, (2) suffering from the curse-of-dimensionality when the system pa-

rameters and design variables are high-dimensional, (3) the optimization is combinatorial

and highly non-convex if the design variables are binary, often leading to non-robust de-

signs. To make the solution of the Bayesian OED problem efficient, scalable, and robust

for practical applications, we propose a novel joint optimization approach. This approach

performs simultaneous (1) training of a scalable conditional normalizing flow (CNF) to ef-

ficiently maximize the expected information gain (EIG) of a jointly learned experimental

design (2) optimization of a probabilistic formulation of the binary experimental design

with a Bernoulli distribution. We demonstrate the performance of our proposed method

for a practical MRI data acquisition problem, one of the most challenging Bayesian OED

problems that has high-dimensional (320 × 320) parameters at high image resolution, high-

dimensional (640 × 386) observations, and binary mask designs to select the most infor-

mative observations.

6.1 Introduction

When solving an inverse problem, the goal of experimental design is to chose how to ob-

serve data from the field that is used to infer an unknown parameter. The process that

models the data acquisition is denoted as the forward process written

y = M(F(x)) + ε
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where F(·) is the forward operator that takes the unknown x to the observation space,

M(·) is the observation process that need not be linear and ε is corruption noise. Since

experimentalists have control over the observation process, it is desirable to control this in

order to best inform downstream inferences of x i.e experimental design. As an illustration,

imagine a doctor deciding where to place a handheld ultrasound on a patient to best infer

the state of a internal organ.

In a Bayesian framework, the experimental design is based on quantities related to

the posterior distribution p(x|y). Once the posterior has been estimated, different design

optimality choices can be made. These options include A-optimal, D-optimal, and the

expected information gain (EIG) [174]. Due to its close connection with the posterior

likelihood (the quantity used to train normalizing flows) we focus on the EIG:

EIG(M) = Ep(y|M) [DKL(p(x|y,M) || p(x))]

which measures the information gain between the prior information and the information

gained by performing an experiment using M to acquire data y. Importantly, the expecta-

tion Ep(y|M) means that the information gain is averaged over the distribution of possible

observations i.e it describes the best experiment on average for the range of observations

that is expected to be encountered. However, optimizing EIG is challenging due to com-

plexities like the ”double intractability” problem, which arises from the necessity to eval-

uate two expectations [175]. Our approach tackles this with a data-driven optimization of

the EIG that combines simulation based inference [98], likelihood-based generative mod-

els [94] to tractably find optimal designs and a probablistic interpretation of the design

parameters to facilitate its optimization.
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6.2 Methodology

To demonstrate our scalable technique for Bayesian experimental design, we first show the

connection between EIG and likelihood based generative models. Secondly, we present

conditional normalizing flows as the key tool due to their exact likelihood evaluation and

their invertible architectures that enable memory efficient training. Then we show how

a probabilistic interpretation of binary design masks alleviates optimization challenges.

Finally, we setup a demonstration of our technique as applied to high dimensional inverse

problem related to MRI medical imaging.

6.2.1 Normalizing flows learn the expected information gain

In the context of summary statistics, [176] noted that a summary statistic ȳ can be inter-

preted as the transformation on observations y that both maximizes the posterior likelihood

p(x|ȳ), and also maximizes the expected information gain EIG(ȳ). By interpreting the re-

sult from an experiment M as a summary statistic, we use a similar derivation to show that

maximizing the EIG of a design M is equivalent to maximizing the posterior likelihood

that the design induces in expectation over a joint probability p(x,y|M):

max
M

EIG(M) =Ep(y|M) [DKL(p(x|y) || p(x))] (6.1)

=Ep(y|M)

[
Ep(x|y) [log p(x|y)− log p(x)]

]
(6.2)

=Ep(y|M)

[
Ep(x|y) [log p(x|y)]

]
(6.3)

=Ep(x,y|M) [log p(x|y)] . (6.4)

We have simplified the expressions by using the fact that the maximization is constant with

respect to the prior p(x) in line 3 and then the law of total expectation in the last line.

Crucially, the final expression is equivalent to the quantity (posterior log likelihood) that is
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used to guide optimization of likelihood-based conditional generative models:

max
θ

Ep(x,y) [log pθ(x|y)] , (6.5)

where θ are the network weights that define the conditional generative model. The equiv-

alence between the EIG and the objective in Equation Equation 6.6 implies that we can

setup a joint optimization:

max
θ,M

Ep(x,y|M) [log pθ(x|y)] . (6.6)

and that the gradient signal from the objective can be back-propagated to the design M to

calculate an update ∇M and it will point in the direction of increased expected informa-

tion gain. Using conditional generative models for EIG optimization has been previously

suggested by separate arguments in [177]. A particular class of models that is trained with

this objective are conditional normalizing flows [31, 178] a type of generative model that

is known to be universal approximators of distributions [179]. Conditional normalizing

flows are an attractive choice because of their exact likelihood evaluations that enables the

aforementioned joint optimization in the first place and also because they are invertible by

design thus lead to efficient memory use during training on large inputs. In this work, we

exploit this equivalence and conditional normalizing flows to perform Bayesian optimal

experimental design on a large-scale imaging problems. Next we meet the challenge of

finding binary designs by reinterpreting the design as a probabilistic sampling pattern.

6.2.2 Probabilistic mask design

We express the design parameters as binary mask where a 1 means that we have placed a

sensor at this location and 0 otherwise. Instead of directly optimizing for binary mask M,

we optimize for parameters of a Bernoulli distribution for each possible binary value. This

is achieved by following the methods from [180] where we parameterize the distribution
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as real values w then create a binary the mask by applying the indicator function 1w<u

where u is sampled from the uniform distribution u ∼ U(0, 1). We insure that the sampling

budget is respected by normalizing w such that the average value is kept equal to the budget

s. Thus the binary mask is defined as

M(w) := 1sw
w
<u (6.7)

where u ∼ U(0, 1). (6.8)

When optimizing for w with gradient descent, we calculate the gradients of the indicator

function with the pass-through gradient approximation from [181] by treating the indicator

function as the identity during back propagation. We chose to express the binary mask

as in a probabilistic manner for two reasons. First, probabilistic sampling of the mask

during training aids in jumping out of local minima that would be challenging to avoid if

the mask was deterministic. Secondly, because the optimized mask represents a relative

likelihood of sampling then the sampling budget s can be changed post-hoc by the user. In

other words, changing the sampling budget does not require retraining the network instead

requires simple a re-scaling of the learned probabilistic mask w.

