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SUMMARY

Seismic data acquisition plays a crucial role in identifying potential oil and gas reser-
voirs during the early phases of exploration. However, obtaining finely sampled seismic
data can be costly and physically impossible. Recent developments in Compressive Sensing
have resulted in seismic data being increasingly collected at random along spatial coordi-
nates. Although random sampling improves acquisition efficiency, it shifts the burden from
seismic acquisition to data processing. Wavefield recovery is one of the required processes
for reconstructing fully seismic data from coarsely subsampled data. Among the various
techniques proposed for wavefield reconstruction, matrix completion methods are compu-
tationally efficient and straightforward to implement. These methods exploit the low-rank
structure of fully seismic data. However, matrix completion performs well at low-to-mid
frequencies and degrades at higher frequencies due to the failure of low-rank structure to
accurately approximate higher frequencies. To address this issue, this thesis proposed a
recursively weighted matrix completion method. Although effective, this method is com-
putationally expensive, and a more efficient method for handling 2D seismic data was also
proposed. Compared to 2D seismic data, 3D seismic data can detect reflections outside of
the 2D plane but poses a computational challenge due to its large scale. To overcome this
challenge, this thesis proposed a parallel weighted reconstruction method to improve the
reconstruction of 3D seismic data. Land seismic data presents a greater challenge due to
contamination by ground roll, which consists of surface waves with a high spatial frequency
content and large amplitude. To address this issue, a practical workflow was proposed in
this thesis to improve the recovery of land seismic data. Although matrix completion is
an efficient technique for reconstructing fully seismic data, the optimal acquisition design
is still being investigated. Recent studies have shown that the spectral gap can be used to
predict and characterize the quality of wavefield reconstruction via matrix completion for a

given subsampling mask. Based on these findings, a simulation-free seismic survey design

X1X



for both 2D and 3D seismic data was proposed in this thesis to obtain an improved subsam-
pling survey by minimizing the spectral gap ratio. Furthermore, this concept was extended
to the design of a time-lapse seismic survey, which is essential for reservoir management
and monitoring geological carbon storage but is difficult and expensive to acquire. To im-
prove the reconstruction of the time-lapse wavefield, a joint recovery model was proposed
that leverages the benefits of the non-replicated baseline and monitor subsampled seismic
data. A time-lapse seismic survey design that incorporates the joint recovery model with
spectral gap was proposed to generate sparse, non-replicated time-lapse acquisition geome-

tries that favor wavefield recovery.

XX



CHAPTER 1
INTRODUCTION

Seismic data acquisition is essential in the early stages of oil and gas exploration, since it
provides a higher degree of precision for predicting the physical properties of the earth’s
subsurface compared to other geophysical methods. Seismic sources, such as airguns and
vibrators, are fired from either the land or sea surface (the land acquisition Figure 1.1a or
marine acquisition Figure 1.1b), resulting in the propagation of acoustic waves into the
subsurface of the earth. These waves are reflected when they encounter interfaces formed
between rocks with distinct physical properties and are recorded by receivers, such as geo-
phones and hydrophones, on the surface of the land or sea. Subsequent processing of the
recorded seismic data allows us to obtain subsurface images and estimate the physical prop-
erties of the subsurface, which aid in identifying potential oil and gas reservoirs. Moreover,
seismic data is also used to help drill wells, which are operationally complex and expensive,
and extract oil and gas from the subsurface.

To achieve a higher degree of precision in subsurface images, seismic data must be
acquired at fine grids, which can be both costly and time-consuming. However, recent de-
velopments in the field of Compressive Sensing (CS) have inspired seismic data collection
methods that randomly sample along spatial coordinates to reduce acquisition time and
costs (Candes, Romberg, and Tao 2006). While this approach increases acquisition pro-
ductivity (Mosher, Li, Morley, Ji, Janiszewski, Olson, and Brewer 2014), it also shifts the
burden from collecting data in the field to processing the data (Chiu 2019).

Wavefield recovery is one of the key steps in reconstructing seismic data from coarsely
subsampled data. Transform-domain-based approaches have been used extensively for
wavefield reconstruction. These transforms increase the sparsity of seismic data to varying

degrees, which is a critical component of wavefield reconstruction. While these methods
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Figure 1.1: Seismic acquisition. (a) Land seismic acquisition (image courtesy of DMP:
www.dmp.wa.gov.au). (b) Marine seismic acquisition (image courtesy of PGS:
WWW.PES.Com).



are advantageous in terms of the quality of reconstructed data, they are also relatively com-
plex and computationally expensive. However, matrix completion techniques based on
low-rank matrix factorization are computationally efficient and relatively straightforward.
The general idea of these methods is to exploit the low-rank structure of fully sampled fre-
quency slices when organized in a matrix. Kumar, Da Silva, Akalin, Aravkin, Mansour,
Recht, and Herrmann 2015 and Oropeza and Sacchi 2011 discovered that fully 2D seismic
data, which are acquired along seismic lines, exhibit a low-rank structure in the midpoint-
offset domain. They exploited the fact that the presence of noise or missing traces increases
the rank of these frequency slices. By organizing the data in the appropriate domain, low-
rank factorization has been used successfully for low and mid-range frequencies. However,
its performance degrades at high frequencies because monochromatic frequency slices can
no longer be accurately approximated by low-rank factorization. One of the topics of this
thesis is to propose an efficient weighted matrix factorization to improve data reconstruc-
tion at higher frequencies.

The sources/receivers used in 2D seismic surveys detect only vertically traveling wave-
fields between sources and receivers. As a result, reflections outside the 2D source-receiver
plane are not captured, which degrades the image quality of the subsurface. To capture
three-dimensional effects, the majority of seismic exploration surveys are now conducted
in 3D, with sources and receivers distributed across an area rather than along a single line.
When permuted in non-canonical form, 3D seismic data reveals a low-rank structure (Da
Silva and Herrmann 2015). Although the fully sampled 3D seismic data can be recon-
structed via the proposed weighted matrix completion in non-canonical form, the large-
scale 3D datasets will bring computational challenges. Therefore, one of the topics of
this thesis is to propose an efficient parallel weighted matrix factorization to overcome the
computational challenges inherent in large-scale 3D datasets.

Wavefield reconstruction for land seismic data is degraded by promoting structure, such

as sparsity or low rank, due to the contamination of ground roll, a surface wave with a



strong amplitude and high spatial frequency content (Liu 1999). This deterioration can
be attributed to two factors. Firstly, ground roll is a type of Rayleigh-type surface wave
that is commonly aliased because it travels more slowly than body waves. Secondly, the
high amplitudes of the ground roll require the reconstruction to focus on the ground roll
rather than the body waves with low amplitudes. Ground roll is typically dominant at
low temporal frequencies due to its spatial aliasing, but separating it from body waves
is difficult due to aliasing. This thesis proposes a practical workflow for land seismic
wavefield recovery using weighted matrix factorization.

The use of matrix completion as a computationally efficient method to reconstruct fully
sampled wavefields from sparsely sampled seismic data has been established (Kumar, Da
Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015). Random subsampling is
increasingly used to reduce acquisition time and costs. However, the design of optimal
acquisition geometries is still an ongoing area of research (Manohar, Brunton, Kutz, and
Brunton 2018). In matrix completion theory, the spectral gap, a measure of the connected-
ness of the graph in expander graph theory, has been used to predict, and to some extent
quantify, the quality of wavefield reconstruction with a specific subsampling scheme (ac-
quisition mask) (Bhojanapalli and Jain 2014; Lépez, Kumar, Moldoveanu, and Herrmann
2022). Building on these insights, one of the topics of this thesis is to propose an optimiza-
tion scheme that finds subsampling masks with large spectral gaps to improve the quality
of wavefield reconstruction using matrix completion.

