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SUMMARY

Seismic data acquisition plays a crucial role in identifying potential oil and gas reser-

voirs during the early phases of exploration. However, obtaining finely sampled seismic

data can be costly and physically impossible. Recent developments in Compressive Sensing

have resulted in seismic data being increasingly collected at random along spatial coordi-

nates. Although random sampling improves acquisition efficiency, it shifts the burden from

seismic acquisition to data processing. Wavefield recovery is one of the required processes

for reconstructing fully seismic data from coarsely subsampled data. Among the various

techniques proposed for wavefield reconstruction, matrix completion methods are compu-

tationally efficient and straightforward to implement. These methods exploit the low-rank

structure of fully seismic data. However, matrix completion performs well at low-to-mid

frequencies and degrades at higher frequencies due to the failure of low-rank structure to

accurately approximate higher frequencies. To address this issue, this thesis proposed a

recursively weighted matrix completion method. Although effective, this method is com-

putationally expensive, and a more efficient method for handling 2D seismic data was also

proposed. Compared to 2D seismic data, 3D seismic data can detect reflections outside of

the 2D plane but poses a computational challenge due to its large scale. To overcome this

challenge, this thesis proposed a parallel weighted reconstruction method to improve the

reconstruction of 3D seismic data. Land seismic data presents a greater challenge due to

contamination by ground roll, which consists of surface waves with a high spatial frequency

content and large amplitude. To address this issue, a practical workflow was proposed in

this thesis to improve the recovery of land seismic data. Although matrix completion is

an efficient technique for reconstructing fully seismic data, the optimal acquisition design

is still being investigated. Recent studies have shown that the spectral gap can be used to

predict and characterize the quality of wavefield reconstruction via matrix completion for a

given subsampling mask. Based on these findings, a simulation-free seismic survey design
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for both 2D and 3D seismic data was proposed in this thesis to obtain an improved subsam-

pling survey by minimizing the spectral gap ratio. Furthermore, this concept was extended

to the design of a time-lapse seismic survey, which is essential for reservoir management

and monitoring geological carbon storage but is difficult and expensive to acquire. To im-

prove the reconstruction of the time-lapse wavefield, a joint recovery model was proposed

that leverages the benefits of the non-replicated baseline and monitor subsampled seismic

data. A time-lapse seismic survey design that incorporates the joint recovery model with

spectral gap was proposed to generate sparse, non-replicated time-lapse acquisition geome-

tries that favor wavefield recovery.
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CHAPTER 1

INTRODUCTION

Seismic data acquisition is essential in the early stages of oil and gas exploration, since it

provides a higher degree of precision for predicting the physical properties of the earth’s

subsurface compared to other geophysical methods. Seismic sources, such as airguns and

vibrators, are fired from either the land or sea surface (the land acquisition Figure 1.1a or

marine acquisition Figure 1.1b), resulting in the propagation of acoustic waves into the

subsurface of the earth. These waves are reflected when they encounter interfaces formed

between rocks with distinct physical properties and are recorded by receivers, such as geo-

phones and hydrophones, on the surface of the land or sea. Subsequent processing of the

recorded seismic data allows us to obtain subsurface images and estimate the physical prop-

erties of the subsurface, which aid in identifying potential oil and gas reservoirs. Moreover,

seismic data is also used to help drill wells, which are operationally complex and expensive,

and extract oil and gas from the subsurface.

To achieve a higher degree of precision in subsurface images, seismic data must be

acquired at fine grids, which can be both costly and time-consuming. However, recent de-

velopments in the field of Compressive Sensing (CS) have inspired seismic data collection

methods that randomly sample along spatial coordinates to reduce acquisition time and

costs (Candès, Romberg, and Tao 2006). While this approach increases acquisition pro-

ductivity (Mosher, Li, Morley, Ji, Janiszewski, Olson, and Brewer 2014), it also shifts the

burden from collecting data in the field to processing the data (Chiu 2019).

Wavefield recovery is one of the key steps in reconstructing seismic data from coarsely

subsampled data. Transform-domain-based approaches have been used extensively for

wavefield reconstruction. These transforms increase the sparsity of seismic data to varying

degrees, which is a critical component of wavefield reconstruction. While these methods

1



(a)

(b)

Figure 1.1: Seismic acquisition. (a) Land seismic acquisition (image courtesy of DMP:
www.dmp.wa.gov.au). (b) Marine seismic acquisition (image courtesy of PGS:
www.pgs.com).
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are advantageous in terms of the quality of reconstructed data, they are also relatively com-

plex and computationally expensive. However, matrix completion techniques based on

low-rank matrix factorization are computationally efficient and relatively straightforward.

The general idea of these methods is to exploit the low-rank structure of fully sampled fre-

quency slices when organized in a matrix. Kumar, Da Silva, Akalin, Aravkin, Mansour,

Recht, and Herrmann 2015 and Oropeza and Sacchi 2011 discovered that fully 2D seismic

data, which are acquired along seismic lines, exhibit a low-rank structure in the midpoint-

offset domain. They exploited the fact that the presence of noise or missing traces increases

the rank of these frequency slices. By organizing the data in the appropriate domain, low-

rank factorization has been used successfully for low and mid-range frequencies. However,

its performance degrades at high frequencies because monochromatic frequency slices can

no longer be accurately approximated by low-rank factorization. One of the topics of this

thesis is to propose an efficient weighted matrix factorization to improve data reconstruc-

tion at higher frequencies.

The sources/receivers used in 2D seismic surveys detect only vertically traveling wave-

fields between sources and receivers. As a result, reflections outside the 2D source-receiver

plane are not captured, which degrades the image quality of the subsurface. To capture

three-dimensional effects, the majority of seismic exploration surveys are now conducted

in 3D, with sources and receivers distributed across an area rather than along a single line.

When permuted in non-canonical form, 3D seismic data reveals a low-rank structure (Da

Silva and Herrmann 2015). Although the fully sampled 3D seismic data can be recon-

structed via the proposed weighted matrix completion in non-canonical form, the large-

scale 3D datasets will bring computational challenges. Therefore, one of the topics of

this thesis is to propose an efficient parallel weighted matrix factorization to overcome the

computational challenges inherent in large-scale 3D datasets.

Wavefield reconstruction for land seismic data is degraded by promoting structure, such

as sparsity or low rank, due to the contamination of ground roll, a surface wave with a
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strong amplitude and high spatial frequency content (Liu 1999). This deterioration can

be attributed to two factors. Firstly, ground roll is a type of Rayleigh-type surface wave

that is commonly aliased because it travels more slowly than body waves. Secondly, the

high amplitudes of the ground roll require the reconstruction to focus on the ground roll

rather than the body waves with low amplitudes. Ground roll is typically dominant at

low temporal frequencies due to its spatial aliasing, but separating it from body waves

is difficult due to aliasing. This thesis proposes a practical workflow for land seismic

wavefield recovery using weighted matrix factorization.

The use of matrix completion as a computationally efficient method to reconstruct fully

sampled wavefields from sparsely sampled seismic data has been established (Kumar, Da

Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015). Random subsampling is

increasingly used to reduce acquisition time and costs. However, the design of optimal

acquisition geometries is still an ongoing area of research (Manohar, Brunton, Kutz, and

Brunton 2018). In matrix completion theory, the spectral gap, a measure of the connected-

ness of the graph in expander graph theory, has been used to predict, and to some extent

quantify, the quality of wavefield reconstruction with a specific subsampling scheme (ac-

quisition mask) (Bhojanapalli and Jain 2014; López, Kumar, Moldoveanu, and Herrmann

2022). Building on these insights, one of the topics of this thesis is to propose an optimiza-

tion scheme that finds subsampling masks with large spectral gaps to improve the quality

of wavefield reconstruction using matrix completion.

While sparse randomized collection of seismic data is an efficient strategy for reducing

operational costs, the replication of the baseline and monitor for time-lapse seismic data

gathering nullifies the productivity benefits of compressive sensing (Candès, Romberg, and

Tao 2006). Collecting time-lapse seismic data is time-consuming and costly, yet it is crucial

for reservoir management and monitoring of geological carbon storage (GCS). To address

this issue, joint recovery models (JRM) were introduced by Oghenekohwo and Herrmann

2017 and Wason, Oghenekohwo, and Herrmann 2017, inspired by distributed compressive
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sensing (Baron, Duarte, Sarvotham, Wakin, and Baraniuk 2005), to leverage the benefits

of low-cost randomized non-replicated acquisition for time-lapse seismic data. Rather than

recovering time-lapse data individually, JRM is designed to invert baseline and monitor sur-

veys for the common component, which contains information shared between the surveys

and innovations of the baseline and monitor surveys regarding this common component

(Wason, Oghenekohwo, and Herrmann 2017; Kumar, Wason, Sharan, and Herrmann 2017;

Oghenekohwo and Herrmann 2017). The quality improvements of the vintages and time-

lapse differences reported by Yin, Louboutin, and Herrmann 2021 and Oghenekohwo and

Herrmann 2017 can be explained by the fact that the fictitious common component is ob-

served by baseline and monitor surveys, and its recovery improves when baseline and mon-

itor survey acquisition geometries differ (non-replicated). The use of JRM can be extended

to seismic denoising (Tian, Wei, Li, Oppert, and Hennenfent 2018; Wei, Tian, Li, Oppert,

and Hennenfent 2018), imaging, inversion, monitoring of carbon storage (Oghenekohwo

and Herrmann 2017; Oghenekohwo 2017; Yin, Louboutin, and Herrmann 2021), and wave-

field recovery (Wason, Oghenekohwo, and Herrmann 2017; Oghenekohwo, Wason, Esser,

and Herrmann 2017; Kumar, Wason, Sharan, and Herrmann 2017). As part of this thesis, I

investigate the use of JRM and the spectral gap to design time-lapse seismic acquisitions.

