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Motivation 

Fully sampled data


‣ needs for high resolution 
image


Seismic data


‣ expensive to acquire


Solution


‣ acquire subsampled data


‣wavefield reconstruction



High-frequency wavefield recovery 
with weighted matrix factorizations 
Chapter 2 & 3



Motivations 

Fully sampled data


‣ needs for multiple removal, migration & FWI


Seismic data


‣ expensive to acquire


Conventional matrix completion


‣ exploits low-rank structure for recovery


‣ computationally efficient method


‣ performance degrades w/ increasing frequency

Rajiv Kumar, Curt Da Silva, Okan Akalin, Aleksandr Y. Aravkin, Hassan Mansour, Ben Recht, and Felix J. Herrmann, “Efficient matrix completion for 
seismic data reconstruction”, Geophysics, vol. 80, pp. V97-V114, 2015. 

Zhang, Y. et al. “High-frequency wavefield recovery with weighted matrix factorizations.” In SEG Technical Program Expanded Abstracts, 2019.



Question: Can we improve the recovered result at high 
frequencies?



Matrix completion



Matrix completion

Fully sampled data Subsampled data

Matrix completion



Matrix completion

Successful matrix completion strategy


‣Exploit low rank structure in “some domain”


- fast decay of singular values


‣Sample randomly


- increase rank in “some domain”


‣Optimization


- via rank-minimization

Kumar, Rajiv. "Enabling large-scale seismic data acquisition, processing and waveform-inversion via rank-minimization." PhD diss., University of 
British Columbia, 2017.



Matrix completion

Successful matrix completion strategy


‣Exploit low rank structure in “some domain”
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‣Sample randomly


- increase rank in “some domain”


‣Optimization


- via rank-minimization

Kumar, Rajiv. "Enabling large-scale seismic data acquisition, processing and waveform-inversion via rank-minimization." PhD diss., University of 
British Columbia, 2017.



Low-rank structure 
(w/ 2D seismic survey)

Aminzadeh, Fred, and Shivaji N. Dasgupta. "Fundamentals of Petroleum Geophysics." In Developments in Petroleum Science, vol. 60, pp. 37-92. 
Elsevier, 2013.



Low-rank structure
2D monochromatic slice (~10Hz) in source-receiver domain



Low-rank structure
2D monochromatic slice (~10Hz) in midpoint-offset domain



Matrix completion

Successful matrix completion strategy


‣Exploit low rank structure in “some domain”


- fast decay of singular values


‣Sample randomly


- increase rank in “some domain”


‣Optimization


- via rank-minimization

Kumar, Rajiv. "Enabling large-scale seismic data acquisition, processing and waveform-inversion via rank-minimization." PhD diss., University of 
British Columbia, 2017.



Conventional method

Rank minimization





                       


‣ : acquisition mask


‣ : observed data


‣ : Frobenius norm

minimize
X∈ℂm×n

rank(X) subject to 𝒜(X) − B
F

≤ ϵ

number of singular values of X

𝒜

B ∈ ℂm×n

.
F

Rajiv Kumar, Curt Da Silva, Okan Akalin, Aleksandr Y. Aravkin, Hassan Mansour, Ben Recht, and Felix J. Herrmann, “Efficient matrix completion for 
seismic data reconstruction”, Geophysics, vol. 80, pp. V97-V114, 2015

Hard to solve

https://slim.gatech.edu/biblio?page=1&f%5Bauthor%5D=19
https://slim.gatech.edu/biblio?page=1&f%5Bauthor%5D=25
https://slim.gatech.edu/biblio?page=1&f%5Bauthor%5D=63
https://slim.gatech.edu/biblio?page=1&f%5Bauthor%5D=17
https://slim.gatech.edu/biblio?page=1&f%5Bauthor%5D=64
https://slim.gatech.edu/biblio?page=1&f%5Bauthor%5D=65
https://slim.gatech.edu/biblio?page=1&f%5Bauthor%5D=7
https://slim.gatech.edu/content/efficient-matrix-completion-seismic-data-reconstruction
https://slim.gatech.edu/content/efficient-matrix-completion-seismic-data-reconstruction


Conventional method

Low-rank matrix completion





                          