TO BE EXACT WE ARE SOLVING THE EIG BUT WITH A SPARCITY CON-

STRAINT

6.2.3 Experimental design for high-dimensional medical imaging

Magnetic Resonance Imaging (MRI) is an important modality that is routinely used in the

diagnosis of diseases related to cancer, neurology and the musculoskeletal system. The

measured field by an MRI machine is spatial frequencies of the patient tissue. Each mea-

surement takes time thus taking less measurements translates to savings in money due to

expensive operation and also results in increased patient comfort.

We use the FAST MRI knees dataset [103] to create a training pairs comprised of (320×
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320) ground truth multi-coil images and (640 × 386) single-coil k-space observations as

complex numbers. We use 1800 training samples (a relatively low number as compared to

related work [180, 182] that used between 17k-34k training pairs.)

Given the Fourier transformation operator A, we solve the following maximization

with stochastic gradient descent to jointly train a conditional normalizing flow fθ and the

probabilistic design parameterized by w:

θ̂, ŵ = argmax
θ,w

1

N

N∑
i=1

(
−1

2
∥fθ(x(i);A⊤M(w)⊙ y(i))∥22 + log |detJfθ |

)
, (6.9)

where A⊤ is the adjoint Fourier transform, and Jfθ is the Jacobian of the normalizing flow

as is needed for maximum-likelihood training as per the change of variables formula. Here

we implement our conditional normalizing flow with InvertibleNetworks.jl [33] that takes

advantage of the invertiblity of normalizing flow layers to achieve low-memory require-

ments during training. After training, the network is an amortized sampler for the posterior

distribution for all observations in the training distribution. Given the optimized network

parameters and the optimal design we sample from the posterior distribution by first acquir-

ing data yobs from the field as prescribed by the optimal design M̂(ŵ) and then generating

posterior samples by passing Gaussian noise through the inverse network as such:

x = f−1

θ̂
(z;A⊤yobs) (6.10)

where z ∼ N (0, I). (6.11)

Note that we decided to process the sub-sampled data with the adjoint Fourier operator

A⊤ that incurs an additional computational cost during training for our method. For our

training hardware, the baseline took 16 hours to train and our method took 20 hours on a

single GPU. Although the adjoint operator is used during posterior sampling in Equation

Equation 6.10, we only need to calculate it once then an arbitrary number of posterior
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samples can be generated by resampling the Gaussian noise z.

As far as we understand, this is the first work that explores a scalable solution for

Bayesian experimental design in MRI so we build our own baseline that used the exact same

density estimator fθ. This allows us to understand the uplift achieved by doing experimental

design while controlling for the neural network architectures used and also the fact that

our solution provides probabilistic solution. In other words, the baseline solves Equation

Equation 6.9 but only optimizes the network parameters θ and uses a fixed mask Mb. We

hand craft the fixed baseline mask by following the methods in [180, 183] and craft a mask

that captures low frequencies and then randomly samples high frequencies as shown in

Figure Figure 6.1c.

6.3 Results

After training and testing on the FASTMRI dataset, we compare the posterior inference

when conditioning on data produced by a hand-crafted experiment as compared to our

method that is conditioned on data that is measured with our optimal design based on

maximized expected information gain. We show that posterior samples from our method

are more realistic and lead to increased performance in downstream image reconstruction

tasks.

6.3.1 Optimized experimental designs

After training, our method produces two outputs: an amortized posterior sampler pθ̂ and

the optimized mask M̂ = M(ŵ). We train and test using a design budget of 2.5% of all

k-space frequencies s = 0.025. Our final optimized probabilistic mask is shown in Figure

Figure 6.1a, expressed as a sampling density. Using Equation Equation 6.7, we transform

the probabilistic mask to final binary mask that can be used in the field to decide which

k-space locations should be sampled to collect data.

We make the following observations on our optimized design shown in Figure Fig-
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(a) Learned probabilis-
tic design ŵ

(b) Learned binary de-
sign M̂.

(c) Hand-crafted base-
line design Mb

(d) Fully sampled data

Figure 6.1: Optimized design compared to hand-crafted design.

ure 6.1a: (i) the optimized design has learned from the training set that it needs to em-

phasize sampling of low frequencies in the center of the data space but has done so in a

smoother more efficient manner than the baseline. (ii) the learned design has chosen an

anisotropic emphasis on the vertical events in kspace evidenced by the ellipsoid shape of

the mask (iii) as seen by the asymmetric emphasis of the learned design on the right side of

frequency space, the learned design has taken advantage of the Hermitian symmetry that is

inherent to MRI machines [184] without any input of this domain knowledge.

Both methods train an amortized posterior sampler that is sampled by passing Gaussian

noise through the inverse network as in Equation Equation 6.10. We compare the quality of

the posterior samples with the unoptimized mask in Figure Figure 6.2 with the samples with

the optimized mask in Figure Figure 6.3. The posterior samples that used our optimized

mask show sharper and more realistic features throughout the reconstruction.

By calculating the intrasample statistics of the posterior samples, we study the be-

haviour of the posterior mean and the posterior standard deviation. We calculate these

statistics by taking posterior samples as calculated in Equation Equation 6.10 then calcu-
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(a) Posterior sample x ∼ pθ̂ (b) Posterior sample x ∼ pθ̂ (c) Reference image

Figure 6.2: Posterior samples from the baseline method with hand-crafted design.

(a) Our posterior sample x ∼
pθ̂,M̂

(b) Our posterior sample x ∼
pθ̂,M̂

(c) Reference image

Figure 6.3: Posterior samples from our method with optimized design
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(a) Baseline posterior mean:
SSIM= 0.57

(b) Baseline posterior stan-
dard deviation

(c) Baseline error: NMSE=
0.1053

(d) Our posterior mean:
SSIM= 0.68

(e) Our posterior standard de-
viation

(f) Our error: NMSE=
0.0223

Figure 6.4: Pointwise statistics from the baseline compared to our method.

lating the empirical statistics of the mean and standard deviation:

E p := Ex∼p(x|y) [x]

STDEV p :=
√
Ex∼p(x|y) [(x− E p)2].

We plot these statistics for the same test sample in Figure Figure 6.4. We also plot the

error of the posterior mean with respect to the reference image and note that for the test

sample selected, our method shows less total uncertainty and also less error.