1.1 Objectives

To summarize, this thesis aims to achieve the following objectives:

1. To improve the reconstruction of 2D seismic data, particularly at high frequencies

where conventional and pair matrix completion methods perform poorly, we propose re-

cursively weighted matrix completion and establish a more computationally efficient for-

mulation by relocating the weight matrices from constraints to the data-misfit term.

2. To design a computationally efficient weighted matrix completion for large-scale

3D seismic datasets, we propose a parallelized alternating optimization approach for paral-

lelizing the weighted low-rank factorization algorithm to expand the application of the new
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method to 3D seismic acquisitions.

3. To improve land seismic wavefield recovery with more reflection and diffraction

information by using parallel weighted matrix factorization and reduce the noise introduced

by ground roll, we propose a practical workflow by reconstructing the body and surface

(ground roll) waves separately.

4. To obtain an improved seismic survey, we propose an optimization scheme based on

simulated annealing, which finds sub-sampling masks with large spectral gaps that improve

the quality of wavefield reconstruction with matrix completion.

5. To design a low-cost time-lapse seismic survey, we propose a simulation-free opti-

mization method that combines the joint-recovery model (JRM) with large spectral gaps to

generate improved subsampling surveys for each vintage.

1.2 Thesis outline

This thesis comprises a total of eight chapters, including the present introduction. In Chap-

ter 2, we begin by discussing wavefield recovery via matrix completion. We then explain

how to incorporate prior information from adjacent lower frequencies into our matrix com-

pletion framework on the row and column subspaces. To verify our method, we use a field

data from the Gulf of Suez and demonstrate its superior performance compared to conven-

tional matrix completion, particularly at higher frequencies. A version of this chapter was

published in SEG Technical Program Expanded Abstracts (Zhang, Sharan, and Herrmann

2019).

In Chapter 3, we review the recursively weighted matrix factorization wavefield re-

covery. Following this, we introduce a new formulation where the weight appears in the

data misfit term and discuss how to restrict the subspace of our weighted matrix factoriza-

tions. We verify our approach using field data from the Gulf of Suez, demonstrating better

recovery quality compared to conventional recursively weighted matrix completion. A ver-

sion of this chapter was published in SEG Technical Program Expanded Abstracts (Zhang,
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Sharan, Lopez, and Herrmann 2020).

In Chapter 4, we first discuss the efficient weighted wavefield reconstruction via ma-

trix completion. We then propose approximations that allow us to decouple calculations on

a row-by-row and column-by-column basis, parallelizing the alternating optimization upon

which our low-rank factorization relies. The combination of weighting and decoupling

results in a technique for full-azimuth wavefield reconstruction that is computationally fea-

sible and scalable to industrial-scale problem sizes. We demonstrate the effectiveness of

the proposed parallel method using a 3D synthetic dataset with varying subsampling ratios,

where our method yields accurate reconstructions of broadband wavefields from severely

downsampled data. My main contributions in this work are proposing the efficient weighted

wavefield reconstruction and the parallel method, which I have also implemented.

In Chapter 5, we discuss the reconstruction of the seismic wavefield by weighted ma-

trix factorization first. Next, we explain the impact of ground roll and introduce our practi-

cal workflow in detail. We demonstrate our approach on 3D synthetic data simulated from

the Barrett model, showing improved recovery quality in comparison to the conventional

workflow. A version of this chapter was published in SEG Technical Program Expanded

Abstracts (Zhang and Herrmann 2021).

In Chapter 6, we present the proposed optimization problem to minimize the spec-

tral gap ratios of subsampling masks. Second, we explain how to approximate acquisi-

tion masks using simulated annealing. We conclude by performing numerical experiments

on 2D and 3D synthetic Compass datasets (E. Jones, A. Edgar, I. Selvage, and Crook

2012) and demonstrating improvements in recovery quality compared to the reconstruc-

tion of data collected via the jittered subsampling technique (Herrmann and Hennenfent

2008). A version of this chapter for the 2D case was published in International Meeting

for Applied Geoscience and Energy Expanded Abstracts (Zhang, Louboutin, Siahkoohi,

Yin, Kumar, and Herrmann 2022). A version of this chapter for the 3D case was submitted

to International Meeting for Applied Geoscience and Energy Expanded Abstracts (Zhang,
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Yin, Lopez, Siahkoohi, Louboutin, and Herrmann 2023).

In Chapter 7, we first describe the relationship between the connectivity of graphs as-

sociated with binary sampling masks and the spectral gap ratio. Then, we explain how

to increase the connectedness by decreasing the spectral gap ratios through our proposed

optimization, which assists in the wavefield reconstruction process. To achieve this, we

propose a new optimization objective that incorporates spectral gap ratios for the common

component and baseline/monitoring surveys. This enables the improvement of time-lapse

data inversion based on the joint recovery model (JRM). After a brief discussion on how

to minimize this objective using simulated annealing, we evaluate the proposed method for

automatically generating a binary time-lapse mask numerically using synthetic 2D data.

A version of this chapter was accepted in Geophysics (Zhang, Yin, Lopez, Siahkoohi,

Louboutin, Kumar, and Herrmann 2023).

In the final Chapter 8, we present the conclusions of this thesis and discuss future

directions for research.
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CHAPTER 2

HIGH-FREQUENCY WAVEFIELD RECOVERY WITH WEIGHTED MATRIX

FACTORIZATIONS

2.1 Summary

Acquired seismic data is normally not the fully sampled data we would like to work with

since traces are missing due to physical constraints or budget limitations. Rank minimiza-

tion is an effective way to recovering the missing trace data. Unfortunately, this technique’s

performance may deteriorate at higher frequency because high-frequency data can not nec-

essarily be captured accurately by low-rank matrix factorizations albeit remedies exist such

as hierarchical semi-separable matrices. As a result, recovered data often suffers from low

signal to noise ratio (SNR) at the higher frequencies. To deal with this situation, we pro-

pose a weighted recovery method that improves the performance at the high frequencies by

recursively using information from matrix factorizations at neighboring lower frequencies.

Essentially, we include prior information from previously reconstructed frequency slices

during the wavefield reconstruction. We apply our method to data collected from the Gulf

of Suez, which shows that our method performs well compared to the traditional method

without weighting.

2.2 Introduction

Seismic data acquisition is one of the key steps in the initial phase of oil & gas exploration.

Due to operational complexity and operational costs, acquired seismic data is usually not

fully sampled, a prerequisite to subsequent steps such as multiple removal and migration

all of which require densely sampled data.

Wavefield recovery is an important tool to solve the problem of poor sampling. In the
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last decade, wavefield recovery methods based on sparsity promotion in different transform

domains, such as the Radon (Bardan 1987), wavelet (Villasenor, Ergas, and Donoho 1996),

and curvelet (Herrmann, Wang, Hennenfent, and Moghaddam 2007; Herrmann and Hen-

nenfent 2008) domain have been developed. Although these methods are valuable in terms

of the quality of recovered data, they are relatively complex and computationally expen-

sive. Fortunately, matrix completion methods (Kumar, Da Silva, Akalin, Aravkin, Man-

sour, Recht, and Herrmann 2015) based on low-rank matrix factorizations are relatively

simple and computationally cheaper. The latter use the property that fully-sampled fre-

quency slices permit accurate low-rank representations when organized in midpoint-offset.

In Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015 and Oropeza

and Sacchi 2011, authors exploit the fact that presence of noise or missing traces increases

the rank of these frequency slices. We use this property to recover frequency slices via fac-

tored rank minimization (Kumar, Aravkin, Esser, Mansour, and Herrmann 2014). While

this matrix factorization method performs well at the low to mid frequencies, it struggles

to recover high-frequency data, which need higher ranks to be accurately represented.

Recent work by Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 and Eftekhari,

Yang, and Wakin 2018 has shown that reliable prior information on the row and column

subspaces of the underlying low rank matrix can be used to further improve wavefield

recovery via matrix completion. For seismic data, we have access to this information when

there is a strong similarity between adjacent frequency slices. In that case, the row and

column subspaces can serve as prior information. This principle was first demonstrated by

Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 and we extend this line of research

by recursively invoking prior as we work our way from the relatively low frequencies to the

high frequencies where conventional matrix completion methods typically perform poorly.

This chapter is organized as follows. First, we discuss wavefield recovery via matrix

completion. Next, we discuss how to incorporate prior information on the row and column

subspaces from neighboring lower frequencies in our matrix completion framework. We
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conclude demonstrating our approach on a field data example from the Gulf of Suez and

show its better performance compared to conventional matrix completion especially at the

higher frequencies.

2.3 Methodology

2.3.1 Low-rank matrix factorization

In Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015 and Aravkin,

Kumar, Mansour, Recht, and Herrmann 2014, authors exploit low rank of fully sampled

seismic data by solving for each frequency problem of the type

min
Xi

‖Xi‖∗ subject to ‖A(Xi)− bi‖2 ≤ ε. (2.1)

In this expression, the matrices Xi for i = 1 · · ·nf with nf the number of angular fre-

quencies represent fully sampled monochromatic frequency slices in the midpoint-offset

domain, A is the sampling operator collecting the data into a vector, and bi represents the

observed data at the ith frequency. For each frequency, we recover the fully sampled data

by minimizing the nuclear norm ‖ · ‖∗ on each Xi subject we fit the data within ε. The

nuclear norm itself is defined as the sum of the singular values. We solve Equation 2.1 for

all the frequencies to obtain our recovered data X ∈ Cnf×nm×nh , where nm is the num-

ber of midpoints and nh the number of offsets. As reported by Kumar, Da Silva, Akalin,

Aravkin, Mansour, Recht, and Herrmann 2015, randomized sampling increases the rank

of 2D seismic data in midpoint offset domain, which is a favorable condition for matrix

completion.