Low-rank matrix factorization





‣ 


‣ 


‣

minimize
X∈ℂm×n

X * subject to 𝒜(X) − B
F

≤ ϵ

sum of singular values of X

minimize
L,R

1
2 [L

R]
2

F

subject to 𝒜(LRH) − B
F

≤ ϵ

X = LRH

L ∈ ℂm×r

R ∈ ℂn×r

Rajiv Kumar, Curt Da Silva, Okan Akalin, Aleksandr Y. Aravkin, Hassan Mansour, Ben Recht, and Felix J. Herrmann, “Efficient matrix completion for 
seismic data reconstruction”, Geophysics, vol. 80, pp. V97-V114, 2015

Expensive for large scale

https://slim.gatech.edu/biblio?page=1&f%5Bauthor%5D=19
https://slim.gatech.edu/biblio?page=1&f%5Bauthor%5D=25
https://slim.gatech.edu/biblio?page=1&f%5Bauthor%5D=63
https://slim.gatech.edu/biblio?page=1&f%5Bauthor%5D=17
https://slim.gatech.edu/biblio?page=1&f%5Bauthor%5D=64
https://slim.gatech.edu/biblio?page=1&f%5Bauthor%5D=65
https://slim.gatech.edu/biblio?page=1&f%5Bauthor%5D=7
https://slim.gatech.edu/content/efficient-matrix-completion-seismic-data-reconstruction
https://slim.gatech.edu/content/efficient-matrix-completion-seismic-data-reconstruction


Motivation

Matrix completion


‣ performance degrades 
w/ increasing frequency



Fully sampled data
~40Hz slice



Observed data
jittered subsampling75 %

Herrmann, Felix J., and Gilles Hennenfent. "Non-parametric seismic data recovery with curvelet frames." Geophysical Journal International 173.1 (2008): 233-248.



Recovery
w/ conventional matrix completion

SNR = 9.49 dB
Rank = 30



Difference: True - Recovery
w/ conventional matrix completion

Signal 
leakage



Question: Can we improve the recovered result at high 
frequencies?

Answer: Weighted matrix factorization



Weighted method

Weighted matrix completion





‣ ,  , ;


‣   comes from neighboring frequency slice


‣ 


‣ 


‣ scalars  are weights


Smaller weights correspond to more confidence on prior information

minimize
X∈ℂm×n

QXW
*

subject to 𝒜(X) − B
F

≤ ϵ

Xprior ≈ UΣVH U ∈ ℂm×r V ∈ ℂn×r

Xprior

Q = w1UUH + U⊥U⊥H

W = w2VVH + V⊥V⊥H

w1, w2 ∈ (0,1]

Zhang, Y. et al. “High-frequency wavefield recovery with weighted matrix factorizations.” In SEG Technical Program Expanded Abstracts, 2019.

Eftekhari, A. et al. “Weighted matrix completion and recovery with prior subspace information.” IEEE Transactions on Information Theory, 2018.



Weighted method

Weighted matrix factorization





‣ expensive computation 


How could this weighted technique be made more efficient?

minimize
L,R

1
2 [ QL

WR]
2

F

subject to 𝒜(LRH) − B
F

≤ ϵ

Zhang, Y. et al. “High-frequency wavefield recovery with weighted matrix factorizations.” In SEG Technical Program Expanded Abstracts, 2019.

Eftekhari, A. et al. “Weighted matrix completion and recovery with prior subspace information.” IEEE Transactions on Information Theory, 2018.



Weighted method (efficient)

Weighted matrix completion





‣ ; 


‣ 


‣

minimize
X̄∈ℂm×n

X̄ * subject to 𝒜(Q−1X̄W−1) − B
F

≤ ϵ

X̄ = QXW X = Q−1X̄W−1

Q−1 =
1
w1

UUH + U⊥U⊥H

W−1 =
1
w2

VVH + V⊥V⊥H

Zhang, Yijun, et al. "Wavefield recovery with limited-subspace weighted matrix factorizations." SEG International Exposition and Annual Meeting. 
OnePetro, 2020



Weighted method (efficient)