To quantify the gain in quality achieved by our optimal design as compared to the hand-

crafted design, we calculate an image quality metric of normalized mean squared error

133



(a) Our optimized design reduces un-
certainty

(b) Reduced uncertainty leads to lower
error

Figure 6.5: Comparing reduction in uncertainty achieved by our method.

(NMSE) between the posterior samples’ mean and the ground truth over an unseen test set

of 100 samples. We also quantify the overall uncertainty of a certain posterior inference

by calculating the normalized mean squared standard deviation. Since the EIG is based

on maximizing the posterior likelihood or equivalently lowering the posterior entropy then

we expect our optimal design to lead to inference with less uncertainty. We summarize

these results in Figure Figure 6.5a showing that the uncertainty is consistently reduced by

our method over the test set and furthermore that this translates to overall less error in the

reconstruction given by the posterior mean as shown in Figure Figure 6.5b.

6.4 Related work

We briefly outline similar work to this manuscript. The authors [185] use a pretraining

phase that allows to efficiently compute the EIG based on a computed MAP approximation

then efficient calculations of the posterior covariance. Given this EIG estimate, they pro-

posed a set of greedy algorithms can be used to find demonstrably optimal EIG designs as

compared to baselines. Similar to our work with normalizing flows, [186], used the theory

laid out in [177] to train an amortized conditional normalizing flow that works as an ap-

proximation to the EIG and then shows that the EIG is accurate as compared to a known

analytical EIG. Although our methods are similar, we also learn the design jointly during
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normalizing flows training.

In the medical field, [187] trained a policy guided agent paired with a high quality re-

construction process to find optimal selections of measurement angles in sequential CT

imaging. Specifically for MRI [188] showed that particular qualities such as edge promo-

tion can be incorporated into a Bayesian experimental design framework. In the seismic

field, [189] used a similar probablistic interpretation to the design as ours and added extra

steps to insure that the final binary mask fulfilled certain required sampling qualities.

6.5 Conclusions

We have demonstrated the implementation of Bayesian experimental design on a realistic

medical imaging problem. Our method relies on the exact likelihood density evaluation

of normalizing flows leading to a simple method to jointly learn variational inference pa-

rameters and experimental design parameters. On top of this, the invertible architecture of

normalizing flows enabled training on a large-scale imaging problem in MRI. Due to an ab-

sence of previous literature on solving this experimental design problem from a Bayesian

perspective, we made compared our method with an equivalent Bayesian approach that

does not use experimental design. Our experiments show gains in two downstream metrics:

the reduction of the uncertainty in the posterior inference and the quality of the posterior

samples’ mean as measured with image quality metrics.
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CHAPTER 7

EXPLOITING LONG-RANGE CORRELATIONS: THE PITFALLS OF PATCH

TRAINING FOR UNCERTAINTY QUANTIFICATION IN LARGE SCALE

IMAGING
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SUMMARY

Uncertainty quantification is essential for risk-averse imaging applications, where

Bayesian methods excel by naturally representing uncertainty through posterior variance.

However, scaling these Bayesian methods to large problems is challenging due to the curse

of dimensionality. We introduce the use of normalizing flows to efficiently train amor-

tized Bayesian methods for large-scale 2D and 3D imaging problems. Utilizing a memory-

efficient implementation of normalizing flows, we achieve two main objectives: (1) per-

form high-dimensional inference on large 2D and 3D inverse problems, and (2) identify

the pitfalls of patch-based training for normalizing flows. Through a stylized problem, we

show that patch-based training fails to capture full posterior statistics, as evidenced by the

convergence of the posterior covariance matrix to the analytical posterior covariance. Then

we use realistic datasets for computed tomography and photoacoustic imaging to demon-

strate the scalability of our framework to practical applications in large 2D and 3D inverse

problems.

7.1 Introduction

Data-driven machine learning models are increasingly utilized in medical imaging, where

they leverage prior information learned from training samples to improve inference speed,

supported by hardware accelerators [43]. However, the limited VRAM on GPUs poses a

significant challenge, as it restricts the ability to train conventional architectures on datasets

where the examples have a high dimensionality. This limitation arises from the need to store

intermediate network activations during backpropagation [190]. To circumvent this issue,

practitioners often resort to cropping smaller patches from larger inputs for training, which

are more manageable in terms of memory requirements [191, 34, 192, 193]. During testing,

the full-sized images can be processed by the backbone network, typically a convolutional

neural network (CNN), which is agnostic to the size of the input.
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The challenge of memory management is particularly relevant with normalizing flows,

which require invertible layers, thereby necessitating a latent space equal in size to the tar-

get variable. This dimensionality preserving constraint precludes the use of architectures

that reduce dimensionality, such as contracting or encoder-decoder models, to save mem-

ory [194]. Despite ongoing debates in the literature regarding the memory efficiency of

normalizing flows [34, 35], they can be implemented in a way that is remarkably memory

efficient. Notably, with proper implementation, normalizing flows can achieve constant

memory usage as the number of layers increases [33]. A practical example of such imple-

mentation is found in InvertibleNetworks.jl, which allows for the use of full-sized images

and volumes as inputs to normalizing flows. This project aims to explore the benefits of

training with full-sized inputs and evaluate the potential drawbacks of training with cropped

patches.

The aim of this project is to study the robustness of simulation-based inference SBI

techniques under practical training regimes. We seek to answer several research questions:

1. What goes wrong in CNN-based variational inference when the learned generative

models are not given the full image during training?

2. Is there an optimal balance between the accuracy provided by full-image input and

the efficiency of patch-based training?

3. What prescriptions can we suggest when using normalizing flows for variational in-

ference on large scale unknowns?

7.2 Methods

7.2.1 Memory efficient normalizing flows

In this manuscript, we focus on conditional normalizing flows [cite] trained with the for-

ward kullbeck liebler divergence which minimizes the distributional distance between
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the estimated conditional distribution pθ(x | y) and the ground truth posterior distribu-

tion. This training scheme requires training pairs from the joint distribution collected in

D = {(x(n), y(n))}Nn=0. These are generated by sampling from the prior, {x(n)}Nn=0 ∼ p(x),

followed by a forward simulation. Due to their invertible architectures, normalizing flows

can be trained with a relatively straightforward maximum likelihood objective:

θ̂ = argmin
θ

1

N

N∑
n=0

(
1

2
∥fθ(x(n);y(n))∥22 − log

∣∣ detJfθ

∣∣) .