To avoid computationally expensive singular-value decompositions (SVD) while solv-

ing Equation 2.1, we employ a low-rank matrix factorization approach. For this purpose,

we factor the matrices (for notational simplicity we drop the subscript i) X ∈ Cnm×nh in

Equation 2.1 into the low-rank factors L ∈ Cnm×r and R ∈ Cnh×r both of rank r. To
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avoid expensive SVDs, we follow Rennie and Srebro 2005 and replace the nuclear norm in

Equation 2.1 by

min
L,R

1

2

∥∥∥∥∥∥∥
L

R


∥∥∥∥∥∥∥
2

F

subject to ‖A(LRH)− b‖F ≤ ε, (2.2)

where H is the Hermitian transpose and ‖·‖F the Frobenius norm (2-norm of the vectorized

matrix). Following Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann

2015 and Aravkin, Kumar, Mansour, Recht, and Herrmann 2014, we solve Equation 2.2

with spectral-projected gradients (Berg and Friedlander 2009).

As we mentioned earlier, the performance of low-rank factorization methods degrade

with increasing frequency reflected in increasing poor signal to noise ratios (SNRs) (Ku-

mar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015). To improve the

recovered data quality at higher frequencies, we include weighted matrix completion (Ar-

avkin, Kumar, Mansour, Recht, and Herrmann 2014; Eftekhari, Yang, and Wakin 2018).

2.3.2 Weighted low-rank matrix factorization

The key of our methodology is that we approximate fully sampled data in low-rank factored

form. When using SVDs, this factored form reads

X ≈ UΣVH , (2.3)

where U ∈ Cnm×r and V ∈ Cnh×r are column and row subspaces of X, respectively.

Σ ∈ Cr×r is a diagonal matrix containing the largest r singular values of the matrix X.

As shown by Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 and Eftekhari,

Yang, and Wakin 2018, information on these subspaces can be used to rewrite Equation 2.1
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into its weighted form—i.e., we have

min
X

‖QXW‖∗ subject to ‖A(X)− b‖2 ≤ ε, (2.4)

where

Q = w1UUH + U⊥U⊥H (2.5)

and

W = w2VVH + V⊥V⊥H (2.6)

are projection matrices on subspaces spanned by U, V and their orthogonal complements

U⊥, V⊥. The scalars w1 ∈ (0, 1] and w2 ∈ (0, 1] are weights that depend on the confidence

we have in the priors—i.e., how close the matrix X is to the actual Xi we are dealing with

at frequency i. Small values for the weights w1 and w2 mean that we have confidence in

the prior (the matrix X is close). When w1 ↑ 1 and w2 ↑ 1, solving Equation 2.4 becomes

equivalent to solving the original Equation 2.1.

As before, we can rewrite Equation 2.4 into a weighted low-rank factored form (Ar-

avkin, Kumar, Mansour, Recht, and Herrmann 2014):

min
L,R

1

2

∥∥∥∥∥∥∥
QL

WR


∥∥∥∥∥∥∥
2

F

subject to ‖A(LRH)− b‖2 ≤ ε. (2.7)

The question now is which subspaces to use for the columns and rows. Because frequency

slices have information in common from frequency to frequency, we follow Aravkin, Ku-

mar, Mansour, Recht, and Herrmann 2014, Eftekhari, Yang, and Wakin 2018 and use the

U and V from the previous lower frequency.

While Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 somewhat successfully

applied this approach for a single frequency slice, these authors never justified this approach

and neither did they apply the weighting recursively working from the low to the higher
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frequencies. For this purpose, we quantify similarities (in the form of angles, see Eftekhari,

Yang, and Wakin 2018) between subsequent frequency slices for the Gulf of Suez data. This

will allow us to predict the performance of our method.

2.3.3 Quantifying similarity

Similarity between subsequent frequency slices depends on the largest principal angles

(Eftekhari, Yang, and Wakin 2018) between column subspaces and between row subspaces

of subsequent frequency slices. Smaller angles correspond to more similarity between sub-

spaces of subsequent frequency slices and vice versa. Therefore, we can choose smaller

weights w1 and w2 when the angles are smaller. Smaller weights correspond to larger

penalties (Eftekhari, Yang, and Wakin 2018) on matrices that have subspaces orthogonal

to U and V in Equation 2.4. When weights are small, we have more confidence in U and

V and less confidence in their orthogonal counterparts. In Figure 2.1, we show angles

between column subspaces ( Figure 2.1b) and row subspaces ( Figure 2.1a) for subsequent

frequency slices of the Gulf of Suez data. We observe an overall decreasing trend in an-

gles with increasing frequencies for both row and column subspaces. This trend indicates

increasing similarity between subsequent frequency slices with increasing frequency. This

trend is consistent with high-frequency approximate behavior of wavefields—i.e., as the

frequency increases solutions become more and more like the high-frequency solution, and

this gives us a handle how to choose the weights as the frequency increases.

Figure 2.1 shows that as the frequency increase, the largest angles between the sub-

spaces of neighboring frequencies decreases. Smaller the angle, more similar are sub-

spaces. This angle test have demonstrated that the weighted matrix completion will per-

form better in high frequency band because of smaller angle in comparison to its lower

frequency counterpart.
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(a)

(b)

Figure 2.1: Largest angle between (a) row and (b) column subspaces for subsequent fre-
quency slices of Gulf of Suez data
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2.4 Numerical experiments

We demonstrate effectiveness of recursive weighted matrix completion method over the

conventional matrix completion method and the weighted method just using previous fre-

quency slice (named as single pair weighted method) in terms of data reconstruction quality.

In single pair weighted method, we reconstruct previous frequency slice using conventional

matrix completion. We use real 2D seismic data with number of sources, Ns = 354, and

number of receivers, Nr = 354 acquired in Gulf of Suez for this comparison. Total number

of time samples for this data set is Nt = 1024 with sampling interval of 0.004 s. Most

of the energy of the seismic line is concentrated in 20 Hz to 70 Hz frequency band ( Fig-

ure 2.3b). To get the subsampled data ( Figure 2.2b & Figure 2.4b), we remove 75% of

sources using a jittered subsampling mask. Jittered subsampling method not only breaks

the inherent properties such as low rank of fully sampled seismic data but also controls the

maximum gap size of the incomplete data (Herrmann and Hennenfent 2008). We show the

results and comparisons in both frequency domain and time domain. For every frequency

slice, we perform 150 iterations of spectral projected gradient algorithm for all these meth-

ods. Figure 2.2 shows results on a frequency slice at 30 Hz. Recovery with the unweighted

method gives the result with SNR of 11.43 dB. Whereas recovery with the single pair

weighted method gives a higher SNR of 15.20 dB, our recursive weighted method gives

the highest SNR of 18.48 dB, 7.05 dB improvement in SNR over the unweighted method.

Figure 2.2d, Figure 2.2f and Figure 2.2h show differences between these three different

methods and ground truth data. The reconstruction using recursive prior knowledge gives

the least residual in Figure 2.2h among these three methods. The residual of reconstruction

without using any prior knowledge is Figure 2.2d and the residual of single pair weighted

reconstruction is Figure 2.2f.

Figure 2.3a shows recursive weighted method’s performance (red color plot) over range

of frequencies in terms of signal to noise of completion. Recursive weighted recovery

clearly outperforms the conventional recovery without weight (black color plot in Fig-
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.2: Missing trace recovery for a frequency slice at 30 Hz in source-receiver domain.
(a) Ground truth, (b) 75% subsampled seismic data with jittered subsampling. (c) and (d)
represent recovery (SNR = 11.43 dB) using conventional method and its difference w.r.t.
the ground truth respectively. (e) and (f) represent recovery (SNR = 15.20 dB) using
single pair weighted method and its difference w.r.t. the ground truth respectively. (g)
and (h) represent recovery (SNR = 18.48 dB) using recursive weighted method and its
difference w.r.t. the ground truth respectively.
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ure 2.3a) and the single pair weighted recovery (blue color plot in Figure 2.3a) in the

frequency range which contains most of the energy ( Figure 2.3b).

To further compare these three methods for time domain data, we apply them on all

frequency slices and transfer results back to time domain. Figure 2.4 shows results and

differences for one common receiver gather extracted from complete time domain data.

With the conventional recovery we get SNR of 6.87 dB, whereas with single pair weighted

recovery we get SNR of 7.85 dB and with recursive weighted recovery we get SNR of

11.63 dB. With recursive weighted recovery we get almost 5 dB improvement for complete

time domain data over conventional recovery. It is also obvious to see the advantage of

the recursive weighted method from three differences in Figure 2.4d, Figure 2.4f and

Figure 2.4h. The residual is significantly reduced in Figure 2.4h in contrast to Figure 2.4d

and Figure 2.4f.