Weighted matrix factorization





‣ 


‣ 


minimize
L̄,R̄

1
2 [L̄

R̄]
2

F

subject to 𝒜(Q−1L̄R̄HW−1) − B
F

≤ ϵ

X̄ = L̄R̄H

X = Q−1X̄W−1

Zhang, Yijun, et al. "Wavefield recovery with limited-subspace weighted matrix factorizations." SEG International Exposition and Annual Meeting. 
OnePetro, 2020



Runtime comparison

Original: Weighted method


New: Weighted method (efficient)


‣ same number of iterations



Field example



2D Field data example: Gulf of Suez

Data acquisition area: Gulf of Suez


Data dimension:  ( )


Dimension of each frequency slice: 


Source sampling interval: 25 m


Receiver sampling interval: 25 m 


Time sampling interval: 0.004s


Observed data: missing sources

355 × 355 × 1024 nr × ns × nt

355 × 355

75 %



Scenarios compared

Scenarios


‣w/o using any prior information (conventional)


‣ using single pair prior information (pair weighted)


- prior information comes from conventional results


‣ using recursive prior information (recursively weighted)



Frequency slice 
(40 Hz)



Fully sampled data
~40 Hz slice



Observed data
jittered subsampling75 %

Herrmann, Felix J., and Gilles Hennenfent. "Non-parametric seismic data recovery with curvelet frames." Geophysical Journal International 173.1 (2008): 233-248.



Recovery
w/ conventional matrix completion

SNR = 9.49 dB
Rank = 30



Recovery
w/ pair weighted matrix completion

SNR = 10.34 dB
Rank = 30



Recovery
w/ recursively weighted matrix completion

SNR = 15.92 dB
Rank = 30



Difference: True - Recovery
w/ conventional matrix completion

SNR = 9.49 dB
Rank = 30



Difference: True - Recovery
w/ pair weighted matrix completion

SNR = 10.34 dB
Rank = 30



Difference: True - Recovery
w/ recursively weighted matrix completion

SNR = 15.92 dB
Rank = 30



Frequency slices 
(7 Hz~73 Hz)



Frequencies vs. SNR
(7~73 Hz)



Common receiver gather



Fully sampled data



Observed data
jittered subsampling75 %



Difference: True - Recovery
w/ conventional matrix completion

SNR = 7.00 dB
Rank = 30



Difference: True - Recovery
w/ pair weighted matrix completion

SNR = 7.78 dB
Rank = 30



Difference: True - Recovery
w/ recursively weighted matrix completion

SNR = 11.88 dB
Rank = 30



Contributions

Proposed recursively weighted matrix completion


Proposed efficient weighted matrix completion



Conclusions

The proposed recursive weighted strategy


‣ improves SNR at higher frequencies


The efficient weighted method


‣ reduce the computational time w/ same number of iterations




A simulation-free seismic survey 
design by maximizing the spectral 
gap  

Chapter 6



ML4Seismic

Seismic data


‣ expensive to acquire


Subsampling


‣ increasingly employed in seismic data acquisition  


‣ reduce costs


Uniform & jittered sample design


‣ suboptimal & not flexible — i.e., impossible to add constraints


Simulation-based seismic acquisition design


‣ expensive & time consuming


Goal: propose a simulation-free seismic survey design

Motivation

Oscar Lopez, Rajiv Kumar, Nick Moldoveanu and Felix J. Herrmann, “Graph Spectrum Based Seismic Survey Design”, 2020.  
Mosher, C. C., S. T. Kaplan, and F. D. Janiszewski. "Non-uniform optimal sampling for seismic survey design." 74th EAGE Conference and Exhibition 
incorporating EUROPEC 2012. European Association of Geoscientists & Engineers, 2012.



ML4Seismic

Motivation
Matrix completion


‣ reconstructs fully sampled wavefields from sparse seismic data


‣ computationally efficient


 Spectral gap of a subsampling mask (binary mask)


‣ distance between the first & second singular values


‣ an indicator for the connectivity of a graph


‣ a cheap metric to predict performance of an acquisition design


‣maximizing the spectral gap favors reconstruction via matrix completion

Oscar Lopez, Rajiv Kumar, Nick Moldoveanu and Felix J. Herrmann, “Graph Spectrum Based Seismic Survey Design”, 2020.  
Bhojanapalli, Srinadh, and Prateek Jain. "Universal matrix completion." International Conference on Machine Learning. PMLR, 2014. 
Burnwal, Shantanu Prasad, and Mathukumalli Vidyasagar. "Deterministic completion of rectangular matrices using asymmetric ramanujan graphs: Exact and 
stable recovery." IEEE Transactions on Signal Processing 68 (2020): 3834-3848.