Crucially, the training objective is given by the change of variables formula with relies

on the invertibility of the neural network fθ. Since invertibility requires that the network be

one-to-one the dimensionality of its input and output must be equal. This necessitates that

the latent variable be the same size as the input which in the case of images can be very

large. Unlike GANS [cite], normalizing flows can not rely on contractive architectures

for low memory usage. Indeed previous work in the literature [cite cite] have noted that

normalizing flows can run into out-of-memory issues. Thus but this is actually not the case

since invertibility can be exploited to create extremely frugal memory usage.

Normalizing flows are invertible thus the intermediate activations need not be stored

on memory. Instead these activations can be recomputed from the output of the layers

since they are invertible. By writing key gradient layers be hand, we make proper use of

invertibility and have low memory usage avoiding out-of-memory problems [33]. As we

will demonstrate, these networks can now scale to large input sizes and also large number

of network layers.

7.2.2 Convolutional layers in Normalizing flows

The main neural network backbone in normalizing flows is the so called ”residual block” in

the coupling layer [48]. This network need not be invertible and while it can theoretically

be any layer, these typically are constructed to promote some inductive bias that we know is
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in our target distribution. Some examples include, the use of dense networks for vectorized

data [cite], or recurrent neural networks for time series data [cite]. In this work, we focus

on image data thus use convolutional neural networks as the backbone.

The use of convolutional neural networks allows us to scalably apply normalizing flows

for large scale imaging problems. Furthermore, convolutional layers allow us to verify our

hypothesis that patch-based training can be detrimental to inference by training on small

patches and then testing the network on the full image.

7.3 Results

We present three sets of results. The first is on a stylized problem where the simplified

assumptions allow us to. Second, we use a newly released x-ray computed tomography

dataset with large 2D images to demonstrate the effects of patch training on a practical

imaging problem. Lastly, we tackle a 3D inverse problem in photoacoustic imaging.

7.3.1 Stylized problem

To effectively identify the errors introduced by patch training, we employ a stylized prob-

lem. Consider the scenario where the unknown parameter x ∈ Rm follows a Gaussian

distribution with a known mean, µx, and covariance, Σx. The forward model involves

applying a known matrix A ∈ Rm×m, along with additive Gaussian noise ε ∈ Rm charac-

terized by known mean, µε, and covariance, Σε.

The inverse problem is to recover x given the observation:

y = Ax+ ε

Drawing from methodologies outlined in [13], we understand that the posterior distri-

bution p(x|y) is also Gaussian. Utilizing the parameters A, µε, µx,Σx,Σε, we can compute

the ground truth posterior’s covariance Σpost and mean µpost, providing a clear basis for our
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analysis.

Having access to the ground truth covariance is particularly beneficial for our investiga-

tion, as it enables direct measurement of correlations between different dimensions of the

unknown parameter. This access is crucial for uncovering the limitations of tested meth-

ods in capturing long-range correlations. In line with this, posterior sampling methods are

favored over those that merely output the standard deviation (the trace of the covariance)

[90]. The latter are unable to capture long-range correlations while the posterior covariance

can always be empirically calculated from posterior samples.

For our experiment, we work with an unknown parameter size of m = 32 and will test

three different training scenarios:

1. Input whole vectors x,y

2. Input half vector x[i : i+ 16],y[i : i+ 16]

3. Input a fourth vector x[i : i+ 8],y[i : i+ 8]

Each of these three scenarios trains an amortized posterior sampler pθ8(x | y), pθ16(x |

y), pθfull(x | y) which we denote respective to the input size they were trained on. Please

refer to supplementary information for training details.

Following the training phase, we input the same full observation yobs ∈ R32 to all

of the three trained models. This is possible because the networks are primarily based

on convolutional layers. This setup allows us to generate posterior samples from each

training configuration for the same observation. We then calculate the empirical mean

and covariance from these samples to compare with the ground truth covariance Σpost. In

Figure 7.1 we show the empirical posterior covariance matrices compared to the known

ground truth posterior covariance matrix. We observe that in the patch-based covariances

there is an imprint of low error that is the size of the patch used, while the full input posterior

covariance has spatially homogeneously distributed error with no concentrated areas of

error. We interpret these results to mean that the full input posterior is able to capture the
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full statistics including the long range sensitivities while the patch-based posteriors were

unable to capture these important sensitivities.

(a) Patch size 8 (b) Patch size 16 (c) Full size 32 (d) Ground truth

(e) Error patch size 8 (f) Error patch size 16 (g) Error full size 32

Figure 7.1: Effect of patch-based training on linear inverse problem. Posterior covariance
from: (a) CNF trained on patch size 8, (b) CNF trained on patch size 16, (c) CNF trained
on full vector size 32. (d) Analytically calculated ground truth covariance matrix.

7.3.2 Large 2D computed tomography

We focus on limited-view CT image reconstruction. Due to the long streak artifacts intro-

duced by the limited-view adjoint operator it is expected that patch-based training will be

detrimental to the quality of the approximated posterior distribution.

We simulate limited-view data from the 2DeteCT dataset by taking the full sinograms

from mode 2 and subsample the first 120 angles. To create a training dataset, we pair the

limited-view sinograms to a high fidelity reconstruction provided in mode 2 reconstruction

of the 2DeteCT dataset. The full size of the reference reconstructions are 1024× 1024. An

example of a training pair is shown Figure 7.2.
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(a) Limited-view sinogram (120 angle) (b) Reference ground truth

Figure 7.2: Example of limited-view CT reconstruction training pairs.

We train a conditional normalizing flow to solve the limited view reconstruction prob-

lem by training on the pairs described in the previous section. Crucial to acceptable perfor-

mance, we use a physical summary statistic as described in [39] to summarize the observed

sinogram with a single filtered backprojection. To see what this physical summary statistic

looks like please refer to the top left corner of Figure 7.3.

In order to demonstrate the effect of patch-based training on the limited-view recon-

struction problem, we train three normalizing flow models: one on patch sizes of 64× 64,

one on patch sizes of 256×256 and one on the full images of size 1024×1024. The process

of creating patches is done by a random crop of the images during training.To control for

the computational load of training on different input sizes we train the models for the same

amount of time instead of the same amount of epochs since an epoch with a small patch

size takes longer than with a larger epoch.

7.3.3 Computed tomography posterior sampling

After training, we evaluate the three models on an unseen limited-view sinogram and re-

port the posterior sampling results including individual posterior samples, posterior mean,

posterior standard deviation and the error created by using the posterior mean as a point es-

timate. In Figure 7.3, we show the posterior sampling results from the model trained on the
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full input size of 1024× 1024. We note that there is good agreement between the posterior

samples. In particular, the outer circumference of the tube has been properly reconstructed.