2.5 Conclusion

In this work, we have proposed recursive weighted matrix completion to improve data

reconstruction quality, especially at high frequencies where the conventional matrix com-

pletion method performs poorly. In contrast to conventional low-rank matrix factoriza-

tion without weighting or with non-recurrent pairwise weighting, our recursively weighted

method performs better at the high frequencies, especially at frequencies where the data

has the most energy. We also demonstrated the effectiveness of our recursive recovery

on real data. Future work will be to extend the application of recursive weighted matrix

completion to realistic size 3D seismic data reconstruction and also to simultaneous source

acquisition.
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(a)

(b)

Figure 2.3: (a) SNR vs frequency of recovery using recursive weighted method (Red color),
single pair weighted method (Blue color) and conventional method (Black color). (b) Plot
of energy of frequency slices vs frequency.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.4: Missing trace recovery of time domain data. (a) Ground truth. (b) 75% sub-
sampled seismic data with jittered subsampling. (c) and (d) represent recovery (SNR =
6.87 dB) using conventional method and its difference w.r.t. the ground truth respec-
tively. (e) and (f) represent recovery (SNR = 7.85 dB) using single pair weighted method
and its difference w.r.t. the ground truth respectively. (g) and (h) represent recovery
(SNR = 11.63 dB) using recursive weighted method and its difference w.r.t. the ground
truth respectively.
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CHAPTER 3

WAVEFIELD RECOVERY WITH LIMITED-SUBSPACE WEIGHTED MATRIX

FACTORIZATIONS

3.1 Summary

Modern-day seismic imaging and monitoring technology increasingly rely on dense full-

azimuth sampling. Unfortunately, the costs of acquiring densely sampled data rapidly be-

come prohibitive and we need to look for ways to sparsely collect data, e.g. from sparsely

distributed ocean bottom nodes, from which we then derive densely sampled surveys through

the method of wavefield reconstruction. Because of their relatively cheap and simple

calculations, wavefield reconstruction via matrix factorizations has proven to be a viable

and scalable alternative to the more generally used transform-based methods. While this

method is capable of processing all full azimuth data frequency by frequency slice, its

performance degrades at higher frequencies because monochromatic data at these frequen-

cies is not as well approximated by low-rank factorizations. We address this problem by

proposing a recursive recovery technique, which involves weighted matrix factorizations

where recovered wavefields at the lower frequencies serve as prior information for the re-

covery of the higher frequencies. To limit the adverse effects of potential overfitting, we

propose a limited-subspace recursively weighted matrix factorization approach where the

size of the row and column subspaces to construct the weight matrices is constrained. We

apply our method to data collected from the Gulf of Suez, and our results show that our

limited-subspace weighted recovery method significantly improves the recovery quality.
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3.2 Introduction

Seismic data acquisition plays a key role in the initial phase of oil & gas exploration. It

also represents a significant budget item for monitoring of carbon sequestration. For these

reasons, it is a challenge to come up with new acquisition methodologies that improve

acquisition productivity (Mosher, Li, Morley, Ji, Janiszewski, Olson, and Brewer 2014)

without sacrificing data quality. Randomized acquisition according to the principles of

compressive sensing (Herrmann, Friedlander, and Yilmaz 2012) in combination with large-

scale wavefield reconstruction algorithms (Kumar, Da Silva, Akalin, Aravkin, Mansour,

Recht, and Herrmann 2015) has proven a viable tool to improve the acquisition productivity

both in marine and land seismic settings.

So far, many of the employed approached of wavefield reconstruction are based transform-

domain sparsity, which is deigned to explore local smoothness typically in small windows

in up to five dimensions. While these approaches have been applied successfully on pro-

duction data, they do not exploit redundancies present in the data over long distances.

Recovery techniques based on low-rank matrix factorizations (Kumar, Da Silva, Akalin,

Aravkin, Mansour, Recht, and Herrmann 2015) do not suffer from this shortcoming be-

cause this method works with monochromatic frequency slices that contain data from the

complete survey instead of working within small windows limiting the apperture. By or-

ganizing the data in the appropriate domain, e.g. midpoint-offset domain for seismic lines,

monochromatic frequency slices permit approximations in low-rank form, which can be

used to recover fully sample wavefields from subsampled data.

While low-rank factorizations have been employed successfully for low and midrange

frequencies, their performance deteriorates at high frequencies because monochromatic

frequency slices can no longer be approximated accurately by low-rank factorizations. In

this work, we overcome this problem by using the fact that factorizations at neighbor-

ing frequencies live in close-by subspaces. As described in early work by Aravkin, Ku-
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mar, Mansour, and Recht 2013, Eftekhari, Yang, and Wakin 2018, this property can be

exploited by introducing matrix weights defined in terms of factorizations of near-by fre-

quency slices. Recent work by Zhang, Sharan, and Herrmann 2019 took this initial a step

further by proposing a recursive approach where factorizations of frequency slices at lower

frequencies are used as weight for factorizations at the higher frequencies starting at the

low frequencies and working its way up.

While this approach has had some success (see e.g. Zhang, Sharan, and Herrmann

2019), there is challenge related to the fact that high frequencies require higher rank fac-

torizations and this can lead to overfitting when using this higher rank throughout. We

avoid this overfitting, by adapting the rank of the weighting matrices such that overfitting is

avoided. We do this by actively limiting the row and column subspaces of the weight ma-

trices. Because we avoid overfitting, we are able to further improve the wavefield recovery.

We also introduce an alternative formulation where the weight matrices are moved from

the constraint, as in Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann

2015, to the data misfit objective, which leads to a significant improvement (20 to 25 times

speedup) computational efficiency.

We organize this chapter as follows. First, we review the recursively weighted wave-

field recovery via matrix factorization including the new formulation where the weight

appear in the data misfit term. Next, we discuss how to limit the subspace of our weighted

matrix factorizations. We conclude by demonstrating our approach on a field data example

from the Gulf of Suez, which shows improved recovery quality compared to conventional

recursively weighted matrix completion.

3.3 Methodology

We start by introducing wavefield reconstruction via weighted matrix factorization. To

improve computational efficiency, we move the weight matrices to the data misfit term so

we no longer have to carry out numerically expensive weighted projections as in Aravkin,
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Kumar, Mansour, and Recht 2013. Aside from allowing for a much more computationally

efficient implementation, this alternative formulation also forms the basis for our limited-

subspace approach designed to prevent overfitting at the low frequencies.

3.3.1 Weighted low-rank matrix factorization

Our proposed extension to wavefield reconstruction via recursively weighted matrix factor-

ization derives from earlier work by Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht,

and Herrmann 2015, Aravkin, Kumar, Mansour, and Recht 2013, and Zhang, Sharan, and

Herrmann 2019, where we solve

min
Xi

‖QXiW‖∗

subject to ‖A(Xi)− bi‖2 ≤ τ

(3.1)

to within a noise-level dependent data misfit tolerance τ . In this expression, the matrix Xi

corresponds to a monochromatic frequency slice in the midpoint-offset domain (in case of

2D) at the ith frequency (i ∈ [1, · · · , nf ] with nf the number of frequencies).

During the wavefield recovery, fully sampled frequency slices are represented by the

complex valued matrix, X ∈ Cnf×nm×nh where nm is the number of midpoints and nh the

number of offsets. The symbol A(·) stands for the subsampling operator, which collects

monochromatic data at the observed source-receiver combinations into the vector bi. Given

these observations, we solve for the fully sampled Xi for each frequency by minimizing

Equation 3.1 with weight matrices Q and W given by

Q = w1UUH + U⊥U⊥H (3.2)

and

W = w2VVH + V⊥V⊥H . (3.3)

In these expressions for the weight matrices, the U ∈ Cnm×r and V ∈ Cnh×r are the
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column and row subspaces that derive from the low-rank factorization of the nearby fre-

quency slice. U and V have orthonormal columns that span top column and row subspaces

of nearby frequency slice. Because these weight matrices include information on the sub-

spaces of the current factorization, they serves as prior information aiding the wavefield

recovery via the weighted nuclear norm minimization (denoted by ‖QXW‖∗ =
∑r

j=1 σj

with σj the j th singular value). Depending on whether we have confidence in the fact that

the neighboring frequency slice has an overlapping subspace, we chose the weights w1 and

w2 close to 0 if we have confidence and close to 1 if we do not.

While the above weighted formulation has resulted in major improvements in the re-

covery when reliable information on a neighboring frequency slice is available (Kumar, Da

Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015; Aravkin, Kumar, Mansour,

and Recht 2013; Zhang, Sharan, and Herrmann 2019), the minimization in Equation 3.1 is

complicated by the presence of the weighting matrices in the nuclear norm objective. As a

result, the minimization becomes computationally expensive. To avoid this complication,

we replace the optimization variable by X̄i = QXiW, and rewrite Equation 3.1 as

min
X̄i

‖X̄i‖∗

subject to ‖A(Q−1X̄iW
−1)− bi‖2 ≤ τ

(3.4)

where the modified weighting matrices

Q−1 =
1

w1

UUH + U⊥U⊥H (3.5)

and

W−1 =
1

w2

VVH + V⊥V⊥H (3.6)

are moved from the objective to the data misfit constraint. To reflect that we changed the

problem, we introduced barred quantities from which the solution original solution can be
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readily computed—i.e., we recover the solution Xi = Q−1X̄iW
−1 since X̄i = QXiW

solves the above optimization problem. Compared to Equation 3.1, this new formulation

does not require nuclear norm projections onto weighted matrices while its solution is

equivalent to Equation 3.1.

Like the original formulation, our new formulation lends also itself to be cast into a

low-rank (r � max(nm, nh)) factorized form so that expensive SVDs are avoided in the

nuclear norm. After factorization our wavefield reconstruction involves

min
L̄i,R̄i

1

2

∥∥∥∥∥∥∥
L̄i

R̄i


∥∥∥∥∥∥∥
2

F

subject to ‖A(Q−1L̄iR̄
H
i W−1)− bi‖2 ≤ ε,

(3.7)

where the symbol H denotes the Hermitian transpose and ‖ · ‖F is the Frobenius norm

(2-norm of the vectorized matrix) (Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht,

and Herrmann 2015; Aravkin, Kumar, Mansour, and Recht 2013; Zhang, Sharan, and Her-

rmann 2019). Compared to the original representation for frequency slices, the above fac-

tored form is compressed since it entails the low-rank pair {L̄i, R̄i} ,where X̄i = L̄iR̄
H
i ,

and does not rely on storage and manipulation of the original and dense optimization vari-

able Xi or X̄i. Despite gains in computation, because of the factored form and redefined

data misfit term, challenges remain with recursive weighted matrix factorizations (Zhang,

Sharan, and Herrmann 2019) at the high frequencies and as we will show these have to do

with overfitting.