ML4Seismic

Sampling matrix in source-receiver domainReceivers

Source

Sources

Re
ce

iv
er

s

1 0 1 0 0 1 1

1 0 1 0 0 1 1

1 0 1 0 0 1 1

1 0 1 0 0 1 1

1 0 1 0 0 1 1

1 0 1 0 0 1 1

1 0 1 0 0 1 1

Binary mask  
(2D acquisition & towed array)



ML4Seismic

relationship between reconstruction quality & sampled matrix
Motivation

Oscar Lopez, Rajiv Kumar, Nick Moldoveanu and Felix J. Herrmann, “Graph Spectrum Based Seismic Survey Design”, 2020.  
Bhojanapalli, Srinadh, and Prateek Jain. "Universal matrix completion." International Conference on Machine Learning. PMLR, 2014.

Dense data Subsampled data

Wavefield recovery via matrix completion 

Spectral gap predicts 
quality of recovery 

Binary mask

(midpoint-offset domain)

Binary mask (source-receiver domain)
Time

Source

Receiver

Receiver



ML4Seismic

relationship between reconstruction quality & sampling matrix
Motivation

  spectral gap ratio 


‣  first singular value 


‣  second singular value


Toy test: an average of 30 
independent experiments

ρ =
σ2(M)
σ1(M)

σ1( . )

σ2( . )

Oscar Lopez, Rajiv Kumar, Nick Moldoveanu and Felix J. Herrmann, “Graph Spectrum Based Seismic Survey Design”, 2020.

Large signal to noise ratio (SNR) corresponds to small spectral gap ratio

optimized subsampling

periodic subsampling



ML4Seismic

relationship between reconstruction quality & sampling matrix
Motivation

Oscar Lopez, Rajiv Kumar, Nick Moldoveanu and Felix J. Herrmann, “Graph Spectrum Based Seismic Survey Design”, 2020.  
Bhojanapalli, Srinadh, and Prateek Jain. "Universal matrix completion." International Conference on Machine Learning. PMLR, 2014.

Wavefield recovery via matrix completion 

Spectral gap predicts 
quality of recovery Simulation-free 


survey design

Binary mask (source-receiver domain)

Binary mask

(midpoint-offset domain)

Dense data Subsampling data

Time

Source

Receiver

Receiver



ML4Seismic

Optimization problem
2D acquisition & 1 vintage

Given  source locations & subsampling ratio , find  subsampling 
masks  


       

‣ : an operator transforms data from source-receiver to midpoint-offset domain

‣  : # of receivers. 

‣  :  a set of all possible subsampling masks 

ns r m = ⌊ns × r⌋ × nr
M

minimize
M

σ2(𝒮(M))
σ1(𝒮(M))

subject to ∥ M ∥0 = m ∩ M ∈ 𝒥 ∩ M ∈ {0,1}ns×nr .

𝒮

nr

𝒥



ML4Seismic

Stylized example  



ML4Seismic

Optimal  w/ simulated annealingρ
w/ single vintage 

Mask dimension: 300 x 300


Subsampling ratio:  

Source & receiver sampling interval: 12.5 m


Optimize the  of a given initial subsampling mask:


‣ jittered subsampling

25%

ρ



ML4Seismic
Subsampled mask
jittered subsampling



ML4Seismic
Proposed subsampling mask
optimized output produced by SA algorithm



ML4Seismic

Synthetic example  
jittered vs. optimized



ML4Seismic

Data dimension: 300 x 300 x 1024 ( )


Dimension of each frequency slice: 300 x 300


Source sampling interval: 12.5 m


Receiver sampling interval: 12.5 m 


Time sampling interval: 0.002 s

nr × ns × nt

Zhang, Yijun, Shashin Sharan, Oscar Lopez, and Felix J. Herrmann. "Wavefield recovery with limited-subspace weighted matrix factorizations." In SEG 
International Exposition and Annual Meeting. OnePetro, 2020.