This structure although not present in the observation is consistently present in the training

dataset thus information in the prior that has been properly incorporated in the posterior

samples.

Figure 7.3: Results of posterior sampling for limited-view reconstruction with full input
training. The error and the standard deviation are plotted using the same colorbar.

The posterior sampling results for the patch-based training with size 256 × 256 are

shown in Figure 7.4. By drawing attention to the discontinuities in the posterior samples

along the circumference (corresponds to the wall of the tube holding the materials), we can

intuitively observe the difficulties that this model has in reconstruction structures with long

range correlations. These discontinuities translate to larger error in these areas. Further-

more there is overall more uncertainty and more error in the structures inside the tube. We

summarize the error with the Normalized Mean Squared Error (NMSE). and summarize

the uncertainty with the average value of the standard deviation over all pixels.
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Figure 7.4: Results of posterior sampling for limited-view reconstruction with 256 × 256
patch training. The dotted red box on the upper left corner visualizes the relative size of
the patch to the full image.

Over a leave-out test set of 50 samples, we track the minimum NMSE during training

to understand the convergence of the models. We plot these values relative to compute

time and observe in Figure 7.5 that the patch-based models converge to a value that is

substantially worse than the full input model. The model trained on 64× 64 is performing

so poorly that its line is not visible on the limits of this plot. For brevity, we do not show

its sampling results from the 64× 64 model.

Figure 7.5: Comparing convergence of NMSE during training. The patch-based models
converge to worse performance than the full input model.
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To understand the quality of the probabilistic results, we also report the following qual-

ity metrics for uncertainty.

1. Average standard deviation (ASD): Due to the fact that we do not desire a method

that has arbitrarily high uncertainty, we report the average standard deviation of the

posterior samples over all pixels:

ASD =
1

Npixel

Npixel∑
i=1

SDi

where i is an index that goes over all the pixels in the images and SD is the image of

standard deviation calculated from posterior samples.

2. Negative log-likelihood (NLL). This metric is based on a Gaussian assumption on

the error made by the posterior mean x̂ [195] and calculated by:

NLL =
1

2

Npixel∑
i=1

1

2SD2
i

(x∗
i − x̂i) +

1

2
log(2πSD2

i ).

This quality metric says in the first term that we can have high error in some pixels

as long as it is supported by high uncertainty in those pixels while the second term

penalizes having an arbitrarily high standard deviation everywhere.

3. Uncertainty Calibration Error (UCE), an important feature of uncertainty is its

capability of predicting error. One way to measure this feature is by using the cali-

bration metric as defined in [79]. For practical implementation details of this metric

please refer to [78].
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Table 7.1: Quality metrics of patch-based training compared to full image input for limited-
view computed tomography.

Training Method NMSE ↓ ASD ↓ NLL ↓ UCE ↓

Patch 128× 128 0.0858 0.0196 −2.08 0.245
Patch 256× 256 0.0256 0.0164 −2.90 0.128
Full input 1024× 1024 0.0170 0.0127 −2.99 0.126

7.3.4 3D photoacoustic imaging

In photoacoustic imaging, the inverse problem involves recovering the initial photoacoustic

source x, where observations are modeled using a linear equation:

y = F(x) = Ax+ ε

here A represents the solution of the wave equation at restricted to receiver locations, given

the initial wavefield condition x, and ε denotes measurement noise.

Due to noisy observations and limited view receivers, the photoacoustic problem is

best treated from a probablistic perspective. Although methods for full 3D volume image

reconstruction exist [196, 197], these create single point estimates. We were unable to find

any previous literature on full 3D volume posterior sampling of the photoacoustic problem.

For this, we will generate training volumes from lung photoacoustic images, follow-

ing methodologies similar to those described by [196], and originally sourced from public

datasets [198]. To show the ability of our trained models to generalize to unseen patients,

we train on a 3D volume from one patient and test on another unseen patient.

To assess the effectiveness of patch-based training approaches in handling large 3D

volumes, we propose the following training scenarios:

1. Whole Volume Input: Using the entire volume of size 80× 240× 240.

2. Large Volume Patches: Employing patches of size 80 × 120 × 120 to manage com-

putational load while retaining significant contextual information.

147



3. Small Volume Patches: Utilizing smaller patches of size 64 × 64 × 64, focusing on

specific regions.

To effectively visualize the 3D volume, we employ the Maximum Intensity Projection

(MIP) technique, which projects the maximum valued pixel in each dimension onto three

panels. This visualization technique is particularly useful for highlighting the key features

and differences across various dimensions of the photoacoustic volume.

We first report the sampling results of the model that was trained using the full vol-

umes for an unseen test observation in Figure 7.6. We observe high qualitative agreement

between the posterior mean and the ground truth. In particular we would like to highlight

the reconstruction of vertical vessels, these are particularly difficult to image since they are

close to being in the null space of the forward operator.
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(a) Ground truth image (b) Adjoint solution

(c) Posterior mean (d) Posterior deviation

Figure 7.6: Volume inverse problem in photoacoustic imaging. (a) Ground truth reference
image derived from lung CT scans. (b) The result of a single adjoint application on the
observed data A⊤yobs, showcasing evident limited-view artifacts, particularly in vertical
vessels. (c) Mean of our amortized posterior sampling, offering a point estimate of the un-
known photoacoustic source. (d) Standard deviation of our amortized posterior sampling,
highlighting areas of uncertainty.

The posterior sampling results of the model trained on patches of sizes 80 × 80 × 80

is shown in Figure 7.7. The inferior quality of the posterior mean in Figure 7.7a is evident

particularly in the vertical vessels which are not well supported by the observations and

that are also long therefore its long range correlations are not well captured by this model
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that was trained on patches. Furthermore we noticed artifacts in the standard deviation

Figure 7.7b that became worse as the patch-size became smaller.

(a) Posterior mean (b) Posterior deviation

Figure 7.7: Probabilistic solutions derived from patch-based training in photoacoustic
imaging. (a) Mean of our amortized posterior sampling. (b) Standard deviation of our
amortized posterior sampling, showing artifacts due to the patch-based training.

To quantify the quality of the posterior means as an image reconstruction, we take the

average RMSE in a test set of 20 observations shown in Table 7.2. We emphasize that

these metrics is relatively efficient to calculate over many test examples since the model is

amortized and therefore does not require expensive training for each new observation.