3.3.2 Limited subspace weighted implementation

To reduce approximation errors at the high frequencies, we can increase the rank of the fac-

torization throughout. While increasing the rank leads to better approximations at the high

frequencies adapting this higher rank at the lower frequencies can lead to overfitting. The

resulting poor reconstructions at the lower frequencies can in turn have a detrimental effect
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on the reconstruction at higher frequencies, which information from the lower frequencies

as the recursive algorithm sweeps from the low to the high frequencies.

By choosing the rank for the limited subspace, we reduce the size of the subspaces

of the weight matrices to prevent overfitting at the lower frequencies. In Equation 3.2,

Equation 3.3, Equation 3.5 and Equation 3.6, we notice that the size of the weight matrices

Q and W are independent of rank r. Therefore, we can use a limited subspace to remove

the influence of overfitting and get better results.

By limited subspace, we mean that at a given frequency slice, instead of using a rank r

for row and column subspaces U and V respectively, we can use a lower rank rs. In this

way, we can choose higher rank r to reconstruct each frequency but use lower rank rs to

construct the weight matrices (Q and W). By choosing smaller rank for the subspaces, we

mitigate the negative influence of overfitting. Therefore, in the limited-subspace method,

we are free to choose smaller values for the rs for each frequency slice and higher values

for the rank r for the factorization itself (not for the weights) for each frequency.

3.4 Numerical Experiments

To demonstrate the advocacy of the proposed method, we use 2D field seismic data acquired

in the Gulf of Suez with number of sources, Ns = 355, and number of receivers, Nr = 355.

The total number of time samples in this dataset is Nt = 1024 and the sampling interval is

0.004 s. We use a jittered subsampling (Herrmann and Hennenfent 2008) mask to remove

75% of the sources to obtain the subsampled data. When data is organized in the midpoint-

offset domain, we know that randomized jittered subsampling method breaks the inherent

low-rank property of seismic data while controlling the largest gap size of the subsampled

data (Herrmann and Hennenfent 2008). Controlling largest gap is important because very

large gaps are not suitable for wavefield reconstruction using sparsity-promotion or low-

rank matrix completion. We use the weighted method as described by Zhang, Sharan, and

Herrmann 2019 to reconstruct frequency slices starting at 10 Hz and working our way up
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to 70 Hz. We use constant rank across all the frequencies for weight matrices and matrix

factorization. We base these choices for rs < r on visual inspection of the recovered fre-

quency slices. To avoid overfitting at lower frequencies we select rank rs of the limited

subspace constant across all the frequencies. And to better approximation of higher fre-

quencies we choose higher rank r across all the frequencies. Combination of higher rank

for matrix factorization and smaller rank for limited subspace avoid the risk of overfitting

and at the same time improves the data reconstruction quality.

To demonstrate that the limited-subspace recursively weighted method gives improved

results compared to conventional recursively weighted method (Zhang, Sharan, and Her-

rmann 2019), we first show results in the frequency domain. For each frequency slice, we

perform 150 iterations for both the methods. For the limited-subspace weighted method,

we use rank r = 85 and limited subspace rank of rs = 25. For comparison with the conven-

tional weighted method, we perform two experiments with a fixed high rank of r = 85 and

lower rank of r = 25. We choose lower rank for conventional weighted method to show

that smaller rank itself is not sufficient for significant improvement in data reconstruction

at higher frequencies. On the other hand we choose higher rank of 85 for conventional

weighted method to show that higher rank is alone not sufficient to improve the quality

of reconstructed data at higher frequencies because of the overfitting at lower frequencies.

We show reconstruction results for a frequency slice at 22 Hz in Figure 3.1. Due to over-

fiting, the conventional method with rank r = 85 gives a reconstruction with a smaller

SNR of 13.09 dB compared to the wavefield reconstruction (Figure 3.1c and Figure 3.1d)

obtained with the smaller rank r = 25 for which we get SNR of 15.50 dB (Figure 3.1e and

Figure 3.1f). We get SNR of 19.52 dB for the reconstructed data (Figure 3.1g) using the

limited-subspace weighted method. Figure 3.1h shows the data residual with respect to the

ground truth (Figure 3.1a). Clearly, our limited-subspace weighted method outperforms

the conventional weighted method in terms of improved quality of reconstructed data.

To further compare our limited-subspace method with the original method, we repeat
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.1: Reconstruction for missing source for a frequency slice at 22 Hz shown in
the source-receiver domain but reconstructed in the midpoint-offset domain. (a) Ground
truth, (b) 75% subsampled seismic data with jittered subsampling. (c) and (d) recovery by
weighted matrix factorization (SNR = 13.09 dB) using conventional recursively weighted
approach with fixed rank r = 85 and corresponding residual w.r.t. the ground truth, re-
spectively. (e) and (f) contain recovery (SNR = 15.50 dB) for conventional recursively
weighted with a rank r = 25 and corresponding residual w.r.t. the ground truth respec-
tively. (g) and (h) represent recovery (SNR = 19.52 dB) using limited-subspace weighted
method with limited-subspace rank rs = 25 and corresponding residual w.r.t. the ground
truth respectively.
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wavefield reconstructions over a range of frequencies 7 − 74 Hz. In Figure 3.2, we show

the comparison of the SNR’s across the whole frequency range. As expected, we observe

that limited-subspace weighted method (red line in Figure 3.2) outperforms conventional

weighted method for both ranks of 25 (blue line in Figure 3.2) and 85 (black line in Fig-

ure 3.2) for most of the frequencies. This is because of using limited subspace we avoid risk

of overfitting at lower frequencies and hence get improvement in quality of reconstructed

data.

To show the recovery improvement in the time domain, we included Figure 3.3. To

make fair comparison, we construct a bandpass filter with pass frequency 7 − 74 Hz with

a transition width at both ends of 3.66 Hz. We apply this bandpass filter on the true data,

the subsampled data, and on recovered data recovered using the three scenarios described

above. After applying the filter, we transform the filtered data back to the time domain.

As we can see from Figure 3.3e, we observe less leakage of coherent signal in the data

residual for results obtained with our limited-subspace weighted method in comparison

to the data residual yielded by the conventional weighted method with ranks of r = 85

(Figure 3.3c) and r = 25 (Figure 3.3d). With the conventional weighted method for rank

equals to r = 85, we get SNR of 10.69 dB, and for rank r = 25, we get SNR of 11.49 dB.

With the limited-subspace weighted method we get SNR of 13.31 dB, which is a significant

improvement.

3.5 Conclusions

In this chapter, we proposed a limited-subspace weighted method to further improve the

performance of recursively weighted method in terms of better data reconstruction quality.

By exploiting the fact that dimensions of weight matrices are independent of the rank of the

subspaces, our method allows us to use higher ranks for data reconstruction while avoiding

the risk of overfitting at the lower frequencies. Matrices with higher rank allow for a bet-

ter approximation of the frequency slices at higher frequencies and hence allow for better
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quality of reconstructed data if we prevent overfitting by working with limited-subspace

weights. Through experiments we performed on a field data acquired in the Gulf of Suez,

we demonstrated the advantage of our method in comparison to the recursively weighted

method without using limited subspace. We also introduced a computationally more effi-

cient formulation by moving the weight matrices to the data-misfit term. In future work ,

we would like to extend the application of limited-subspace weighted method to large scale

3D data examples.

3.6 Related materials

In order to facilitate the reproducibility of the results herein discussed, Matlab & Julia

implementation of this work are made available on the SLIM GitHub page https://github.

com/slimgroup/Software.SEG2020.
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Figure 3.2: SNR of reconstructed data vs frequency based on our limited-subspace
weighted method (red color), conventional weighted method with rank equals to 85 (black
color) and 25 (blue color).
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(a) (b)

(c) (d)

(e)

Figure 3.3: Wavefield reconstruction results in the time-domain. (a) Ground truth. (b)
75% subsampled seismic data with jittered subsampling. (c) using conventional weighted
method (SNR = 10.69 dB) for rank equals to r = 85, (d) using conventional weighted
method (SNR = 11.49 dB) for rank equals to r = 25, (e) using limited subspace weighted
method (SNR = 13.31 dB) with limited subspace rank rs = 25.
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CHAPTER 4

LARGE SCALE HIGH-FREQUENCY WAVEFIELD RECONSTRUCTION WITH

RECURSIVELY WEIGHTED MATRIX FACTORIZATIONS

4.1 Summary

Acquiring seismic data on a regularly spaced fine grid poses a challenge. However, by

leveraging the low-rank approximation property of fully sampled seismic data in a specific

transform domain, we can employ low-rank matrix completion. This approach offers a scal-

able solution for reconstructing seismic data on a regularly spaced fine grid from sparsely

and randomly sampled data obtained in the field. While wavefield reconstruction has been

successfully applied in the lower frequency range, its effectiveness diminishes at higher

frequencies where the low-rank assumption no longer holds. This limitation hampers its

utility in situations that require high-resolution images. To overcome this drawback, we

capitalize on the explicit similarities between adjacent frequency slices. These similarities,

manifested during low-rank matrix factorization, result in the alignment of subspaces of

the factors. We propose to exploit this notion by recursively reconstructing monochromatic

frequency slices, starting from the lower frequencies. Although the core idea is relatively

straightforward, transforming this recent insight into a successful scalable wavefield re-

construction scheme for 3D seismic data involves several crucial steps. Firstly, we need

to transfer the weighting matrices, which encapsulate prior information from adjacent fre-

quency slices, from the objective to the data misfit constraint. This adjustment significantly

enhances the performance of the weighted low-rank matrix factorization that underlies our

wavefield reconstructions. Secondly, we introduce approximations that enable us to per-

form computations on a row-by-row and column-by-column basis, thereby facilitating the

parallelization of the alternating optimization process central to our low-rank factorization.
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The combination of weighting and decoupling results in a computationally feasible full-

azimuth wavefield reconstruction scheme that scales to industry-scale problem sizes. We

showcase the performance of the proposed parallel algorithm using both a 2D field dataset

and a 3D synthetic dataset. In both cases, our approach produces high-fidelity broadband

wavefield reconstructions from severely subsampled data.