Test masks via LR matrix completion
2D synthetic Compass dataset



ML4Seismic



ML4Seismic

Optimization problem
3D acquisition & 1 vintage

Given  source locations & subsampling ratio , find  subsampling 
masks  


       

‣ : an operator transforms data from canonical to non-canonical organization

‣  : # of receivers. 

‣  :  a set of all possible subsampling masks 

ns r m = ⌊ns × r⌋ × nr
M

minimize
M

σ2(𝒮(M))
σ1(𝒮(M))

subject to ∥ M ∥0 = m ∩ M ∈ 𝒥 ∩ M ∈ {0,1}ns×nr .

𝒮

nr

𝒥



Method



ML4Seismic

Data dimension: 10k x 1681 x 501 ( )


Frequency slice: 16.8Hz


Source sampling interval: 150 m


Receiver sampling interval: 25 m 


Time sampling interval: 0.01 s

nr × ns × nt

Zhang, Yijun, Shashin Sharan, Oscar Lopez, and Felix J. Herrmann. "Wavefield recovery with limited-subspace weighted matrix factorizations." In SEG 
International Exposition and Annual Meeting. OnePetro, 2020.

Test masks via LR matrix completion
3D synthetic Compass dataset



Comparison

0.507

0.328



ML4Seismic

Contribution & conclusion

Proposed seismic survey design is 


‣ simulation-free


‣ best suitable for wavefield reconstruction via matrix completion


‣ adaptable to 2D & 3D seismic survey designs



Optimized time-lapse acquisition 
design via spectral gap ratio 
minimization  

Chapter 7



ML4Seismic

Seismic data


‣ expensive to acquire


Subsampling 


‣ reduce costs


‣ increasingly employed in seismic data acquisition 


Time-lapse seismic data


‣ crucial step for reservoir management


‣ play an important role for monitoring Geological 
Carbon Storage (GCS)


‣ offset the subsampling gains via replicate monitor 
and baseline surveys 


Goal: propose a time-lapse seismic survey design

Motivation

Oscar Lopez, Rajiv Kumar, Nick Moldoveanu and Felix J. Herrmann, “Graph Spectrum Based Seismic Survey Design”, 2020.  
Mosher, C. C., S. T. Kaplan, and F. D. Janiszewski. "Non-uniform optimal sampling for seismic survey design." 74th EAGE Conference and Exhibition incorporating 
EUROPEC 2012. European Association of Geoscientists & Engineers, 2012. 
Ziyi Yin, Huseyin Tuna Erdinc, Abhinav Prakash Gahlot, Mathias Louboutin and Felix J. Herrmann. "De-risking geological carbon storage from high resolution time-lapse 
seismic to explainable leakage detection." The leading edge. Just accepted in the January 2023 special section in seismic resolution

Image credit: 
Ziyi Yin



ML4Seismic

Time-lapse seismic acquisition 
w/ multiple vintages

Baseline mask: M1 Monitor mask: M2



ML4Seismic




‣  subsampled data


‣  sampling operator


‣  to-be-recovered dense data


‣  ,

[b1

b2]⏟
b

= [𝒜1 𝒜1 0
𝒜2 0 𝒜2]

𝒜

Z0

Z1

Z2

⏟
Z

bi

𝒜i

Xi

Xi = Z0 + Zi i ∈ 1,2

Oghenekohwo, Felix, Haneet Wason, Ernie Esser, and Felix J. Herrmann. "Low-cost time-lapse seismic with distributed compressive sensing—Part 1: 
Exploiting common information among the vintages." Geophysics 82, no. 3 (2017): P1-P13. 
Kumar, Rajiv, et al. "Highly repeatable 3D compressive full-azimuth towed-streamer time-lapse acquisition—A numerical feasibility study at scale." The 
Leading Edge 36.8 (2017): 677-687.

Motivation
w/ joint recovery model (JRM)

‣ exploits common information between 
baseline & monitor


‣ benefits for non-replicated subsampling


‣ robust w.r.t noise

common component

innovation component

How to design JRM based masks?