While sparse randomized collection of seismic data is an efficient strategy for reducing
operational costs, the replication of the baseline and monitor for time-lapse seismic data
gathering nullifies the productivity benefits of compressive sensing (Candes, Romberg, and
Tao 2006). Collecting time-lapse seismic data is time-consuming and costly, yet it is crucial
for reservoir management and monitoring of geological carbon storage (GCS). To address
this issue, joint recovery models (JRM) were introduced by Oghenekohwo and Herrmann

2017 and Wason, Oghenekohwo, and Herrmann 2017, inspired by distributed compressive



sensing (Baron, Duarte, Sarvotham, Wakin, and Baraniuk 2005), to leverage the benefits
of low-cost randomized non-replicated acquisition for time-lapse seismic data. Rather than
recovering time-lapse data individually, JRM is designed to invert baseline and monitor sur-
veys for the common component, which contains information shared between the surveys
and innovations of the baseline and monitor surveys regarding this common component
(Wason, Oghenekohwo, and Herrmann 2017; Kumar, Wason, Sharan, and Herrmann 2017,
Oghenekohwo and Herrmann 2017). The quality improvements of the vintages and time-
lapse differences reported by Yin, Louboutin, and Herrmann 2021 and Oghenekohwo and
Herrmann 2017 can be explained by the fact that the fictitious common component is ob-
served by baseline and monitor surveys, and its recovery improves when baseline and mon-
itor survey acquisition geometries differ (non-replicated). The use of JRM can be extended
to seismic denoising (Tian, Wei, Li, Oppert, and Hennenfent 2018; Wei, Tian, Li, Oppert,
and Hennenfent 2018), imaging, inversion, monitoring of carbon storage (Oghenekohwo
and Herrmann 2017; Oghenekohwo 2017; Yin, Louboutin, and Herrmann 2021), and wave-
field recovery (Wason, Oghenekohwo, and Herrmann 2017; Oghenekohwo, Wason, Esser,
and Herrmann 2017; Kumar, Wason, Sharan, and Herrmann 2017). As part of this thesis, I

investigate the use of JRM and the spectral gap to design time-lapse seismic acquisitions.

1.1 Objectives

To summarize, this thesis aims to achieve the following objectives:

1. To improve the reconstruction of 2D seismic data, particularly at high frequencies
where conventional and pair matrix completion methods perform poorly, we propose re-
cursively weighted matrix completion and establish a more computationally efficient for-
mulation by relocating the weight matrices from constraints to the data-misfit term.

2. To design a computationally efficient weighted matrix completion for large-scale
3D seismic datasets, we propose a parallelized alternating optimization approach for paral-

lelizing the weighted low-rank factorization algorithm to expand the application of the new



method to 3D seismic acquisitions.

3. To improve land seismic wavefield recovery with more reflection and diffraction
information by using parallel weighted matrix factorization and reduce the noise introduced
by ground roll, we propose a practical workflow by reconstructing the body and surface
(ground roll) waves separately.

4. To obtain an improved seismic survey, we propose an optimization scheme based on
simulated annealing, which finds sub-sampling masks with large spectral gaps that improve
the quality of wavefield reconstruction with matrix completion.

5. To design a low-cost time-lapse seismic survey, we propose a simulation-free opti-
mization method that combines the joint-recovery model (JRM) with large spectral gaps to

generate improved subsampling surveys for each vintage.

1.2 Thesis outline

This thesis comprises a total of eight chapters, including the present introduction. In Chap-
ter 2, we begin by discussing wavefield recovery via matrix completion. We then explain
how to incorporate prior information from adjacent lower frequencies into our matrix com-
pletion framework on the row and column subspaces. To verify our method, we use a field
data from the Gulf of Suez and demonstrate its superior performance compared to conven-
tional matrix completion, particularly at higher frequencies. A version of this chapter was
published in SEG Technical Program Expanded Abstracts (Zhang, Sharan, and Herrmann
2019).

In Chapter 3, we review the recursively weighted matrix factorization wavefield re-
covery. Following this, we introduce a new formulation where the weight appears in the
data misfit term and discuss how to restrict the subspace of our weighted matrix factoriza-
tions. We verify our approach using field data from the Gulf of Suez, demonstrating better
recovery quality compared to conventional recursively weighted matrix completion. A ver-

sion of this chapter was published in SEG Technical Program Expanded Abstracts (Zhang,



Sharan, Lopez, and Herrmann 2020).

In Chapter 4, we first discuss the efficient weighted wavefield reconstruction via ma-
trix completion. We then propose approximations that allow us to decouple calculations on
a row-by-row and column-by-column basis, parallelizing the alternating optimization upon
which our low-rank factorization relies. The combination of weighting and decoupling
results in a technique for full-azimuth wavefield reconstruction that is computationally fea-
sible and scalable to industrial-scale problem sizes. We demonstrate the effectiveness of
the proposed parallel method using a 3D synthetic dataset with varying subsampling ratios,
where our method yields accurate reconstructions of broadband wavefields from severely
downsampled data. My main contributions in this work are proposing the efficient weighted
wavefield reconstruction and the parallel method, which I have also implemented.

In Chapter 5, we discuss the reconstruction of the seismic wavefield by weighted ma-
trix factorization first. Next, we explain the impact of ground roll and introduce our practi-
cal workflow in detail. We demonstrate our approach on 3D synthetic data simulated from
the Barrett model, showing improved recovery quality in comparison to the conventional
workflow. A version of this chapter was published in SEG Technical Program Expanded
Abstracts (Zhang and Herrmann 2021).

In Chapter 6, we present the proposed optimization problem to minimize the spec-
tral gap ratios of subsampling masks. Second, we explain how to approximate acquisi-
tion masks using simulated annealing. We conclude by performing numerical experiments
on 2D and 3D synthetic Compass datasets (E. Jones, A. Edgar, 1. Selvage, and Crook
2012) and demonstrating improvements in recovery quality compared to the reconstruc-
tion of data collected via the jittered subsampling technique (Herrmann and Hennenfent
2008). A version of this chapter for the 2D case was published in International Meeting
for Applied Geoscience and Energy Expanded Abstracts (Zhang, Louboutin, Siahkoohi,
Yin, Kumar, and Herrmann 2022). A version of this chapter for the 3D case was submitted

to International Meeting for Applied Geoscience and Energy Expanded Abstracts (Zhang,



Yin, Lopez, Siahkoohi, Louboutin, and Herrmann 2023).

In Chapter 7, we first describe the relationship between the connectivity of graphs as-
sociated with binary sampling masks and the spectral gap ratio. Then, we explain how
to increase the connectedness by decreasing the spectral gap ratios through our proposed
optimization, which assists in the wavefield reconstruction process. To achieve this, we
propose a new optimization objective that incorporates spectral gap ratios for the common
component and baseline/monitoring surveys. This enables the improvement of time-lapse
data inversion based on the joint recovery model (JRM). After a brief discussion on how
to minimize this objective using simulated annealing, we evaluate the proposed method for
automatically generating a binary time-lapse mask numerically using synthetic 2D data.
A version of this chapter was accepted in Geophysics (Zhang, Yin, Lopez, Siahkoohi,
Louboutin, Kumar, and Herrmann 2023).

In the final Chapter 8, we present the conclusions of this thesis and discuss future

directions for research.



CHAPTER 2
HIGH-FREQUENCY WAVEFIELD RECOVERY WITH WEIGHTED MATRIX
FACTORIZATIONS

2.1 Summary

Acquired seismic data is normally not the fully sampled data we would like to work with
since traces are missing due to physical constraints or budget limitations. Rank minimiza-
tion is an effective way to recovering the missing trace data. Unfortunately, this technique’s
performance may deteriorate at higher frequency because high-frequency data can not nec-
essarily be captured accurately by low-rank matrix factorizations albeit remedies exist such
as hierarchical semi-separable matrices. As a result, recovered data often suffers from low
signal to noise ratio (SNR) at the higher frequencies. To deal with this situation, we pro-
pose a weighted recovery method that improves the performance at the high frequencies by
recursively using information from matrix factorizations at neighboring lower frequencies.
Essentially, we include prior information from previously reconstructed frequency slices
during the wavefield reconstruction. We apply our method to data collected from the Gulf
of Suez, which shows that our method performs well compared to the traditional method

without weighting.

2.2 Introduction

Seismic data acquisition is one of the key steps in the initial phase of oil & gas exploration.
Due to operational complexity and operational costs, acquired seismic data is usually not
fully sampled, a prerequisite to subsequent steps such as multiple removal and migration
all of which require densely sampled data.