4.2 Introduction

To achieve cost-effective extraction of hydrocarbon resources from the subsurface and mit-

igate hazardous situations, oil and gas companies heavily rely on accurate imaging and

estimation of the physical parameters of the Earth’s subsurface, such as wavespeed, den-

sity, etc. To obtain subsurface images and recover these physical parameters, practitioners

employ a series of processing steps on the raw seismic data collected during seismic data

acquisition in the field. Some of these processing steps, such as migration, demultiple,

etc. necessitate finely sampled seismic data ideally on a regular grid. However, acquiring

seismic data on a fine regular grid is often financially prohibitive and operationally com-

plex. Therefore, the common practice in the oil and gas industry is to acquire seismic data

on a coarse irregular grid and subsequently perform wavefield reconstruction to obtain a

finer grid. In this study, we focus on wavefield reconstruction from randomized samples

extracted from a periodic grid. For a more in-depth exploration of the presented wavefield

reconstruction methodology, we refer the reader to Lopez, Kumar, Yilmaz, and Herrmann

2016 which discusses an off-the-grid extension.

In recent years, various methods for wavefield reconstruction have been developed.

Many of these methods perform wavefield reconstruction in a transformed domain, involv-

ing Fourier (Xu, Zhang, Pham, and Lambaré 2005), Radon (Bardan 1987), wavelet (Vil-

lasenor, Ergas, and Donoho 1996), or curvelet (Herrmann and Hennenfent 2008) domain.

These transformations, to different extents, promote sparsity in seismic data, which is a fun-

damental aspect of wavefield reconstruction based on compressive sensing (CS) (Candes,
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Romberg, and Tao 2006; Donoho 2006). Although powerful, sparsity-based wavefield re-

construction encounters scalability challenges in 3D seismic scenarios, where data volumes

become excessively large when structure is promoted across more than three dimensions,

e.g. along all four source and receiver coordinates. To address these challenges in higher

dimensions, exploiting the low-rank properties of matrices and tensors (Kumar, Da Silva,

Akalin, Aravkin, Mansour, Recht, and Herrmann 2015; Oropeza and Sacchi 2011) has

proven effective. This approach builds upon the earlier work of Recht, Fazel, and Parrilo

2010, who extended some of the ideas of CS to matrices. Similar to CS, matrix completion

capitalizes on the low-rank approximation permitted by the underlying fully sampled data

organized in a matrix. Randomized sampling, like in CS, disrupts the low-rank structure,

which guides (convex) optimization techniques to recover wavefields by minimizing the

rank. Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015 and Da

Silva and Herrmann 2015 leverage this property and formalize matrix- and tensor-based

wavefield reconstructions suitable for large-scale seismic datasets (Kumar, Wason, Sharan,

and Herrmann 2017).

As demonstrated in the work by Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht,

and Herrmann 2015, low-rank matrix completion methods perform well when reconstruct-

ing seismic data at lower angular frequencies. However, the quality of recovery degrades

as we move to higher frequencies (> 15 Hz). This degradation is due to the fact that high-

frequency slices are not accurately approximated by low-rank matrix factorization (Kumar,

Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015; Aravkin, Kumar, Man-

sour, Recht, and Herrmann 2014). Unfortunately, techniques like multiple elimination and

migration require access to high-frequency data to create high-fidelity, artifact-free, high-

resolution images. This need becomes even more crucial in areas with complex geology,

where understanding the physical properties is of utmost interest.

To address the challenges of recovering seismic data at high frequencies, we build upon

the earlier work of Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 and Eftekhari,
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Yang, and Wakin 2018, who discussed methods to improve the performance of low-rank

matrix completion by incorporating prior information in the form of weighting matrices.

These weighting matrices are projections spanned by the row and column subspaces, along

with their complements, of a low-rank matrix factorization that is close to the target matrix

for recovery. Similar to weighted `1-norm minimization, these weighting matrices enhance

wavefield recovery if the principal angle between the subspaces of the weighting matrices

and the target matrix is small. Conceptually, this is the matrix equivalent of weighted

`1-norm minimization proposed by Mansour, Herrmann, and Yılmaz 2012, Friedlander,

Mansour, Saab, and Yilmaz 2012, Borries, Miosso, and Potes 2007, Vaswani and Lu 2010,

Khajehnejad, Xu, Avestimehr, and Hassibi 2009, and Candes, Wakin, and Boyd 2008.

Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 and Eftekhari, Yang, and Wakin

2018 demonstrated that wavefield recovery via matrix completion can be improved by using

low-rank factorizations from adjacent frequency slices to define these weighting matrices.

In their work, Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 employed a modified

version of the spectral-projected gradient algorithm (Berg and Friedlander 2009) to assume

access to the low-rank factorization of an adjacent frequency slice, while Eftekhari, Yang,

and Wakin 2018 showed that for small principal angles, these weighting matrices reduce the

sampling requirement for successful data reconstruction by a logarithmic factor compared

to conventional matrix completion methods.

Although the initial results on wavefield reconstruction via weighted matrix comple-

tion were promising, the approach presented had practical limitations, relying on access to

the weights and employing computationally expensive optimization algorithms. To over-

come these shortcomings, we propose a parallelizable recursive method that utilizes a re-

cently developed alternating minimization procedure (Xu and Yin 2013; Jain, Netrapalli,

and Sanghavi 2013) proposed by Lopez, Kumar, and Herrmann 2015. Through recursive

reconstruction, as initially proposed by Zhang, Sharan, and Herrmann 2019, and improved

optimization, we demonstrate enhanced performance of our wavefield reconstruction algo-
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rithm.

The outline of our chapter is as follows. We first provide a brief overview of the prin-

ciples of wavefield reconstruction via matrix completion. Following this introduction, we

describe the challenges associated with high-frequency wavefield reconstruction and dis-

cuss how these challenges can be addressed through weighted matrix completion. We then

describe the formulation in factored form, which drastically reduces the problem size, mak-

ing our approach practical for 3D seismic data. In particular, we explain how our algorithm

can be parallelized and applied to large-scale high-frequency seismic wavefield reconstruc-

tion problems.

4.3 Wavefield reconstruction via weighted matrix completion

According to the seminal work of Recht, Fazel, and Parrilo 2010, matrices that exhibit a

low-rank structure can be recovered from randomly missing entries through a nuclear norm

minimization procedure. This procedure minimizes the sum of the singular values. As long

as the randomized subsampling reduces the rate of decay of the singular values, this type

of minimization enables the recovery of matrices that are well approximated by low-rank

matrices when fully sampled. Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and

Herrmann 2015 applied this principle to recover frequency slices from seismic lines in the

midpoint-offset domain or from 3D seismic data permuted in a non-canonical form (Da

Silva and Herrmann 2015). In both cases, the resulting frequency slice can be accurately

approximated by a low-rank matrix factorization.

To illustrate the underlying principle of wavefield reconstruction via matrix completion,

let’s consider a 12 Hz monochromatic frequency slice assembled from a 2D line acquired

in the Gulf of Suez. Figure 4.1 includes the real part of this frequency slice in the source-

receiver and midpoint-offset domain after removing 75

X := arg min
Y

‖Y‖∗ subject to ‖A(Y)−B‖F ≤ ε, (4.1)
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which promotes low-rank matrices.

By solving this minimization problem, our goal is to recover the minimum nuclear norm

(‖X‖∗ =
∑
σi with the sum running over the singular values of X) of the complex-valued

data matrix X ∈ Cm×n, where m represents the number of offsets and n represents the

number of midpoints. In addition to minimizing the nuclear norm objective, the minimizer

fits the observed data B ∈ Cm×n at the sampling locations within a certain tolerance ε,

measured by the Frobenius norm, i.e., ‖D‖F =
√∑

j

∑
kD

2
jk for a matrix D. The lin-

ear operator A implements the sampling mask by setting zeros at the source (and possibly

receiver) locations that were not collected in the field. The optimization variable is rep-

resented by the matrix Y. Equation 4.1 resembles the classic Basis Pursuit DeNoising

problem (BPDN, Berg and Friedlander 2009) and can be solved using a modified version

of the SPG`1 algorithm, adapted for nuclear-norm minimization (Aravkin, Kumar, Man-

sour, Recht, and Herrmann 2014). To solve problem Equation 4.1, SPG`1 solves a series

of constrained subproblems, during which the nuclear-norm constraint is relaxed to fit the

observed data.

4.3.1 The challenge of high-frequency wavefield recovery

Wavefield reconstruction via matrix completion (cf. problem Equation 4.1) relies on the as-

sumption that the singular values of monochromatic data organized in matrix decay rapidly.

This assumption holds true for the lower frequencies (< 15.0 Hz), but unfortunately, it no

longer holds for higher frequencies. To illustrate this phenomenon, we compare the decay

of singular values for the two matricizations of Figure 4.2 at 12.0 Hz and 60.0 Hz in Fig-

ure 4.3. While the singular values at 12.0 Hz decay quickly, this is not the case at 60.0 Hz

(compare solid lines in Figure 4.3a and Figure 4.3b), where the singular values for the

fully sampled data decay more slowly. The slower decay at the high frequencies is caused

by the increased complexity and oscillatory behavior exhibited by data at higher tempo-

ral frequencies. Despite the fact that the randomized source subsampling slows down the
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(a)

(b)

Figure 4.1: 12.0 Hz frequency slice extracted from 2D seismic data acquired in Gulf of
Suez. Data with 75% missing random jittered sources in (a) source-receiver domain and
(b) in midpoint-offset domain.
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(a)

(b)

Figure 4.2: Decay of singular values for 12.0 Hz frequency slice in source-receiver and
midpoint-offset domain for (a) full data and for (b) subsampled data with 75% missing
sources.
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decay, the slower decay of the fully sampled data leads to poor wavefield reconstruction

( Figure 4.4a) and unacceptable large residuals ( Figure 4.4b) at 60.0 Hz.