∪

=
M1

M2

M0



ML4Seismic

Optimized problem
w/ joint recovery model (JRM) & two vintages

              

                   


‣ , : balance the difference in spectral gap ratios, resulting from the difference subsampling 

numbers, between the common and innovation components.

minimize
M1,M2

ℒ(M0),
#(M1)
#(M0)

ℒ(M1),
#(M2)
#(M0)

ℒ(M2)

∞
subject to M1 ∈ 𝒞1, M2 ∈ 𝒞2

#(M1)
#(M0)

#(M2)
#(M0)

Oghenekohwo, Felix, Haneet Wason, Ernie Esser, and Felix J. Herrmann. "Low-cost time-lapse seismic with distributed compressive sensing—Part 1: 
Exploiting common information among the vintages." Geophysics 82, no. 3 (2017): P1-P13.



ML4Seismic

Optimal spectral gap ratio w/ simulated annealing
two vintages w/ JRM

Mask dimension: 300 X 300


Subsampling ratio:  

Source & receiver sampling interval: 12.5 m


Optimize the spectral gap ratios of given initial subsampling masks:


‣ jittered & replicated subsampling 


25%

100 %

Herrmann, Felix J., and Gilles Hennenfent. "Non-parametric seismic data recovery with curvelet frames." Geophysical Journal International 173.1 (2008): 
233-248.



ML4Seismic

Mask common component: 
M0 = M1 ∪ M2

Baseline mask: M1

Monitor mask: M2

Optimal a given mask  
jittered &  replicated subsampling100% : baseline subsampled locations 

: monitor subsampled locations



2D synthetic data example: BG

Data dimension:  ( )


Dimension of each frequency slice: 


Source sampling interval: 12.5 m


Receiver sampling interval: 12.5 m 


Time sampling interval: 0.002 s


Observed data:  ~  missing sources

300 × 300 × 901 nr × ns × nt

300 × 300

75%



ML4Seismic



Spectral gap comparison vs. SNR comparison
w/ 30 independent experiments



ML4Seismic

Conclusion

Proposed seismic survey design is 


‣ simulation-free


‣ best suitable for wavefield reconstruction via matrix completion


‣ adaptable to multiple vintages' subsampling designs


- prefer non-replicated subsampling locations




Large scale high-frequency wavefield 
reconstruction with recursively 
weighted matrix factorizations  

Chapter 4



Motivations

2D seismic survey


‣ not collecting reflections outside the 2D plane


‣ small data volume 


- data dimension for one frequency slice, e.g. 
 ( )


3D seismic survey


‣ capture 3D reflections


‣ large data volume


- data dimension for one frequency slice, e.g. 
 ( )

355 × 355 nr × ns

201 × 201 × 41 × 41 nrx × nry × nsx × nsy

https://www.pgs.com/media-and-events/news/pgs-is-making-strides-to-develop-more-environmentally-friendly-seismic-sources/



Motivations

Runtime comparison for one frequency slice w/ dimension  
( )


3D seismic survey


‣ one data volume w/ hundreds of frequency slices


‣ bring computational challenges

8241 × 8241
201 × 41 = 8241

Aravkin, A., Kumar, R., Mansour, H., Recht, B., and Herrmann, F. J. “Fast methods for denoising matrix completion formulations, with applications to 
robust seismic data interpolation.” SIAM Journal on Scientific Computing, 2014.

Zhang, Yijun, et al. "Wavefield recovery with limited-subspace weighted matrix factorizations." SEG International Exposition and Annual Meeting. 
OnePetro, 2020

Methods SNRs (dB) Times (hours) Iterations
Weighted method 16.28 10.34 130

Weighted method (efficient) 16.16 4.19 150



Question: Is it possible to parallelize the new method 
and increase its efficiency when solving 3D problems?



Parallel matrix completion



Parallel matrix completion

Lopez, Oscar, Rajiv Kumar, and Felix J. Herrmann. "Rank minimization via alternating optimization-seismic data interpolation." In 77th EAGE Conference and 
Exhibition 2015, vol. 2015, no. 1, pp. 1-5. European Association of Geoscientists & Engineers, 2015.