Wavefield recovery is an important tool to solve the problem of poor sampling. In the



last decade, wavefield recovery methods based on sparsity promotion in different transform
domains, such as the Radon (Bardan 1987), wavelet (Villasenor, Ergas, and Donoho 1996),
and curvelet (Herrmann, Wang, Hennenfent, and Moghaddam 2007; Herrmann and Hen-
nenfent 2008) domain have been developed. Although these methods are valuable in terms
of the quality of recovered data, they are relatively complex and computationally expen-
sive. Fortunately, matrix completion methods (Kumar, Da Silva, Akalin, Aravkin, Man-
sour, Recht, and Herrmann 2015) based on low-rank matrix factorizations are relatively
simple and computationally cheaper. The latter use the property that fully-sampled fre-
quency slices permit accurate low-rank representations when organized in midpoint-offset.
In Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015 and Oropeza
and Sacchi 2011, authors exploit the fact that presence of noise or missing traces increases
the rank of these frequency slices. We use this property to recover frequency slices via fac-
tored rank minimization (Kumar, Aravkin, Esser, Mansour, and Herrmann 2014). While
this matrix factorization method performs well at the low to mid frequencies, it struggles
to recover high-frequency data, which need higher ranks to be accurately represented.
Recent work by Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 and Eftekhari,
Yang, and Wakin 2018 has shown that reliable prior information on the row and column
subspaces of the underlying low rank matrix can be used to further improve wavefield
recovery via matrix completion. For seismic data, we have access to this information when
there is a strong similarity between adjacent frequency slices. In that case, the row and
column subspaces can serve as prior information. This principle was first demonstrated by
Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 and we extend this line of research
by recursively invoking prior as we work our way from the relatively low frequencies to the
high frequencies where conventional matrix completion methods typically perform poorly.
This chapter is organized as follows. First, we discuss wavefield recovery via matrix
completion. Next, we discuss how to incorporate prior information on the row and column

subspaces from neighboring lower frequencies in our matrix completion framework. We
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conclude demonstrating our approach on a field data example from the Gulf of Suez and
show its better performance compared to conventional matrix completion especially at the

higher frequencies.

2.3 Methodology

2.3.1 Low-rank matrix factorization

In Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015 and Aravkin,
Kumar, Mansour, Recht, and Herrmann 2014, authors exploit low rank of fully sampled

seismic data by solving for each frequency problem of the type

rg{in |X;]l« subjectto [A(X;) — b2 <e. 2.1

7

In this expression, the matrices X; for ¢ = 1---n; with ny the number of angular fre-
quencies represent fully sampled monochromatic frequency slices in the midpoint-offset
domain, A is the sampling operator collecting the data into a vector, and b; represents the
observed data at the i’ frequency. For each frequency, we recover the fully sampled data
by minimizing the nuclear norm || - ||, on each X; subject we fit the data within e. The
nuclear norm itself is defined as the sum of the singular values. We solve Equation 2.1 for
all the frequencies to obtain our recovered data X € C™f*"m*"h_where n,, is the num-
ber of midpoints and n; the number of offsets. As reported by Kumar, Da Silva, Akalin,
Aravkin, Mansour, Recht, and Herrmann 2015, randomized sampling increases the rank
of 2D seismic data in midpoint offset domain, which is a favorable condition for matrix
completion.

To avoid computationally expensive singular-value decompositions (SVD) while solv-
ing Equation 2.1, we employ a low-rank matrix factorization approach. For this purpose,
we factor the matrices (for notational simplicity we drop the subscript ;) X € C*™*" in

Equation 2.1 into the low-rank factors L € C"**" and R € C"**" both of rank r. To

11



avoid expensive SVDs, we follow Rennie and Srebro 2005 and replace the nuclear norm in

Equation 2.1 by

2

| =

L
subjectto  |A(LR™) —b||p <, (2.2)
LR 2 R

F
where 7 is the Hermitian transpose and || - || » the Frobenius norm (2-norm of the vectorized
matrix). Following Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann
2015 and Aravkin, Kumar, Mansour, Recht, and Herrmann 2014, we solve Equation 2.2
with spectral-projected gradients (Berg and Friedlander 2009).

As we mentioned earlier, the performance of low-rank factorization methods degrade
with increasing frequency reflected in increasing poor signal to noise ratios (SNRs) (Ku-
mar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015). To improve the
recovered data quality at higher frequencies, we include weighted matrix completion (Ar-

avkin, Kumar, Mansour, Recht, and Herrmann 2014; Eftekhari, Yang, and Wakin 2018).

2.3.2  Weighted low-rank matrix factorization

The key of our methodology is that we approximate fully sampled data in low-rank factored

form. When using SVDs, this factored form reads

X ~UxVH, (2.3)

where U € C"*" and V € C"*" are column and row subspaces of X, respectively.
3 € C™ " is a diagonal matrix containing the largest r singular values of the matrix X.
As shown by Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 and Eftekhari,

Yang, and Wakin 2018, information on these subspaces can be used to rewrite Equation 2.1
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into its weighted form—i.e., we have

m}én |IQXW]|. subjectto [ A(X)—blls<e, (2.4)
where
Q = w, UU! L UtUt (2.5)
and
W = w,VVH  vivid (2.6)

are projection matrices on subspaces spanned by U, V and their orthogonal complements
U+, V1. The scalars w; € (0, 1] and w, € (0, 1] are weights that depend on the confidence
we have in the priors—i.e., how close the matrix X is to the actual X; we are dealing with
at frequency <. Small values for the weights w; and w, mean that we have confidence in
the prior (the matrix X is close). When w; 1 1 and w» 1 1, solving Equation 2.4 becomes
equivalent to solving the original Equation 2.1.

As before, we can rewrite Equation 2.4 into a weighted low-rank factored form (Ar-

avkin, Kumar, Mansour, Recht, and Herrmann 2014):

2
. 1] | QL
min  —

5 subjectto | A(LR™) — b|; <. (2.7)
bR WR

F

The question now is which subspaces to use for the columns and rows. Because frequency
slices have information in common from frequency to frequency, we follow Aravkin, Ku-
mar, Mansour, Recht, and Herrmann 2014, Eftekhari, Yang, and Wakin 2018 and use the
U and V from the previous lower frequency.

While Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 somewhat successfully
applied this approach for a single frequency slice, these authors never justified this approach

and neither did they apply the weighting recursively working from the low to the higher
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frequencies. For this purpose, we quantify similarities (in the form of angles, see Eftekhari,
Yang, and Wakin 2018) between subsequent frequency slices for the Gulf of Suez data. This

will allow us to predict the performance of our method.

2.3.3 Quantifying similarity

Similarity between subsequent frequency slices depends on the largest principal angles
(Eftekhari, Yang, and Wakin 2018) between column subspaces and between row subspaces
of subsequent frequency slices. Smaller angles correspond to more similarity between sub-
spaces of subsequent frequency slices and vice versa. Therefore, we can choose smaller
weights w; and ws when the angles are smaller. Smaller weights correspond to larger
penalties (Eftekhari, Yang, and Wakin 2018) on matrices that have subspaces orthogonal
to U and V in Equation 2.4. When weights are small, we have more confidence in U and
V and less confidence in their orthogonal counterparts. In Figure 2.1, we show angles
between column subspaces ( Figure 2.1b) and row subspaces ( Figure 2.1a) for subsequent
frequency slices of the Gulf of Suez data. We observe an overall decreasing trend in an-
gles with increasing frequencies for both row and column subspaces. This trend indicates
increasing similarity between subsequent frequency slices with increasing frequency. This
trend is consistent with high-frequency approximate behavior of wavefields—i.e., as the
frequency increases solutions become more and more like the high-frequency solution, and
this gives us a handle how to choose the weights as the frequency increases.

Figure 2.1 shows that as the frequency increase, the largest angles between the sub-
spaces of neighboring frequencies decreases. Smaller the angle, more similar are sub-
spaces. This angle test have demonstrated that the weighted matrix completion will per-
form better in high frequency band because of smaller angle in comparison to its lower

frequency counterpart.
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Figure 2.1: Largest angle between (a) row and (b) column subspaces for subsequent fre-
quency slices of Gulf of Suez data
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2.4 Numerical experiments

We demonstrate effectiveness of recursive weighted matrix completion method over the
conventional matrix completion method and the weighted method just using previous fre-
quency slice (named as single pair weighted method) in terms of data reconstruction quality.
In single pair weighted method, we reconstruct previous frequency slice using conventional
matrix completion. We use real 2D seismic data with number of sources, N, = 354, and
number of receivers, N, = 354 acquired in Gulf of Suez for this comparison. Total number
of time samples for this data set is N; = 1024 with sampling interval of 0.004s. Most
of the energy of the seismic line is concentrated in 20 Hz to 70 Hz frequency band ( Fig-
ure 2.3b). To get the subsampled data ( Figure 2.2b & Figure 2.4b), we remove 75% of
sources using a jittered subsampling mask. Jittered subsampling method not only breaks
the inherent properties such as low rank of fully sampled seismic data but also controls the
maximum gap size of the incomplete data (Herrmann and Hennenfent 2008). We show the
results and comparisons in both frequency domain and time domain. For every frequency
slice, we perform 150 iterations of spectral projected gradient algorithm for all these meth-
ods. Figure 2.2 shows results on a frequency slice at 30 Hz. Recovery with the unweighted
method gives the result with SNR of 11.43dB. Whereas recovery with the single pair
weighted method gives a higher SNR of 15.20 dB, our recursive weighted method gives
the highest SNR of 18.48dB, 7.05dB improvement in SNR over the unweighted method.
Figure 2.2d, Figure 2.2f and Figure 2.2h show differences between these three different
methods and ground truth data. The reconstruction using recursive prior knowledge gives
the least residual in Figure 2.2h among these three methods. The residual of reconstruction
without using any prior knowledge is Figure 2.2d and the residual of single pair weighted
reconstruction is Figure 2.2f.