Table 7.2: Quality metrics of patch-based training compared to full volume input.

Training Method RMSE ↓ SD ↓ NLL ↓

Patch 40× 40× 80 0.00226 0.00164 −2.08
Patch 80× 80× 80 0.00202 0.00146 −1.52
Full input 240× 240× 80 0.00172 0.00136 −2.75

7.4 Conclusions

We demonstrated the application of conditional normalizing flows to large 3D inverse prob-

lems without using patches or dimensionality reducing methods. The results are driven by
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a normalizing flow implementation which exploits invertibility for memory frugality. To

motivate the usage of these proper implementations instead of depending on patch-based

training, we show the detrimental effect of patch-based training in a stylized problem and

real world applications in medical imaging. Our experiments showed that patch-based

training is detrimental to the quality of the probabilistic solutions in the regimes of image

reconstructions and also the quality of their uncertainty quantification. Thus we suggest

using full image or volume training to achieve the highest quality in these two regimes and

provide the software necessary to do so.
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CHAPTER 8

CONCLUSION

I trust that the chapters in this thesis have demonstrated that generative models can be

effectively utilized to sample from the Bayesian posterior of high-dimensional imaging

problems across various applications in seismic and medical imaging. These results provide

strong evidence in support of my original thesis statement:

Generative models are a scalable tool to perform uncertainty quantification of

high-dimensional seismic and medical imaging.

To make these contributions explicit, I will now outline the key findings and advance-

ments demonstrated in this work:

8.1 Invertible networks for memory efficiency

Although the methods presented in this thesis are generative model agnostic, as evidenced

by the implementation of the ASPIRE algorithm with normalizing flows in Chapter 4 and

then diffusion models in Chapter 5, it is important to highlight scenarios where normal-

izing flows offer distinct efficiency advantages. In particular, users working in environ-

ments with limited computational resources or high memory demands may benefit from

the unique properties of normalizing flows, which can significantly reduce the memory

footprint during training and inference.

Normalizing flows are inherently invertible. This property eliminates the need to

store intermediate activations during the forward pass, allowing memory-efficient back-

propagation through the use of reversible computation. By leveraging this characteris-

tic, InvertibleNetworks.jl enables the training of normalizing flows on image
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sizes that were previously considered infeasible due to memory constraints. For exam-

ple, while prior work in the field often limited normalizing flows to image dimensions of

(256 × 256), this implementation extends their applicability to much larger images, such

as (1024× 1024) or beyond.

8.2 Physics-based summary statistics

Due to the complexity of the observations, traditional Simulation-Based Inference (SBI)

methods fail when applied to highly complex inverse problems, such as wave-based imag-

ing subsection 4.4.3. These problems are characterized by nonlinear, high-dimensional

forward models, and noisy, incomplete data, which exacerbate the ill-posed nature of the

inverse problem. To address these challenges, we proposed extending the concept of

summary statistics by introducing a physics-based summary statistic in the form of the

score—the gradient of the log-likelihood with respect to the parameters. This approach

leverages domain-specific physics to reduce the complexity of the inference problem, mak-

ing it more tractable.

I have made contributions to the theoretical foundations of this approach, specifically by

proving that the use of the score as a summary statistic leaves linear-Gaussian inverse prob-

lems completely unbiased. Beyond these theoretical contributions, the proposed methods

have been extensively validated through a series of experiments presented across various

chapters. Collectively, these results highlight the practical utility of the methods, show-

casing their potential to advance the state-of-the-art in Bayesian inference for complex,

high-dimensional problems. Additionally, the WISE-ASPIRE-WISER paradigm offers a

scalable suite of algorithms tailored to different trade-offs between computational cost and

posterior quality, providing flexibility for a variety of use cases.

153



8.3 Frugal use of expensive physics

Another important point I want to emphasize is the necessity of making frugal use of the

physical operator. It is crucial to clarify that the goal of this thesis is not to eliminate the use

of physics in solving inverse problems. On the contrary, my central message is that physics

plays an indispensable role in achieving reliable solutions. The principled integration of

physics into the algorithmic framework is what drives the performance gains observed in

methods like ASPIRE, which builds upon and extends the foundation laid by algorithms

such as WISE.

ASPIRE exemplifies how leveraging additional physics can enhance algorithmic perfor-

mance without compromising scalability. By incorporating a an extra gradient evaluation

per iteration, ASPIRE enriches the intermediate summary statistic, improving the quality

of posterior sampling. This selective and efficient use of the forward and adjoint operators

is what I define as ”frugal.” It ensures that the algorithm remains computationally feasible

while still taking full advantage of the underlying physics.

In summary, the message of this thesis is not to reduce reliance on physical models

but to use them efficiently. By striking the right balance between leveraging physics and

maintaining scalability, methods like ASPIRE demonstrate that frugal yet principled inte-

gration of physics can significantly uplift performance in solving high-dimensional inverse

problems.

8.4 Limitations and future work

I will end by going over some of the limitations of the proposed methods and how I would

propose to overcome these limitations.
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8.4.1 True likelihood-free inference

A notable limitation of the methods currently presented is their reliance on calculating the

gradient of the data likelihood. At first glance, this dependency appears to make these

methods unsuitable for truly likelihood-free scenarios. However, there are two promising

avenues for future research that could potentially overcome this limitation.

The first avenue involves recognizing that the assumed likelihood used in calculating

the score need not match the true likelihood p(y | x). As discussed by [124], this summary

statistic remains effective in likelihood-free contexts as long as the assumed likelihood is

reasonably close to the true one. Furthermore, learned likelihoods [199] derived from sam-

ples can be employed. In this case, a surrogate model could first be trained to approximate

the likelihood, after which automatic differentiation could be used to obtain the gradient.

The second avenue proposes completely offloading the gradient computation to the

learned generative model. Specifically, instead of providing the precalculated gradient,

the network could take as input the observed data yobs and the predicted data F(x0).

This would allow the network to either approximate the gradient or identify alternative,

potentially more informative summary statistics. In the context of the iterative ASPIRE

framework, this could be naturally extended by feeding the residual at the i-th iteration,

F(xi) − yobs, directly into the network. As the intermediate estimates xi converge to-

ward the maximum likelihood solution, the residual decreases, making the updates easier

to learn.