Parallel matrix completion
Alternating optimization between minimizing rows via row-by-row decoupled computing


                         


and minimizing columns via the column-by-column decoupled computation


 


‣ , , ,  


‣ 


‣ 


‣ 


‣Subsampling operators  and  perform operations on columns/rows

minimize
v∈ℂr×1

1
2

v 2 subject to ∥𝒜l1(Lv) − B(: , l1)∥ ≤ τ

minimize
u∈ℂr×1

1
2

u 2 subject to ∥𝒜l2((Ru)H) − B(l2, :)∥ ≤ τ

v = R(l1, :)H u = L(l2, :)H l1 = 1,⋯, n l2 = 1,⋯, m

L ∈ ℂm×r

R ∈ ℂn×r

X = LRH

𝒜l1 𝒜l2

Lopez, Oscar, Rajiv Kumar, and Felix J. Herrmann. "Rank minimization via alternating optimization-seismic data interpolation." In 77th EAGE 
Conference and Exhibition 2015, vol. 2015, no. 1, pp. 1-5. European Association of Geoscientists & Engineers, 2015.

Recht, Benjamin, and Christopher Ré. "Parallel stochastic gradient algorithms for large-scale matrix completion." Mathematical Programming 
Computation 5, no. 2 (2013): 201-226.

Fixed , update L R

Fixed , update R L



Question: Is it possible to parallelize the new method 
and increase its efficiency when solving 3D problems?

Answer: Weighted parallel matrix factorization



Weighted parallel matrix completion

Alternating optimization between minimizing rows via row-by-row decoupled computing


                         


and minimizing columns via the column-by-column decoupled computation


 


‣ , , ,  


‣ 


‣ 


‣ ,  

minimize
v̄∈ℂr×1

1
2

v̄ 2
subject to ∥𝒜l1( ̂Q L̄v̄) − w1w2B(: , l1)∥ ≤ w1w2τ

minimize
ū∈ℂr×1

1
2

ū 2
subject to ∥𝒜l2((R̄ū)H ̂W ) − w1w2B(l2, :)∥ ≤ w1w2τ

v̄ = R̄(l1, :)H ū = L̄(l2, :)H l1 = 1,⋯, n l2 = 1,⋯, m

̂Q = UUH + w1U⊥U⊥H = w1Q−1

̂W = VVH + w2V⊥V⊥H = w2W−1

L =
1
w1

̂Q L̄ R =
1
w2

̂W R̄



Weighted minimization 
Via alternating minimization

Input: Observed data , rank , acquisition mask  ,priors ,  & initial guess 


1. for   // solve for rows of  &  in parallel


2. 


3. 


4. end for


5. 


6. 


Output: Recovered wavefield in factored form 

B r 𝒜 ̂Q ̂W L̄(0)

k = 0,1,2,⋯, N − 1 R L

(R̄(k+1)(l1, :))
H

:= arg min
v̄

1
2

v̄ 2
s. t. ∥𝒜l1( ̂Q L̄(k)v̄) − w1w2B(: , l1)∥ ≤ w1w2τ

(L̄(k+1)(l2, :))
H

:= arg min
ū

1
2

ū 2
s. t. ∥𝒜l2((R̄(k+1)ū)H ̂W ) − w1w2B(l2, :)∥ ≤ w1w2τ

L =
1
w1

̂Q L̄

R =
1
w2

̂W R̄

{L, R}



Runtime comparison

By working with 8 parallel workers (2 threads each) in the Cloud, a significantly 
faster runtime ( ) is achieved compare w/ the original weighted method


Runtime comparison for one frequency slice w/ dimension 


83 ×

8241 × 8241

Methods SNRs (dB) Times (hours) Iterations

Weighted method 16.28 10.34 130

Weighted method (efficient) 16.16 4.19 150

Parallel weighted 16.33 0.13 5 alternations & 40 inner iterations



Synthetic Compass model data: 
3D example



Synthetic Compass model data
3D example

Data dimension:  ( )


Dimension of each frequency slice: 


Source sampling interval: 150 m


Receiver sampling interval: 25 m 


Time sampling interval: 0.01s


Observed data: missing receivers

201 × 201 × 41 × 41 × 501 nrx × nry × nsx × nsy × nt

8241 × 8241

90 %



Scenarios compared

Scenarios


‣w/o using any prior information (conventional)


‣ using recursive prior information (recursively weighted)



Frequency slice (one shot) 
(15Hz) 



Fully sampled data
~15 Hz slice



Observed data
jittered subsampling90 %

Herrmann, Felix J., and Gilles Hennenfent. "Non-parametric seismic data recovery with curvelet frames." Geophysical Journal International 173.1 (2008): 233-248.