Figure 2.3a shows recursive weighted method’s performance (red color plot) over range
of frequencies in terms of signal to noise of completion. Recursive weighted recovery

clearly outperforms the conventional recovery without weight (black color plot in Fig-
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Figure 2.2: Missing trace recovery for a frequency slice at 30 Hz in source-receiver domain.
(a) Ground truth, (b) 75% subsampled seismic data with jittered subsampling. (c¢) and (d)
represent recovery (SN R = 11.43 dB) using conventional method and its difference w.r.t.
the ground truth respectively. (e) and (f) represent recovery (SNR = 15.20dB) using
single pair weighted method and its difference w.r.t. the ground truth respectively. (g)
and (h) represent recovery (SN R = 18.48 dB) using recursive weighted method and its
difference w.r.t. the ground truth respectively.
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ure 2.3a) and the single pair weighted recovery (blue color plot in Figure 2.3a) in the
frequency range which contains most of the energy ( Figure 2.3b).

To further compare these three methods for time domain data, we apply them on all
frequency slices and transfer results back to time domain. Figure 2.4 shows results and
differences for one common receiver gather extracted from complete time domain data.
With the conventional recovery we get SNR of 6.87 dB, whereas with single pair weighted
recovery we get SNR of 7.85dB and with recursive weighted recovery we get SNR of
11.63 dB. With recursive weighted recovery we get almost 5 dB improvement for complete
time domain data over conventional recovery. It is also obvious to see the advantage of
the recursive weighted method from three differences in Figure 2.4d, Figure 2.4f and
Figure 2.4h. The residual is significantly reduced in Figure 2.4h in contrast to Figure 2.4d

and Figure 2.4f.

2.5 Conclusion

In this work, we have proposed recursive weighted matrix completion to improve data
reconstruction quality, especially at high frequencies where the conventional matrix com-
pletion method performs poorly. In contrast to conventional low-rank matrix factoriza-
tion without weighting or with non-recurrent pairwise weighting, our recursively weighted
method performs better at the high frequencies, especially at frequencies where the data
has the most energy. We also demonstrated the effectiveness of our recursive recovery
on real data. Future work will be to extend the application of recursive weighted matrix
completion to realistic size 3D seismic data reconstruction and also to simultaneous source

acquisition.
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Figure 2.3: (a) SNR vs frequency of recovery using recursive weighted method (Red color),
single pair weighted method (Blue color) and conventional method (Black color). (b) Plot
of energy of frequency slices vs frequency.
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Figure 2.4: Missing trace recovery of time domain data. (a) Ground truth. (b) 75% sub-
sampled seismic data with jittered subsampling. (c) and (d) represent recovery (SNR =
6.87dB) using conventional method and its difference w.r.t. the ground truth respec-
tively. (e) and (f) represent recovery (SN R = 7.85 dB) using single pair weighted method
and its difference w.r.t. the ground truth respectively. (g) and (h) represent recovery
(SNR = 11.63 dB) using recursive weighted method and its difference w.r.t. the ground
truth respectively.
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CHAPTER 3
WAVEFIELD RECOVERY WITH LIMITED-SUBSPACE WEIGHTED MATRIX
FACTORIZATIONS

3.1 Summary

Modern-day seismic imaging and monitoring technology increasingly rely on dense full-
azimuth sampling. Unfortunately, the costs of acquiring densely sampled data rapidly be-
come prohibitive and we need to look for ways to sparsely collect data, e.g. from sparsely
distributed ocean bottom nodes, from which we then derive densely sampled surveys through
the method of wavefield reconstruction. Because of their relatively cheap and simple
calculations, wavefield reconstruction via matrix factorizations has proven to be a viable
and scalable alternative to the more generally used transform-based methods. While this
method is capable of processing all full azimuth data frequency by frequency slice, its
performance degrades at higher frequencies because monochromatic data at these frequen-
cies is not as well approximated by low-rank factorizations. We address this problem by
proposing a recursive recovery technique, which involves weighted matrix factorizations
where recovered wavefields at the lower frequencies serve as prior information for the re-
covery of the higher frequencies. To limit the adverse effects of potential overfitting, we
propose a limited-subspace recursively weighted matrix factorization approach where the
size of the row and column subspaces to construct the weight matrices is constrained. We
apply our method to data collected from the Gulf of Suez, and our results show that our

limited-subspace weighted recovery method significantly improves the recovery quality.
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3.2 Introduction

Seismic data acquisition plays a key role in the initial phase of oil & gas exploration. It
also represents a significant budget item for monitoring of carbon sequestration. For these
reasons, it is a challenge to come up with new acquisition methodologies that improve
acquisition productivity (Mosher, Li, Morley, Ji, Janiszewski, Olson, and Brewer 2014)
without sacrificing data quality. Randomized acquisition according to the principles of
compressive sensing (Herrmann, Friedlander, and Yilmaz 2012) in combination with large-
scale wavefield reconstruction algorithms (Kumar, Da Silva, Akalin, Aravkin, Mansour,
Recht, and Herrmann 2015) has proven a viable tool to improve the acquisition productivity
both in marine and land seismic settings.

So far, many of the employed approached of wavefield reconstruction are based transform-
domain sparsity, which is deigned to explore local smoothness typically in small windows
in up to five dimensions. While these approaches have been applied successfully on pro-
duction data, they do not exploit redundancies present in the data over long distances.
Recovery techniques based on low-rank matrix factorizations (Kumar, Da Silva, Akalin,
Aravkin, Mansour, Recht, and Herrmann 2015) do not suffer from this shortcoming be-
cause this method works with monochromatic frequency slices that contain data from the
complete survey instead of working within small windows limiting the apperture. By or-
ganizing the data in the appropriate domain, e.g. midpoint-offset domain for seismic lines,
monochromatic frequency slices permit approximations in low-rank form, which can be
used to recover fully sample wavefields from subsampled data.

While low-rank factorizations have been employed successfully for low and midrange
frequencies, their performance deteriorates at high frequencies because monochromatic
frequency slices can no longer be approximated accurately by low-rank factorizations. In
this work, we overcome this problem by using the fact that factorizations at neighbor-

ing frequencies live in close-by subspaces. As described in early work by Aravkin, Ku-
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mar, Mansour, and Recht 2013, Eftekhari, Yang, and Wakin 2018, this property can be
exploited by introducing matrix weights defined in terms of factorizations of near-by fre-
quency slices. Recent work by Zhang, Sharan, and Herrmann 2019 took this initial a step
further by proposing a recursive approach where factorizations of frequency slices at lower
frequencies are used as weight for factorizations at the higher frequencies starting at the
low frequencies and working its way up.

While this approach has had some success (see e.g. Zhang, Sharan, and Herrmann
2019), there is challenge related to the fact that high frequencies require higher rank fac-
torizations and this can lead to overfitting when using this higher rank throughout. We
avoid this overfitting, by adapting the rank of the weighting matrices such that overfitting is
avoided. We do this by actively limiting the row and column subspaces of the weight ma-
trices. Because we avoid overfitting, we are able to further improve the wavefield recovery.
We also introduce an alternative formulation where the weight matrices are moved from
the constraint, as in Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann
2015, to the data misfit objective, which leads to a significant improvement (20 to 25 times
speedup) computational efficiency.

We organize this chapter as follows. First, we review the recursively weighted wave-
field recovery via matrix factorization including the new formulation where the weight
appear in the data misfit term. Next, we discuss how to limit the subspace of our weighted
matrix factorizations. We conclude by demonstrating our approach on a field data example
from the Gulf of Suez, which shows improved recovery quality compared to conventional

recursively weighted matrix completion.

3.3 Methodology

We start by introducing wavefield reconstruction via weighted matrix factorization. To
improve computational efficiency, we move the weight matrices to the data misfit term so

we no longer have to carry out numerically expensive weighted projections as in Aravkin,
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Kumar, Mansour, and Recht 2013. Aside from allowing for a much more computationally
efficient implementation, this alternative formulation also forms the basis for our limited-

subspace approach designed to prevent overfitting at the low frequencies.