8.4.2 Construction of training datasets

The most salient limitation of the presented methods in this thesis is the requirement of

training samples from the prior distribution p(x). While this is a known limitation for

SBI methods and various applications can safely assume that they have access to these

(medical imaging modalities can make high quality reference solutions such as with high-

dose multi angle MRI) there are some applications such as in seismic imaging where the
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access to these samples is not easily given. To I proposed and started the development of the

Subsurface foundational model with AI-driven Geostatistical Extraction (SAGE) algorithm

[173], while the final proof-of-concpet of SAGE on field data has not been completed, I am

still actively contributing to this project and hope to do so in the future.

A key limitation of the methods presented in this thesis is their reliance on training sam-

ples drawn from the prior distribution p(x). This dependency is a well-known challenge

in Simulation-Based Inference (SBI) methods, and while certain applications can safely

assume access to high-quality prior samples, others face significant hurdles in this regard.

For example, in medical imaging, modalities such as high-dose, multi-angle MRI can pro-

vide reliable reference solutions that serve as effective prior samples. However, in seismic

imaging, obtaining prior samples is far more challenging. Unlike in medical imaging,

where controlled conditions and standardized protocols facilitate data acquisition, seismic

imaging relies on field data that is often sparse, noisy, and subject to complex subsurface

conditions. This lack of readily available high-quality samples limits the applicability of

standard SBI techniques in seismic workflows.

To address this issue, I proposed and began developing the SAGE (Subsurface foun-

dational model with AI-driven Geostatistical Extraction) algorithm [173]. SAGE aims to

overcome the data scarcity problem by training a generative model using only available

seismic data, in the form of borehole well and migrated images. While the final proof-

of-concept for SAGE on field data remains a work in progress, preliminary results show

promise. The algorithm has the potential to generate synthetic prior samples that closely

mimic real subsurface conditions, paving the way for its use in training generative net-

works.

Although the full validation of SAGE on field data has not yet been completed, I con-

tinue to actively contribute to this project. I am optimistic about its future development and

moving forward, I aim to be involved in its final stages.
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8.4.3 Multi-modality and multiple fiducial points

An open question in the ASPIRE algorithm is how to leverage the probabilistic nature of

its intermediate outputs. At each iteration, ASPIRE produces posterior samples, which

offer a rich representation of the solution space. The practical approach we adopted was

to compress these samples into a single fiducial point, specifically the posterior mean. As

shown in section .1, the posterior mean possesses desirable properties. However, there are

scenarios where compressing the posterior in this way might not be ideal, particularly if

valuable uncertainty information is lost in the process.

One alternative approach is to avoid compressing the posterior samples entirely. In-

spired by the method proposed in [200], we could use the posterior samples to define mul-

tiple fiducial points. This would allow us to treat these fiducial points as nuisance variables

and marginalize out their influence. Practically, this is implemented by augmenting the

training dataset, pairing each ground truth sample with multiple gradients corresponding to

different fiducial points. This strategy effectively increases the diversity of the training data

and allows the model to learn a more robust representation of the gradient operator across

various fiducial points.

Regardless of the specific path chosen, scalability remains a key concern, as both ap-

proaches introduce additional gradient evaluations. To address this, I propose using the

Fourier Neural Operator (FNO) [201] as a surrogate for the gradient operation. FNOs

are designed to efficiently learn mappings between function spaces and have demonstrated

success in approximating complex operators in high-dimensional settings. By replacing

the explicit gradient computation with a learned surrogate, we can significantly reduce the

computational cost, making these probabilistic extensions of ASPIRE feasible even for

large-scale applications.
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Appendices



.1 Proof of Theorem 2

Theorem 2: For a linear inverse problem with forward operator A ∈ Rm×n, an unknown

x with Gaussian prior N (µx,Cx), and additive Gaussian noise N (0,Cε), if the ℓ2 norm

between the current fiducial x0 and the maximum likelihood estimate ∥x0 − xML∥2 is at

least

K · ∥µx − xML∥2 ≤ ∥x0 − xML∥2,

where

K =
∥∥∥(C−1

x +A⊤C−1
ε A

)−1
∥∥∥
2
·
∥∥C−1

x

∥∥
2
,

then forming the posterior with the gradient-based summary p(x | y0) and using the

posterior mean x1 = Ep(x|y0)[x] as the next fiducial will yield an estimate with a smaller ℓ2

norm distance to the maximum likelihood estimate

∥x1 − xML∥2 ≤ ∥x0 − xML∥2.

Proof. We approach this proof in two parts. First, we derive a closed-form solution for the

gradient summarized posterior p(x | y0). Then, we analyze the relationship between the

posterior mean of that distribution and the maximum likelihood estimate.

We are interested in the conditional distribution p(x | y0) where the gradient y0 is

calculated as in @eq-score leading to the expression y0 = A⊤C−1
ε (Ax0−y). Substituting

the observation model y = Ax+ ε into the expression for y0, we get

y0 = A⊤C−1
ε (Ax0 − y) = A⊤C−1

ε (Ax0 −Ax− ε) = A⊤C−1
ε A(x0 − x)−A⊤C−1

ε ε.
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Given x, the variable y0 is Gaussian because it is a linear transformation of the Gaussian

noise ε. We can calculate the covariance of this distribution by noting that

Cov(A⊤C−1
ε ε) = (A⊤C−1

ε )Cov(ε)(A⊤C−1
ε )⊤ = (A⊤C−1

ε )CεC
−1
ε A = A⊤C−1

ε A.

yielding the Gaussian distribution

p(y0 | x) ∼ N (A⊤C−1
ε A(x0 − x),A⊤C−1

ε A).

To derive the posterior p(x | y0), we use Bayes’ theorem

p(x | y0) ∝ p(y0 | x)p(x),

p(y0 | x) ∝ exp

(
−1

2
(y0 −A⊤C−1

ε A(x0 − x))⊤(A⊤C−1
ε A)−1(y0 −A⊤C−1

ε A(x0 − x))

)
,

p(x) ∝ exp

(
−1

2
(x− µx)

⊤C−1
x (x− µx)

)
.

Thus,

p(x | y0) ∝ exp

(
−1

2

[
(y0 −A⊤C−1

ε A(x0 − x))⊤(A⊤C−1
ε A)−1(y0 −A⊤C−1

ε A(x0 − x))

+(x− µx)
⊤C−1

x (x− µx)
])

.