Recovery
w/ conventional matrix completion

SNR = 3.7 dB
Rank = 228



Recovery
w/ recursively weighted matrix completion

SNR = 12.5 dB
Rank = 228



Difference: True - Recovery
w/ conventional matrix completion

SNR = 3.7 dB
Rank = 228



Difference: True - Recovery
w/ recursively weighted matrix completion

SNR = 12.5 dB
Rank = 228



Frequency-wavenumber (f-k) 
spectrum comparison (one shot)



Fully sampled data



Observed data
jittered subsampling90 %



Recovery
w/ conventional matrix completion



Recovery
w/ recursively weighted matrix completion



Contribution

Proposed a parallel weighted matrix completion for larger weights


Improved the reconstruction of higher frequency slices




Conclusions and future work

The weighted parallel matrix completion


‣ be implemented for larger weights


‣ achieves a significantly faster runtime, while maintaining similar SNRs


The recursively weighted parallel strategy


‣ improves SNR at higher frequencies


Extend this methodology of parallelism even with low weight values



A practical workflow for land 
seismic wavefield recovery with 
weighted matrix factorization  

Chapter 5



Motivations

Weighted matrix completion for higher 
frequencies


‣ application to land data is hampered by 
ground roll


Ground roll corresponding to Rayleigh-type 
surface waves


‣ slow & aliased


‣ strong amplitude


Dominate the reconstruction at the expense of 
weaker body waves



Blind study on 3D SEAM Barrett dataset 

Data dimension: 80 x 21 x 641 x 641 x 667 
( )


Receiver sampling interval: 12.5 m


Source sampling interval: 25 m in the shot line 
direction and 100 m in the perpendicular direction


Time sampling interval: 0.006 s


Subset of dataset:


‣Benchmark for land data


‣Contains realistic surface waves

nrx × nry × nsx × nsy × nt

Van De Coevering, Norbert, Klaas Koster, and Rob Holt. "A scepVc’s view of VVAz and AVAz." SEG Technical Program Expanded Abstracts 2019. 
Tan, JusVn, et al. "SEAM Phase II Barre` model classic data study: Processing, imaging, and a`ributes analysis." SEG Technical Program Expanded 
Abstracts 2019. 

https://www.researchgate.net/publication/ 



Acquisition geometry
w/ ~ missing receivers, 21 source lines75 %

A subset consists of 21 source lines (red 
lines in the center area) 

Each source line contains 80 sources 

The  km receiver aperture moves 
with the source location  

‣ neighboring shots share most 
randomly sampled receivers (black 
dots in the figure) 

‣ some drop-off and others add (red 
and blue rectangles in the figure)

8 × 8

Acquisition geometry for the observed dataset



Observed data in time domain (one shot)
w/ ~ missing receivers75 %

An automatic gain control (AGC) is applied to this observed dataset. 



Observed data in time domain (one shot)
w/ ~ missing receivers75 %



Question
How can we use the weighted matrix factorization on land data 
while avoiding the impact of ground roll? 
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Answer: 
‣Reconstruct the body and surface (ground roll) waves separately.

Why separation? 
Answer: 

‣Reduce the effect of the strong aliased ground roll on the body 
wave reconstruction. 
‣The ground roll could be separated from the body wave, at least in 
an approximate sense.



Proposed workflow

115



Final reconstructed result in time domain
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QC
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Ground truth Recovered data Difference  



Contribution and conclusion
We mitigate the effects of the strongly aliased ground roll by 
employing the proposed separation.  

Furthermore, the proposed workflow successfully recovers body 
waves (reflections and diffractions). 
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