3.3.1 Weighted low-rank matrix factorization

Our proposed extension to wavefield reconstruction via recursively weighted matrix factor-
ization derives from earlier work by Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht,
and Herrmann 2015, Aravkin, Kumar, Mansour, and Recht 2013, and Zhang, Sharan, and
Herrmann 2019, where we solve

win | QX, W],

; 3.1
subjectto || A(X;) — bl <7

to within a noise-level dependent data misfit tolerance 7. In this expression, the matrix X;
corresponds to a monochromatic frequency slice in the midpoint-offset domain (in case of
2D) at the ith frequency (i € [1,- - - ,ny] with ns the number of frequencies).

During the wavefield recovery, fully sampled frequency slices are represented by the
complex valued matrix, X € C"/*"m*"» where n,, is the number of midpoints and n;, the
number of offsets. The symbol A(-) stands for the subsampling operator, which collects
monochromatic data at the observed source-receiver combinations into the vector b;. Given
these observations, we solve for the fully sampled X; for each frequency by minimizing

Equation 3.1 with weight matrices Q and W given by
Q = w,UU" + UUH (3.2)

and

W = w,VVH 4 ViVv+H, (3.3)

In these expressions for the weight matrices, the U € C"*" and V € C™*" are the
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column and row subspaces that derive from the low-rank factorization of the nearby fre-
quency slice. U and V have orthonormal columns that span top column and row subspaces
of nearby frequency slice. Because these weight matrices include information on the sub-

spaces of the current factorization, they serves as prior information aiding the wavefield

T
J=1

recovery via the weighted nuclear norm minimization (denoted by |QXW||,. = >"_, 0,
with o; the j™ singular value). Depending on whether we have confidence in the fact that
the neighboring frequency slice has an overlapping subspace, we chose the weights w; and
wsq close to 0 if we have confidence and close to 1 if we do not.

While the above weighted formulation has resulted in major improvements in the re-
covery when reliable information on a neighboring frequency slice is available (Kumar, Da
Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015; Aravkin, Kumar, Mansour,
and Recht 2013; Zhang, Sharan, and Herrmann 2019), the minimization in Equation 3.1 is
complicated by the presence of the weighting matrices in the nuclear norm objective. As a

result, the minimization becomes computationally expensive. To avoid this complication,

we replace the optimization variable by X; = QX;W, and rewrite Equation 3.1 as

min || X;].
X, (3.4)
subjectto  JAQT'X,W ) — byl < 7

where the modified weighting matrices

1
Q—l — _UUH + ULULH (35)
wq
and
1
Wl=_—vvivivtd (3.6)
Wa

are moved from the objective to the data misfit constraint. To reflect that we changed the

problem, we introduced barred quantities from which the solution original solution can be
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readily computed—i.e., we recover the solution X; = Q 'X;W-1lsince X; = QX;W
solves the above optimization problem. Compared to Equation 3.1, this new formulation
does not require nuclear norm projections onto weighted matrices while its solution is
equivalent to Equation 3.1.

Like the original formulation, our new formulation lends also itself to be cast into a
low-rank (r < max(n,,,ny)) factorized form so that expensive SVDs are avoided in the

nuclear norm. After factorization our wavefield reconstruction involves

2

|
DN | —
|

R; (3.7)

F

subjectto  ||A(Q'L;RIW™!) — by||s < e,

where the symbol  denotes the Hermitian transpose and || - || is the Frobenius norm
(2-norm of the vectorized matrix) (Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht,
and Herrmann 2015; Aravkin, Kumar, Mansour, and Recht 2013; Zhang, Sharan, and Her-
rmann 2019). Compared to the original representation for frequency slices, the above fac-
tored form is compressed since it entails the low-rank pair {L;, R;} ,where X; = L;RZ,
and does not rely on storage and manipulation of the original and dense optimization vari-
able X; or X;. Despite gains in computation, because of the factored form and redefined
data misfit term, challenges remain with recursive weighted matrix factorizations (Zhang,
Sharan, and Herrmann 2019) at the high frequencies and as we will show these have to do

with overfitting.

3.3.2 Limited subspace weighted implementation

To reduce approximation errors at the high frequencies, we can increase the rank of the fac-
torization throughout. While increasing the rank leads to better approximations at the high
frequencies adapting this higher rank at the lower frequencies can lead to overfitting. The

resulting poor reconstructions at the lower frequencies can in turn have a detrimental effect
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on the reconstruction at higher frequencies, which information from the lower frequencies
as the recursive algorithm sweeps from the low to the high frequencies.

By choosing the rank for the limited subspace, we reduce the size of the subspaces
of the weight matrices to prevent overfitting at the lower frequencies. In Equation 3.2,
Equation 3.3, Equation 3.5 and Equation 3.6, we notice that the size of the weight matrices
Q and W are independent of rank r. Therefore, we can use a limited subspace to remove
the influence of overfitting and get better results.

By limited subspace, we mean that at a given frequency slice, instead of using a rank r
for row and column subspaces U and V respectively, we can use a lower rank 7. In this
way, we can choose higher rank r to reconstruct each frequency but use lower rank r, to
construct the weight matrices (Q and W). By choosing smaller rank for the subspaces, we
mitigate the negative influence of overfitting. Therefore, in the limited-subspace method,
we are free to choose smaller values for the r, for each frequency slice and higher values

for the rank r for the factorization itself (not for the weights) for each frequency.

3.4 Numerical Experiments

To demonstrate the advocacy of the proposed method, we use 2D field seismic data acquired
in the Gulf of Suez with number of sources, Ny, = 355, and number of receivers, /N, = 355.
The total number of time samples in this dataset is /Ny = 1024 and the sampling interval is
0.004 s. We use a jittered subsampling (Herrmann and Hennenfent 2008) mask to remove
75% of the sources to obtain the subsampled data. When data is organized in the midpoint-
offset domain, we know that randomized jittered subsampling method breaks the inherent
low-rank property of seismic data while controlling the largest gap size of the subsampled
data (Herrmann and Hennenfent 2008). Controlling largest gap is important because very
large gaps are not suitable for wavefield reconstruction using sparsity-promotion or low-
rank matrix completion. We use the weighted method as described by Zhang, Sharan, and

Herrmann 2019 to reconstruct frequency slices starting at 10 Hz and working our way up
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to 70 Hz. We use constant rank across all the frequencies for weight matrices and matrix
factorization. We base these choices for s < r on visual inspection of the recovered fre-
quency slices. To avoid overfitting at lower frequencies we select rank 74 of the limited
subspace constant across all the frequencies. And to better approximation of higher fre-
quencies we choose higher rank r across all the frequencies. Combination of higher rank
for matrix factorization and smaller rank for limited subspace avoid the risk of overfitting
and at the same time improves the data reconstruction quality.

To demonstrate that the limited-subspace recursively weighted method gives improved
results compared to conventional recursively weighted method (Zhang, Sharan, and Her-
rmann 2019), we first show results in the frequency domain. For each frequency slice, we
perform 150 iterations for both the methods. For the limited-subspace weighted method,
we use rank r = 85 and limited subspace rank of ; = 25. For comparison with the conven-
tional weighted method, we perform two experiments with a fixed high rank of » = 85 and
lower rank of » = 25. We choose lower rank for conventional weighted method to show
that smaller rank itself is not sufficient for significant improvement in data reconstruction
at higher frequencies. On the other hand we choose higher rank of 85 for conventional
weighted method to show that higher rank is alone not sufficient to improve the quality
of reconstructed data at higher frequencies because of the overfitting at lower frequencies.
We show reconstruction results for a frequency slice at 22 Hz in Figure 3.1. Due to over-
fiting, the conventional method with rank » = 85 gives a reconstruction with a smaller
SNR of 13.09 dB compared to the wavefield reconstruction (Figure 3.1c and Figure 3.1d)
obtained with the smaller rank » = 25 for which we get SNR of 15.50 dB (Figure 3.1e and
Figure 3.1f). We get SNR of 19.52 dB for the reconstructed data (Figure 3.1g) using the
limited-subspace weighted method. Figure 3.1h shows the data residual with respect to the
ground truth (Figure 3.1a). Clearly, our limited-subspace weighted method outperforms
the conventional weighted method in terms of improved quality of reconstructed data.