4.3.2 Weighted matrix completion

As shown in Figure 4.3, Figure 4.4a, and Figure 4.4b, the success of wavefield reconstruc-

tion through the minimization of the nuclear norm (cf. Equation 4.1) hinges on rapid decay

of the singular values an assumption violated at the higher frequencies. This shortcoming

can, at least in part, be overcome by using prior information from a related problem in the

form of weights, an approach initially put forward by Aravkin, Kumar, Mansour, Recht, and

Herrmann 2014 and further theoretically analyzed by Eftekhari, Yang, and Wakin 2018. In

its original form, the weights were derived from the reconstruction of the wavefield at a

neighboring temporal frequency, which leads to a significant improvement for the recon-

struction and the residual plotted in Figure 4.4c and Figure 4.4d, respectively. Building

upon this approach, Zhang, Sharan, and Herrmann 2019 further enhanced the reconstruc-

tion by applying it recursively from low to high frequencies, leading to improved quality

as depicted in Figure 4.4e and a reduced residual size as shown in Figure 4.4f. In this

work, we extend these results by reformulating the optimization problem and introducing

a parallel algorithm that minimizes communication.

We obtained the above weighted wavefield reconstructions by minimizing (Aravkin,

Kumar, Mansour, Recht, and Herrmann 2014; Eftekhari, Yang, and Wakin 2018)

X := arg min
Y

‖QYW‖∗ subject to ‖A(Y)−B‖F ≤ ε, (4.2)

where the weighting matrices Q ∈ Cm×m and W ∈ Cn×n are projections given by

Q = w1UUH + U⊥U⊥
H

(4.3)
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(a)

(b)

Figure 4.3: Singular value decay for fully sampled and subsampled data (75% missing
sources) in midpoint-offset domain for (a) 12.0 Hz and (b) 60.0 Hz frequency slice
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Wavefield reconstruction comparison for a 60 Hz frequency slice. (a) Recon-
structed wavefield from 75% subsampling. (b) residual with a poor S/R = 2.83 dB. (c)
Reconstructed wavefield using the recovery at the adjacent lower frequency as weights and
(d) improved residual with S/R = 5.08 dB. (e) and (f) the same but now with the weighting
scheme applied recursively with significantly improved S/R = 8.72 dB.44



and

W = w2VVH + V⊥V⊥
H

, (4.4)

where the symbol H denotes complex transpose. These projections are spanned by the row

and column subspaces U, V and their orthogonal complements U⊥ and V⊥. Furthermore,

the subspaces U, V have orthonormal columns, resulting in the orthogonal projections

UUH and VVH . The pair of matrices {U,V} form a low-rank pair that can be obtained

from the factorization of a lower adjacent frequency slice. The choice for the weights

w1 and w2 in Equation 4.3 and Equation 4.4 depends on the similarity between the cor-

responding row and column subspaces of the two adjacent frequency slices. Following

Eftekhari, Yang, and Wakin 2018, we quantify this similarity using the largest principle

angle between these subspaces. A smaller angle indicates a higher similarity between the

subspaces from the two adjacent frequency slices. In cases where the adjacent frequency

slices are near orthogonal—i.e., have a near 90◦ angle, we set w1 ↑ 1 and w2 ↑ 1 so that the

weighting matrices Q and W become identity matrices. Here, the symbol ↑ 1 represents

an approximation 1 from below. In such situations, the weighting matrices should not in-

troduce additional information—i.e., the solution of problem Equation 4.2 should become

equivalent to solving the original problem in Equation 4.1. Conversely, when the subspaces

are similar—i.e., they have an angle � 90◦, then the w1 and w2 should be chosen small

such that we penalize solutions more in the orthogonal complement space. The choice of

these weights depends on our confidence in the given factorization: we select weights close

to one when we have little confidence and close to zero when we have higher confidence.

While replacing the nuclear-norm objective in Equation 4.1 within its weighted coun-

terpart in Equation 4.2 is a valid approach that has shown improvements as reported in Fig-

ure 4.4, solving this weighted problem involves non-trivial weighted projections (see equa-

tion 7.3 in Aravkin, Kumar, Mansour, Recht, and Herrmann 2014). These computation-

ally expensive operations can be avoided by reformulating the optimization problem Equa-

tion 4.2 in a slightly different manner, where the weights are transferred from the objective
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to the data constraint—i.e., we have

X̄ := arg min
Ȳ

‖Ȳ‖∗ subject to ‖A(Q−1ȲW−1)−B‖F ≤ ε. (4.5)

In this formulation, the optimization is carried out over the new variable Ȳ = QYW.

After solving for this variable, we recover the solution of the original problem X from X̄

as follows: X = Q−1X̄W−1. We arrived at this formulation by using the fact that the

matrices Q and W are invertible (for non-zeros weights w1 and w2) with inverses given by

Q−1 =
1

w 1
UUH + U⊥U⊥

H

(4.6)

and

W−1 =
1

w 2
VVH + V⊥V⊥

H

. (4.7)

By transferring the weighting matrices to the data constraint, we eliminate the need to

project onto a more complex constraint, as demonstrated in Aravkin, Kumar, Mansour,

Recht, and Herrmann 2014. As a result, the solutions obtained from the modified formula-

tion in Equation 4.5 can be obtained at nearly the same computational cost as the original

formulation in Equation 4.1. This formulation serves as the foundation for our wavefield

reconstruction approach, designed to handle the substantial data volumes present in 3D

seismic applications.

4.4 Scalable multi-frequency seismic wavefield reconstruction

Up until now, our minimization problems have relied on explicitly forming the data ma-

trix and utilizing singular-value decomposition (SVD) techniques, as described in Aravkin,

Kumar, Mansour, Recht, and Herrmann 2014. However, these approaches are impractical

for industry-scale 3D wavefield reconstruction problems. To tackle this challenge, we ex-

plore the transformation of the aforementioned weighted matrix completion approach into
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a factored form. This alternative formulation offers computational advantages and, as we

will demonstrate later, remains amenable to parallelization.

4.4.1 Weighted low-rank matrix factorization

To avoid computing costly SVDs, we first cast the solution of Equation 4.5 into factored

form:

L̄, R̄ := arg min
L̄#,R̄#

1

2

∥∥∥∥∥∥∥
L̄#

R̄#


∥∥∥∥∥∥∥
2

F

subject to ‖A(Q−1L̄#R̄H
#W−H)−B‖F ≤ ε, (4.8)

where L̄ = QL and R̄ = WR. Under certain technical conditions (Candes and Recht

2009), which include choosing the proper rank r, the factored solution, X = LRH with

L = Q−1L̄ and R = W−1R̄, corresponds to the solution of the weighted problem included

in Equation 4.2. Here, the matrices L ∈ Cm×r and R ∈ Cn×r are the low-rank factors

of X. Using the property that the matrices WH = W and QH = Q in Equation 4.8

are idempotent, we replace W−H by W−1 to avoid extra computation. Compared to the

original convex formulation, solving Equation 4.8 is made possible through the use of

block coordinate descent (Xu and Yin 2013), which offers computational efficiency, as

demonstrated by the runtimes shown in Figure 4.5 as a function of temporal frequency.

The block coordinate descent algorithm efficiently finds the low-rank factors, allowing us

to solve the low-rank matrix completion problem. However, it’s important to note that this

approach is effective only when the monochromatic data matrices can be well approximated

by low-rank matrices, meaning that the rank parameter r � min(m,n).

Although the weighted formulation described above enables solving the problem in fac-

tored form, it requires access to the subspaces {U,V}, which necessitates computing the

full SVD (Eftekhari, Yang, and Wakin 2018). However, since computing the full SVD is

not feasible, we adopt a different approach. Instead, we orthogonalize the low-rank fac-

tors from adjacent frequency slices themselves by performing computationally inexpensive
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Figure 4.5: Runtime comparison plot: Solid black line shows runtime of the original
weighted formulation and dashed black line shows runtime of the new weighted formu-
lation for same number of iterations with same data residual at the end.
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SVDs on these factors, rather than on the entire data matrix, and retaining only the top r

left singular vectors. This strategy is justified because orthogonalizing the low-rank fac-

tors allows us to approximate the orthogonal subspaces spanned by the complete frequency

slice.

The results presented in Figure 4.4 were obtained in factored form and clearly demon-

strate the benefits of incorporating weight matrices, particularly when these matrices are

recursively calculated from low to high frequencies (juxtapose Figure 4.4c, Figure 4.4d

and Figure 4.4e, Figure 4.4f). This improvement is attributed to the fact that low-frequency

data matrices can be more effectively approximated by low-rank matrices, which enhances

the recovery process and, consequently, the quality of the weighted reconstruction.

4.4.2 Weighted parallel recovery

The example in Figure 4.4 clearly demonstrates the enhanced performance of wavefield

reconstruction through matrix factorization when weight matrices, containing information

on the row and column subspaces, are incorporated. However, the inclusion of these weight

matrices complicates the parallelization of the algorithm, as it no longer straightforwardly

applies the parallelized alternating optimization approach proposed by Recht and Ré 2013

and Lopez, Kumar, and Herrmann 2015.