Expanding the terms:

160



p(x | y0) ∝ exp

(
−1

2

[
y⊤
0 (A

⊤C−1
ε A)−1y0 − 2y⊤

0 x0 + 2y⊤
0 x+ x⊤

0 A
⊤C−1

ε Ax0

−2x⊤
0 A

⊤C−1
ε Ax+ x⊤A⊤C−1

ε Ax+ x⊤C−1
x x− 2x⊤C−1

x µx + µ⊤
xC

−1
x µx

])
.

We ignore terms that are not related to x since these are absorbed into the normalization

constant

p(x | y0) ∝ exp

(
−1

2

[
2y⊤

0 x− 2x⊤
0 A

⊤C−1
ε Ax+ x⊤A⊤C−1

ε Ax+ x⊤C−1
x x− 2x⊤C−1

x µx

])
.

We focus on grouping the quadratic and linear terms in x:

p(x | y0) ∝ exp

(
−1

2

[
x⊤(A⊤C−1

ε A+C−1
x )x− 2x⊤(A⊤C−1

ε Ax0 +C−1
x µx − y0)

])
.

This is the kernel of a Gaussian distribution, so p(x | y0) = p(x | A⊤C−1
ε (Ax0 − y))

is a Gaussian distribution with covariance

Cpost = (A⊤C−1
ε A+C−1

x )−1,

and mean

xPM = Cpost(A
⊤C−1

ε Ax0 +C−1
x µx − y0)

xPM = Cpost
(
A⊤C−1

ε Ax0 +C−1
x µx −A⊤C−1

ε (Ax0 − y)
)
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xPM = Cpost(A
⊤C−1

ε y +C−1
x µx).

Now that we have an analytical expression for the posterior mean of the distribution

conditioned on the gradient, we can proceed to find the relationship between the maxi-

mum likelihood estimate and the summarized posterior mean. Given the observation y, the

maximum likelihood estimate is

xML = (A⊤C−1
ε A)−1A⊤C−1

ε y,

Since (A⊤C−1
ε A)xML = A⊤C−1

ε y, we can substitute xML into the previously derived

expression for the summarized posterior mean

xPM = Cpost
(
A⊤C−1

ε AxML +C−1
x µx

)
xPM = CpostA

⊤C−1
ε AxML +CpostC

−1
x µx.

We need to simplify the term CpostA
⊤C−1

ε A. Recall that Cpost = (A⊤C−1
ε A+C−1

x )−1.

Therefore

Cpost(A
⊤C−1

ε A+C−1
x ) = I,

CpostA
⊤C−1

ε A+CpostC
−1
x = I,

CpostA
⊤C−1

ε A = I−CpostC
−1
x .

Substituting this result into the expression for xPM
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xPM =
(
I−CpostC

−1
x

)
xML +CpostC

−1
x µx,

xPM = xML −CpostC
−1
x xML +CpostC

−1
x µx,

xPM = xML +CpostC
−1
x (µx − xML).

Now, let’s derive the closed-form solution for the norm distance between the posterior

mean and the maximum likelihood estimate. Taking the difference and applying the norm

on both sides

∥xPM − xML∥2 = ∥CpostC
−1
x (µx − xML)∥2.

Using the properties of norms, we can factor out the matrices

∥xPM − xML∥2 ≤ ∥Cpost∥2∥C−1
x ∥2∥µx − xML∥2,

∥xPM − xML∥2 ≤ ∥(A⊤C−1
ε A+C−1

x )−1∥2∥C−1
x ∥2∥µx − xML∥2,

∥xPM − xML∥2 ≤ K · ∥µx − xML∥2.

Under the assumption of the theorem

K · ∥µx − xML∥2 ≤ ∥x0 − xML∥2,

we have

∥xPM − xML∥2 ≤ K · ∥µx − xML∥2 ≤ ∥x0 − xML∥2,

∥xPM − xML∥2 ≤ ∥x0 − xML∥2.
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Thus, the proof is complete. □

.2 FASTMRI acoustic dataset creation

Based off of the MRI dataset [103], we manually assigned acoustic values to MRI inten-

sities by following the table of acoustic brain tissue properties in the supplemental section

of [85]. Although MRI intensities are not necessarily related to acoustic tissue properties,

we found that we could produce reasonably realistic acoustic parameters as compared to

the acoustic parameters from the MIDA volume. In Figure 1, we show some example

training acoustic parameters. We also plot the average and standard deviation between all

1000 training samples in Figure 2. From these plots, we note that there are few similarities

between training examples apart from the biologically consistent human brain structures.

Figure 1: Examples of training examples used to train our method x(n) ∼ p(x).
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(a) Standard deviation of samples√
V p(x) (b) Mean of samples E p(x)

Figure 2: Training dataset used to train models. (a) Standard deviation of samples. (b)
Mean of samples.

.3 Wave modeling and FWI implementation

To mask source-receiver artifacts, the gradients used for the traditional FWI optimizations

are masked by a binary matrix where the mask was made large enough to include the

skull but otherwise assumed no knowledge of the skull. We also avoid the inverse crime

by generating any ”observed” acoustic data with a spatial finite-difference kernel of size

16 gridpoints and with computational time discretization of 0.025 microseconds while the

physical operator used for gradient calculation corresponds to a simulation with spatial

finite-difference kernel of size 8 gridpoints and computational time discretization of 0.5

microseconds.

The clock time of solving the wave equation PDE using our hardware configuration

(NVIDIA A100 40GB VRAM) was on average 0.81 seconds. Using this number and as-

suming that we compute the PDE source terms in parallel then we have calculated the total

clock time for the discussed algorithms in Table 1.

To implement a traditional Full-Waveform Inversion (FWI) solution with Total-

Variation (TV) regularization, we minimized the data misfit using gradient descent and

projected the current solution onto a TV-norm ball of a specified size after each gradient
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Table 1: Costs for wave-based inversion measured by clock time. Estimated using the
timing for the operator solve and assuming parallel computation over source terms.

Method Offline cost (sec) Online cost (sec)

ASPIRE 7290 6.4
Our non-amortized method 2430 654.5
Mean-field / Traditional FWI None 648.0

step. We determined the size of the TV-norm ball by multiplying the TV-norm of the known

ground truth by a factor of 0.75, which was tuned to yield optimal results. To perform the

TV-norm ball projection, we used the algorithm and software from [202]. In Figure 4.12a,

we present the final result of FWI constrained by TV regularization, using the same number

of operator evaluations as in the mean-field solution. We observed that TV regularization

leads to a superior final solution compared to the mean-field approach, though it does so

at the expense of losing uncertainty quantification. Nonetheless, because of the high noise

level, there are still artifacts present in the solution.
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