To further compare our limited-subspace method with the original method, we repeat
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Figure 3.1: Reconstruction for missing source for a frequency slice at 22 Hz shown in
the source-receiver domain but reconstructed in the midpoint-offset domain. (a) Ground
truth, (b) 75% subsampled seismic data with jittered subsampling. (c) and (d) recovery by
weighted matrix factorization (SN R = 13.09 dB) using conventional recursively weighted
approach with fixed rank » = 85 and corresponding residual w.r.t. the ground truth, re-
spectively. (e) and (f) contain recovery (SN R = 15.50 dB) for conventional recursively
weighted with a rank » = 25 and corresponding residual w.r.t. the ground truth respec-
tively. (g) and (h) represent recovery (SN R = 19.52 dB) using limited-subspace weighted
method with limited-subspace rank r, = 25 and corresponding residual w.r.t. the ground
truth respectively.
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wavefield reconstructions over a range of frequencies 7 — 74 Hz. In Figure 3.2, we show
the comparison of the SNR’s across the whole frequency range. As expected, we observe
that limited-subspace weighted method (red line in Figure 3.2) outperforms conventional
weighted method for both ranks of 25 (blue line in Figure 3.2) and 85 (black line in Fig-
ure 3.2) for most of the frequencies. This is because of using limited subspace we avoid risk
of overfitting at lower frequencies and hence get improvement in quality of reconstructed
data.

To show the recovery improvement in the time domain, we included Figure 3.3. To
make fair comparison, we construct a bandpass filter with pass frequency 7 — 74 Hz with
a transition width at both ends of 3.66 Hz. We apply this bandpass filter on the true data,
the subsampled data, and on recovered data recovered using the three scenarios described
above. After applying the filter, we transform the filtered data back to the time domain.
As we can see from Figure 3.3e, we observe less leakage of coherent signal in the data
residual for results obtained with our limited-subspace weighted method in comparison
to the data residual yielded by the conventional weighted method with ranks of » = 85
(Figure 3.3c) and r = 25 (Figure 3.3d). With the conventional weighted method for rank
equals to » = 85, we get SNR of 10.69 dB, and for rank r» = 25, we get SNR of 11.49dB.
With the limited-subspace weighted method we get SNR of 13.31 dB, which is a significant

improvement.

3.5 Conclusions

In this chapter, we proposed a limited-subspace weighted method to further improve the
performance of recursively weighted method in terms of better data reconstruction quality.
By exploiting the fact that dimensions of weight matrices are independent of the rank of the
subspaces, our method allows us to use higher ranks for data reconstruction while avoiding
the risk of overfitting at the lower frequencies. Matrices with higher rank allow for a bet-

ter approximation of the frequency slices at higher frequencies and hence allow for better
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quality of reconstructed data if we prevent overfitting by working with limited-subspace
weights. Through experiments we performed on a field data acquired in the Gulf of Suez,
we demonstrated the advantage of our method in comparison to the recursively weighted
method without using limited subspace. We also introduced a computationally more effi-
cient formulation by moving the weight matrices to the data-misfit term. In future work ,
we would like to extend the application of limited-subspace weighted method to large scale

3D data examples.

3.6 Related materials

In order to facilitate the reproducibility of the results herein discussed, Matlab & Julia
implementation of this work are made available on the SLIM GitHub page https://github.

com/slimgroup/Software.SEG2020.
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Figure 3.2: SNR of reconstructed data vs frequency based on our limited-subspace
weighted method (red color), conventional weighted method with rank equals to 85 (black
color) and 25 (blue color).
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Figure 3.3: Wavefield reconstruction results in the time-domain. (a) Ground truth. (b)
75% subsampled seismic data with jittered subsampling. (c¢) using conventional weighted
method (SN R = 10.69 dB) for rank equals to » = 85, (d) using conventional weighted
method (SN R = 11.49 dB) for rank equals to r = 25, (e) using limited subspace weighted
method (SN R = 13.31 dB) with limited subspace rank r; = 25.
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CHAPTER 4
LARGE SCALE HIGH-FREQUENCY WAVEFIELD RECONSTRUCTION WITH
RECURSIVELY WEIGHTED MATRIX FACTORIZATIONS

4.1 Summary

Acquiring seismic data on a regularly spaced fine grid poses a challenge. However, by
leveraging the low-rank approximation property of fully sampled seismic data in a specific
transform domain, we can employ low-rank matrix completion. This approach offers a scal-
able solution for reconstructing seismic data on a regularly spaced fine grid from sparsely
and randomly sampled data obtained in the field. While wavefield reconstruction has been
successfully applied in the lower frequency range, its effectiveness diminishes at higher
frequencies where the low-rank assumption no longer holds. This limitation hampers its
utility in situations that require high-resolution images. To overcome this drawback, we
capitalize on the explicit similarities between adjacent frequency slices. These similarities,
manifested during low-rank matrix factorization, result in the alignment of subspaces of
the factors. We propose to exploit this notion by recursively reconstructing monochromatic
frequency slices, starting from the lower frequencies. Although the core idea is relatively
straightforward, transforming this recent insight into a successful scalable wavefield re-
construction scheme for 3D seismic data involves several crucial steps. Firstly, we need
to transfer the weighting matrices, which encapsulate prior information from adjacent fre-
quency slices, from the objective to the data misfit constraint. This adjustment significantly
enhances the performance of the weighted low-rank matrix factorization that underlies our
wavefield reconstructions. Secondly, we introduce approximations that enable us to per-
form computations on a row-by-row and column-by-column basis, thereby facilitating the

parallelization of the alternating optimization process central to our low-rank factorization.
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The combination of weighting and decoupling results in a computationally feasible full-
azimuth wavefield reconstruction scheme that scales to industry-scale problem sizes. We
showcase the performance of the proposed parallel algorithm using both a 2D field dataset
and a 3D synthetic dataset. In both cases, our approach produces high-fidelity broadband

wavefield reconstructions from severely subsampled data.

4.2 Introduction

To achieve cost-effective extraction of hydrocarbon resources from the subsurface and mit-
igate hazardous situations, oil and gas companies heavily rely on accurate imaging and
estimation of the physical parameters of the Earth’s subsurface, such as wavespeed, den-
sity, etc. To obtain subsurface images and recover these physical parameters, practitioners
employ a series of processing steps on the raw seismic data collected during seismic data
acquisition in the field. Some of these processing steps, such as migration, demultiple,
etc. necessitate finely sampled seismic data ideally on a regular grid. However, acquiring
seismic data on a fine regular grid is often financially prohibitive and operationally com-
plex. Therefore, the common practice in the oil and gas industry is to acquire seismic data
on a coarse irregular grid and subsequently perform wavefield reconstruction to obtain a
finer grid. In this study, we focus on wavefield reconstruction from randomized samples
extracted from a periodic grid. For a more in-depth exploration of the presented wavefield
reconstruction methodology, we refer the reader to Lopez, Kumar, Yilmaz, and Herrmann
2016 which discusses an off-the-grid extension.

In recent years, various methods for wavefield reconstruction have been developed.
Many of these methods perform wavefield reconstruction in a transformed domain, involv-
ing Fourier (Xu, Zhang, Pham, and Lambaré 2005), Radon (Bardan 1987), wavelet (Vil-
lasenor, Ergas, and Donoho 1996), or curvelet (Herrmann and Hennenfent 2008) domain.
These transformations, to different extents, promote sparsity in seismic data, which is a fun-

damental aspect of wavefield reconstruction based on compressive sensing (CS) (Candes,
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Romberg, and Tao 2006; Donoho 2006). Although powerful, sparsity-based wavefield re-
construction encounters scalability challenges in 3D seismic scenarios, where data volumes
become excessively large when structure is promoted across more than three dimensions,
e.g. along all four source and receiver coordinates. To address these challenges in higher
dimensions, exploiting the low-rank properties of matrices and tensors (Kumar, Da Silva,
Akalin, Aravkin, Mansour, Recht, and Herrmann 2015; Oropeza and Sacchi 2011) has
proven effective. This approach builds upon the earlier work of Recht, Fazel, and Parrilo
2010, who extended some of the ideas of CS to matrices. Similar to CS, matrix completion
capitalizes on the low-rank approximation permitted by the underlying fully sampled data
organized in a matrix. Randomized sampling, like in CS, disrupts the low-rank structure,
which guides (convex) optimization techniques to recover wavefields by minimizing the
rank. Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015 and Da
Silva and Herrmann 2015 leverage this property and formalize matrix- and tensor-based
wavefield reconstructions suitable for large-scale seismic datasets (Kumar, Wason, Sharan,
and Herrmann 2017).

As demonstrated in the work by Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht,
and Herrmann 2015, low-rank matrix completion methods perform well when reconstruct-
ing seismic data at lower angular frequencies. However, the quality of recovery degrades
as we move to higher frequencies (> 15 Hz). This degradation is due to the fact that high-
frequency slices are not accurately approximated by low-rank matrix factorization (Kumar,
Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015; Aravkin, Kumar, Man-
sour, Recht, and Herrmann 2014). Unfortunately, techniques like multiple elimination and
migration require access to high-frequency data to create high-fidelity, artifact-free, high-
resolution images. This need becomes even more crucial in areas with complex geology,
where understanding the physical properties is of utmost interest.

To address the challenges of recovering seismic data at high frequencies, we build upon

the earlier work of Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 and Eftekhari,
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Yang, and Wakin 2018, who discussed methods to improve the performance of low-rank
matrix completion by incorporating prior information in the form of weighting matrices.
These weighting matrices are projections spanned by the row and column subspaces, along
with their complements, of a low-rank matrix factorization that is close to the target matrix
for recovery. Similar to weighted /;-norm minimization, these weighting matrices enhance
wavefield recovery if the principal angle between the subspaces of the weighting matrices
and the target matrix is small. Conceptually, this is the matrix equivalent of weighted
¢1-norm minimization proposed by Mansour, Herrmann, and Yilmaz 2012, Friedlander,
Mansour, Saab, and Yilmaz 2012, Borries, Miosso, and Potes 2007, Vaswani and Lu 2010,
Khajehnejad, Xu, Avestimehr, and Hassibi 2009, and Candes, Wakin, and Boyd 2008.
Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 and Eftekhari, Yang, and Wakin
2018 demonstrated that wavefield recovery via matrix completion can be improved by using
low-rank factorizations from adjacent frequency slices to define these weighting matrices.
In their work, Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 employed a modified
version of the spectral-projected gradient algorithm (Berg and Friedlander 2009) to assume
access to the low-rank factorization of an adjacent frequency slice, while Eftekhari, Yang,
and Wakin 2018 showed that for small principal angles, these weighting matrices reduce the
sampling requirement for successful data reconstruction by a logarithmic factor compared
to conventional matrix completion methods.

Although the initial results on wavefield reconstruction via weighted matrix comple-
tion were promising, the approach presented had practical limitations, relying on access to
the weights and employing computationally expensive optimization algorithms. To over-
come these shortcomings, we propose a parallelizable recursive method that utilizes a re-
cently developed alternating minimization procedure (Xu and Yin 2013; Jain, Netrapalli,
and Sanghavi 2013) proposed by Lopez, Kumar, and Herrmann 2015. Through recursive
reconstruction, as initially proposed by Zhang, Sharan, and Herrmann 2019, and improved

optimization, we demonstrate enhanced performance of our wavefield reconstruction algo-
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rithm.

The outline of our chapter is as follows. We first provide a brief overview of the prin-
ciples of wavefield reconstruction via matrix completion. Following this introduction, we
describe the challenges associated with high-frequency wavefield reconstruction and dis-
cuss how these challenges can be addressed through weighted matrix completion. We then
describe the formulation in factored form, which drastically reduces the problem size, mak-
ing our approach practical for 3D seismic data. In particular, we explain how our algorithm
can be parallelized and applied to large-scale high-frequency seismic wavefield reconstruc-

tion problems.

4.3 Wavefield reconstruction via weighted matrix completion

According to the seminal work of Recht, Fazel, and Parrilo 2010, matrices that exhibit a
low-rank structure can be recovered from randomly missing entries through a nuclear norm
minimization procedure. This procedure minimizes the sum of the singular values. As long
as the randomized subsampling reduces the rate of decay of the singular values, this type
of minimization enables the recovery of matrices that are well approximated by low-rank
matrices when fully sampled. Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and
Herrmann 2015 applied this principle to recover frequency slices from seismic lines in the
midpoint-offset domain or from 3D seismic data permuted in a non-canonical form (Da
Silva and Herrmann 2015). In both cases, the resulting frequency slice can be accurately
approximated by a low-rank matrix factorization.

To illustrate the underlying principle of wavefield reconstruction via matrix completion,
let’s consider a 12 Hz monochromatic frequency slice assembled from a 2D line acquired
in the Gulf of Suez. Figure 4.1 includes the real part of this frequency slice in the source-

receiver and midpoint-offset domain after removing 75

X :=argmin [|[Y]|, subjectto [A(Y)—B|r <e, “4.1)
%

38



which promotes low-rank matrices.

By solving this minimization problem, our goal is to recover the minimum nuclear norm
(IX]||« = >_ o; with the sum running over the singular values of X) of the complex-valued
data matrix X € C™*", where m represents the number of offsets and n represents the
number of midpoints. In addition to minimizing the nuclear norm objective, the minimizer
fits the observed data B € C™*" at the sampling locations within a certain tolerance e,
measured by the Frobenius norm, i.e., [D|r = |/>_, >, D7, for a matrix D. The lin-
ear operator A implements the sampling mask by setting zeros at the source (and possibly
receiver) locations that were not collected in the field. The optimization variable is rep-
resented by the matrix Y. Equation 4.1 resembles the classic Basis Pursuit DeNoising
problem (BPDN, Berg and Friedlander 2009) and can be solved using a modified version
of the SPG/; algorithm, adapted for nuclear-norm minimization (Aravkin, Kumar, Man-
sour, Recht, and Herrmann 2014). To solve problem Equation 4.1, SPG/; solves a series
of constrained subproblems, during which the nuclear-norm constraint is relaxed to fit the

observed data.

4.3.1 The challenge of high-frequency wavefield recovery

Wavefield reconstruction via matrix completion (cf. problem Equation 4.1) relies on the as-
sumption that the singular values of monochromatic data organized in matrix decay rapidly.
This assumption holds true for the lower frequencies (< 15.0 Hz), but unfortunately, it no
longer holds for higher frequencies. To illustrate this phenomenon, we compare the decay
of singular values for the two matricizations of Figure 4.2 at 12.0 Hz and 60.0 Hz in Fig-
ure 4.3. While the singular values at 12.0 Hz decay quickly, this is not the case at 60.0 Hz
(compare solid lines in Figure 4.3a and Figure 4.3b), where the singular values for the
fully sampled data decay more slowly. The slower decay at the high frequencies is caused
by the increased complexity and oscillatory behavior exhibited by data at higher tempo-

ral frequencies. Despite the fact that the randomized source subsampling slows down the
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Figure 4.1: 12.0 Hz frequency slice extracted from 2D seismic data acquired in Gulf of
Suez. Data with 75% missing random jittered sources in (a) source-receiver domain and
(b) in midpoint-offset domain.
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Figure 4.2: Decay of singular values for 12.0 Hz frequency slice in source-receiver and
midpoint-offset domain for (a) full data and for (b) subsampled data with 75% missing
sources.
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decay, the slower decay of the fully sampled data leads to poor wavefield reconstruction

( Figure 4.4a) and unacceptable large residuals ( Figure 4.4b) at 60.0 Hz.

4.3.2 Weighted matrix completion

As shown in Figure 4.3, Figure 4.4a, and Figure 4.4b, the success of wavefield reconstruc-
tion through the minimization of the nuclear norm (cf. Equation 4.1) hinges on rapid decay
of the singular values an assumption violated at the higher frequencies. This shortcoming
can, at least in part, be overcome by using prior information from a related problem in the
form of weights, an approach initially put forward by Aravkin, Kumar, Mansour, Recht, and
Herrmann 2014 and further theoretically analyzed by Eftekhari, Yang, and Wakin 2018. In
its original form, the weights were derived from the reconstruction of the wavefield at a
neighboring temporal frequency, which leads to a significant improvement for the recon-
struction and the residual plotted in Figure 4.4c and Figure 4.4d, respectively. Building
upon this approach, Zhang, Sharan, and Herrmann 2019 further enhanced the reconstruc-
tion by applying it recursively from low to high frequencies, leading to improved quality
as depicted in Figure 4.4e and a reduced residual size as shown in Figure 4.4f. In this
work, we extend these results by reformulating the optimization problem and introducing
a parallel algorithm that minimizes communication.

We obtained the above weighted wavefield reconstructions by minimizing (Aravkin,

Kumar, Mansour, Recht, and Herrmann 2014; Eftekhari, Yang, and Wakin 2018)
X :=argmin [|[QYW]||, subjectto [A(Y)—B|r <k, 4.2)
Y
where the weighting matrices Q € C™*" and W € C™*" are projections given by

Q = w, UUY + U+U" (4.3)
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Figure 4.3: Singular value decay for fully sampled and subsampled data (75% missing
sources) in midpoint-offset domain for (a) 12.0 Hz and (b) 60.0 Hz frequency slice
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Figure 4.4: Wavefield reconstruction comparison for a 60 Hz frequency slice. (a) Recon-
structed wavefield from 75% subsampling. (b) residual with a poor S/R = 2.83 dB. (¢)
Reconstructed wavefield using the recovery at the adjacent lower frequency as weights and
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scheme applied recursively with significantly jmproved S/R = 8.72 dB.



and

W = w,VVH £ vivt" (4.4)

where the symbol 7 denotes complex transpose. These projections are spanned by the row
and column subspaces U, V and their orthogonal complements U+ and V. Furthermore,
the subspaces U, V have orthonormal columns, resulting in the orthogonal projections
UU# and VV#, The pair of matrices {U, V} form a low-rank pair that can be obtained
from the factorization of a lower adjacent frequency slice. The choice for the weights
w; and wy in Equation 4.3 and Equation 4.4 depends on the similarity between the cor-
responding row and column subspaces of the two adjacent frequency slices. Following
Eftekhari, Yang, and Wakin 2018, we quantify this similarity using the largest principle
angle between these subspaces. A smaller angle indicates a higher similarity between the
subspaces from the two adjacent frequency slices. In cases where the adjacent frequency
slices are near orthogonal—i.e., have a near 90° angle, we set w; 1 1 and wo T 1 so that the
weighting matrices Q and W become identity matrices. Here, the symbol 1 1 represents
an approximation 1 from below. In such situations, the weighting matrices should not in-
troduce additional information—i.e., the solution of problem Equation 4.2 should become
equivalent to solving the original problem in Equation 4.1. Conversely, when the subspaces
are similar—i.e., they have an angle < 90°, then the w; and wy should be chosen small
such that we penalize solutions more in the orthogonal complement space. The choice of
these weights depends on our confidence in the given factorization: we select weights close
to one when we have little confidence and close to zero when we have higher confidence.
While replacing the nuclear-norm objective in Equation 4.1 within its weighted coun-
terpart in Equation 4.2 is a valid approach that has shown improvements as reported in Fig-
ure 4.4, solving this weighted problem involves non-trivial weighted projections (see equa-
tion 7.3 in Aravkin, Kumar, Mansour, Recht, and Herrmann 2014). These computation-
ally expensive operations can be avoided by reformulating the optimization problem Equa-

tion 4.2 in a slightly different manner, where the weights are transferred from the objective
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to the data constraint—i.e., we have
X :=argmin|| Y|/, subjectto [AQ 'YW ) -B|r<e (4.5)
Y

In this formulation, the optimization is carried out over the new variable Y = QYW.
After solving for this variable, we recover the solution of the original problem X from X
as follows: X = Q 'XW~!. We arrived at this formulation by using the fact that the

matrices Q and W are invertible (for non-zeros weights w; and ws) with inverses given by

1
Q= EIUUH +utut” (4.6)
and
1
W= vvi L vivt?, 4.7)
w2

By transferring the weighting matrices to the data constraint, we eliminate the need to
project onto a more complex constraint, as demonstrated in Aravkin, Kumar, Mansour,
Recht, and Herrmann 2014. As a result, the solutions obtained from the modified formula-
tion in Equation 4.5 can be obtained at nearly the same computational cost as the original
formulation in Equation 4.1. This formulation serves as the foundation for our wavefield
reconstruction approach, designed to handle the substantial data volumes present in 3D

seismic applications.

4.4 Scalable multi-frequency seismic wavefield reconstruction

Up until now, our minimization problems have relied on explicitly forming the data ma-
trix and utilizing singular-value decomposition (SVD) techniques, as described in Aravkin,
Kumar, Mansour, Recht, and Herrmann 2014. However, these approaches are impractical
for industry-scale 3D wavefield reconstruction problems. To tackle this challenge, we ex-

plore the transformation of the aforementioned weighted matrix completion approach into
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a factored form. This alternative formulation offers computational advantages and, as we

will demonstrate later, remains amenable to parallelization.

4.4.1 Weighted low-rank matrix factorization

To avoid computing costly SVDs, we first cast the solution of Equation 4.5 into factored

form:

2

T 1) | L - -1¥ pHw-H
L,R:=argmin_| | subjectto  A(Q LyRLW™7) = BJ[r <€, (4.8
LyRy 2 R
F

where L = QL and R = WR. Under certain technical conditions (Candes and Recht
2009), which include choosing the proper rank r, the factored solution, X = LR with
L = Q 'Land R = W!R, corresponds to the solution of the weighted problem included
in Equation 4.2. Here, the matrices L € C™*" and R € C™*" are the low-rank factors
of X. Using the property that the matrices W# = W and Q = Q in Equation 4.8
are idempotent, we replace W~ by W~ to avoid extra computation. Compared to the
original convex formulation, solving Equation 4.8 is made possible through the use of
block coordinate descent (Xu and Yin 2013), which offers computational efficiency, as
demonstrated by the runtimes shown in Figure 4.5 as a function of temporal frequency.
The block coordinate descent algorithm efficiently finds the low-rank factors, allowing us
to solve the low-rank matrix completion problem. However, it’s important to note that this
approach is effective only when the monochromatic data matrices can be well approximated
by low-rank matrices, meaning that the rank parameter r < min(m,n).

Although the weighted formulation described above enables solving the problem in fac-
tored form, it requires access to the subspaces {U, V}, which necessitates computing the
full SVD (Eftekhari, Yang, and Wakin 2018). However, since computing the full SVD is
not feasible, we adopt a different approach. Instead, we orthogonalize the low-rank fac-

tors from adjacent frequency slices themselves by performing computationally inexpensive
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Figure 4.5: Runtime comparison plot: Solid black line shows runtime of the original
weighted formulation and dashed black line shows runtime of the new weighted formu-
lation for same number of iterations with same data residual at the end.
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SVDs on these factors, rather than on the entire data matrix, and retaining only the top r
left singular vectors. This strategy is justified because orthogonalizing the low-rank fac-
tors allows us to approximate the orthogonal subspaces spanned by the complete frequency
slice.

The results presented in Figure 4.4 were obtained in factored form and clearly demon-
strate the benefits of incorporating weight matrices, particularly when these matrices are
recursively calculated from low to high frequencies (juxtapose Figure 4.4c, Figure 4.4d
and Figure 4.4e, Figure 4.4f). This improvement is attributed to the fact that low-frequency
data matrices can be more effectively approximated by low-rank matrices, which enhances

the recovery process and, consequently, the quality of the weighted reconstruction.

4.4.2 Weighted parallel recovery

The example in Figure 4.4 clearly demonstrates the enhanced performance of wavefield
reconstruction through matrix factorization when weight matrices, containing information
on the row and column subspaces, are incorporated. However, the inclusion of these weight
matrices complicates the parallelization of the algorithm, as it no longer straightforwardly
applies the parallelized alternating optimization approach proposed by Recht and Ré 2013
and Lopez, Kumar, and Herrmann 2015.

This approach relies on independent computations performed on a row-by-row and
column-by-column basis (see Figure 4.6) , in which the optimization alternates between

minimizing the rows via
1
R(l1,:)" := argmin §HVH2 subjectto || A, (Lv) — B(:, )| <~ 4.9)
for {; = 1---n and the columns via

1
L(ly, )" := argmin §||u||2 subject to  ||A;, (Ru)?) — B(ly,:)|| < v (4.10)
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for [, = 1---m. With this approach, the rows of the right factor R are updated first by
iterating over the rows via the index [; = 1 ---n. Subsequently, updates are performed on
the rows of the left factor L by iterating over the rows via the index I, = 1---m. Unlike
the serial problem, these optimizations are carried out in parallel on individual vectors
v € C" and u € C" because they decouple—i.e., the /1, lsth row of R, L only involve
the /1, lth column/row of the observed data matrix B and submatrices A;, , A;, that act on
these columns/rows. To simplify notation, we used the symbol : to extract the /;th column,
B(:,{y), or loth row, B(ls,:). As in the previous cases, the optimizations account for the
presence of noise by solving them within a user-specified ¢5-norm tolerance ~.

The operations in Equation 4.9 and Equation 4.10 allow for a parallel implementation
that scales well for large-scale industrial 3D seismic problems since they decouple the com-
putations. However, this decoupled formulation lacks the inclusion of weighting matrices,
which limits its utility for recovery problems at higher frequencies where weighting ma-
trices are required. To address this limitation, we propose a <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>