This approach relies on independent computations performed on a row-by-row and

column-by-column basis (see Figure 4.6) , in which the optimization alternates between

minimizing the rows via

R(l1, :)
H := arg min

v

1

2
‖v‖2 subject to ‖Al1(Lv)−B(:, l1)‖ ≤ γ (4.9)

for l1 = 1 · · ·n and the columns via

L(l2, :)
H := arg min

u

1

2
‖u‖2 subject to ‖Al2((Ru)H)−B(l2, :)‖ ≤ γ (4.10)
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for l2 = 1 · · ·m. With this approach, the rows of the right factor R are updated first by

iterating over the rows via the index l1 = 1 · · ·n. Subsequently, updates are performed on

the rows of the left factor L by iterating over the rows via the index l2 = 1 · · ·m. Unlike

the serial problem, these optimizations are carried out in parallel on individual vectors

v ∈ Cr and u ∈ Cr because they decouple—i.e., the l1, l2th row of R,L only involve

the l1, l2th column/row of the observed data matrix B and submatrices Al1 ,Al2 that act on

these columns/rows. To simplify notation, we used the symbol : to extract the l1th column,

B(:, l1), or l2th row, B(l2, :). As in the previous cases, the optimizations account for the

presence of noise by solving them within a user-specified `2-norm tolerance γ.

The operations in Equation 4.9 and Equation 4.10 allow for a parallel implementation

that scales well for large-scale industrial 3D seismic problems since they decouple the com-

putations. However, this decoupled formulation lacks the inclusion of weighting matrices,

which limits its utility for recovery problems at higher frequencies where weighting ma-

trices are required. To address this limitation, we propose a novel approach to ameliorate

this problem in which we take Equation 4.9 and Equation 4.10 as a starting point and

pre- and post multiply the data misfit terms by Q and W after including the weighting

matrices as in Equation 4.8. Furthermore, we leverage the property that for large weights,

the matrices Q and W nearly commute with the measurement operator A—i.e., we have

QA(Q−1X̄W
−1

) ≈ A(X̄W
−1

) and A(Q−1X̄W
−1

)W ≈ A(Q−1X̄) where X̄ represents

the fully sampled data matrix or its factored form. With these approximations, we arrive at

the following weighted iterations:

R̄(l1, :)
H := arg min

v̄

1

2
‖v̄‖22 subject to ‖Al1(Q

−1L̄v̄)−BR(:, l1)‖ ≤ γ (4.11)

for l1 = 1 · · ·n and

L̄(l2, :)
H := arg min

ū

1

2
‖ū‖2 subject to ‖Al2((R̄ū)HW−1)−BL(l2, :)‖ ≤ γ (4.12)
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(a)

(b)

Figure 4.6: Alternating minimization and decoupling. (a) Solving for the low-rank factor
R by using fixed factor L and observed data B. (b) Solving for the lth1 row of the low-rank
factor R by using rows (in black color) of the fixed factor L corresponding to the non-zero
entries (in black color) of the lth1 column from the observed data B.
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for l2 = 1 · · ·m. In these expressions, we replaced the incomplete data matrix by BR =

BW and BL = QB, respectively. This means that we pre- and post-multiply the observed

monochromatic data matrix B with Q and W before extracting its columns or rows.

The validity of the above derivation depends on the accuracy of the approximations in-

volving the commutation of the weight matrices with the sampling operator A. To assess

the justification of these approximations, we compare the accuracy in Figure 4.7 by com-

paring plots of QA(Q−1X̄W
−1

) and A(X̄W
−1

) for two different weight values in Equa-

tion 4.6 and Equation 4.7. As expected, for the smaller weight value w1,2 = 0.25 the

weighting matrix Q does not commute with the sampling matrix (see Figure 4.7a – Fig-

ure 4.7c). However, for w1,2 = 0.75 the approximation is reasonably accurate (see Fig-

ure 4.7d – Figure 4.7f). Similarly, in Figure 4.8 we compare plots of A(Q−1X̄W
−1

)W

and A(Q−1X̄) for small and large weights. As before, for smaller weights w1,2 = 0.25,

the weighing matrix W does not commute with the sampling matrix (see Figure 4.8a –

Figure 4.8c). However, for w1,2 = 0.75 the approximation is again reasonably accurate

(see Figure 4.8d – Figure 4.8f). It is important to note that the weights w1,2 reflect confi-

dence we have in the weight matrices and are chosen to be small when we have confidence

that the weighting matrices Q and W contribute valuable information to the recovery pro-

cess. This means we need to select a value for the weights w1,2 that strikes a balance

between the amount of prior information we want to incorporate and the desired accuracy

of the commutation relations. Choosing small weights results in larger “commutation” er-

rors, while large weights leads to small “commutation” errors but limit the incorporation of

prior information through the weights.

Although, the decoupled Equation 4.11 and Equation 4.12 can now be parallelized over

the rows of the low-rank factors R̄ and L̄, they come with additional computational cost.

Unlike the sparse observed data collected in the matrix B, the data matrices BR and BL

are dense (have all non-zero entries) because of the multiplications by W and Q. How-

ever, when the weights w1,2 are relatively large, we observe that both dense matrices BL,
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Commutation test for small and large weights. (a) Subset of 3D frequency slice
for QA(Q−1X̄W

−1
) for w1,2 = 0.25; (b) the same but now for A(X̄W

−1
); (c) difference

plot between (a) and (b); (d)-(f) the same as (a)-(c) but now for w1,2 = 0.75.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Commutation test for small and large weights. (a) Subset of 3D frequency slice
for A(Q−1X̄W

−1
)W for w1,2 = 0.25; (b) the same but now for A(Q−1X̄); (c) difference

plot between (a) and (b); (d)-(f) the same as (a)-(c) but now for w1,2 = 0.75.
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BR ( Figure 4.9b and Figure 4.9d) can be well approximated by the sparse observed data

matrix B, as indicated by the difference plots in Figure 4.9. With this approximation,

Equation 4.11 and Equation 4.12 becomes computationally efficiently.

While the above formulation allows us to perform weighted factored wavefield recov-

ery in parallelized form, we have observed that taking inverses of Q and W in the data

misfit objective (see Equation 4.8) results in inferior recovery due to the involvement of

reciprocals of the weights (see Equation 4.6 and Equation 4.7). The value range of these

reciprocals is no longer contained to the interval (0, 1], which can introduce numerical is-

sues during the recovery process. To overcome this problem, we propose an alternative but

equivalent form for the weighted formulation, where the weights are defined as

Q̂ = UUH + w1U
⊥U⊥

H

= w1Q
−1, (4.13)

Ŵ = VVH + w2V
⊥V⊥

H

= w2W
−1 (4.14)

With these alternative definitions, we can as before approximate Q̂−1A(Q̂X̄Ŵ) byA(X̄Ŵ)

and A(Q̂X̄Ŵ)Ŵ−1 by A(Q̂X̄), yielding the following decoupled parallellizable equa-

tions for the factors

R̄(l1, :)
H := arg min

v̄

1

2
‖v̄‖2

subject to

‖Al1(Q̂L̄v̄)− w1w2B(:, l1)‖ ≤ w1w2γ

(4.15)

for l1 = 1 · · ·n and

L̄(l2, :)
H := arg min

ū

1

2
‖ū‖2

subject to

‖Al2((R̄ū)HŴ)− w1w2B(l2, :)‖ ≤ w1w2γ

(4.16)
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(a) (b) (c)

(d) (e)

Figure 4.9: Accuracy of sparse approximation for weights w1,2 = 0.75, (a) Subset of 3D
frequency slice for sparse observed data B; (b) the same but now for the dense matrix BL

with S/R = 17.5 dB; (c) difference plot between (a) and (b); (d) Subset of 3D frequency
slice for the dense matrix BR with S/R = 16.5 dB; (e) difference plot between (a) and (d).
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for l2 = 1 · · ·m . Equation 4.15 and Equation 4.16 form the basis for our recovery approach

summarized in Algorithm 1 below, which corresponds to

min
X̄

‖X̄‖∗ subject to ‖A(Q̂X̄Ŵ)− w1w2B‖F ≤ w1w2ε, (4.17)

which is equivalent to Equation 4.5 as we show in Appendix A.

Algorithm 1 Weighted minimization via Alternating minimization.
0. Input: Observed data B, rank parameter r, acquisition mask A,

priors Q̂,Ŵ and initial guess L̄(0)

1. for k = 0, 1, 2, · · · , N − 1 solve for rows of R̄ and L̄ in parallel
2. R̄(k+1)(l1, :)

H := arg min
v̄

1
2
‖v̄‖2 s.t.‖Al1(Q̂L̄(k)v̄)− w1w2B(:, l1)‖ ≤ w1w2γ

3. L̄(k+1)(l2, :)
H := arg min

ū

1
2
‖ū‖2 s.t.‖Al2((R̄

(k+1)ū)HŴ)−w1w2B(l2, :)‖ ≤ w1w2γ

4. end for
5. L = 1

w1
Q̂L̄

6. R = 1
w2

ŴR̄
Output: Recovered wavefield in factored form {L, R}.

In Algorithm 1, Line 2 corresponds to solving for each row of the low-rank factor

R̄(k+1) at the (k + 1)th iteration using the estimate of low-rank factor L̄(k) from the (k)th

iteration. Similarly, Line 3 corresponds to solving for each row of the low-rank factor

L̄(k+1) at the (k + 1)th iteration using the estimated low-rank factor R̄(k+1). Finally, Lines

5 and 6 correspond to retrieving the low-rank factors L and R from L̄ and R̄, respectively.

We compare our modified methodology to the original formulation presented in our ref-

erence(Lopez, Kumar, and Herrmann 2015). Unlike the original work, our approach only

requires additional matrix multiplications with Q̂ and Ŵ . This modification introduces a

minor additional cost of approximately O(r ·max(m,n))floating-point operations, which

is small compared to the numerical complexity of the original approach.

The numbers in Table 4.1 demonstrate the improvement in runtime of the modified

weighted formulation ( Equation 4.8). By parallelizing our approach ( Algorithm 1), we

achieve significant further improvement in runtime. For this test, we use a frequency slice

of dimension 8241 × 8241 with 90% missing receivers. By working with eight parallel
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Table 4.1: Runtime comparison of the original weighted method (Aravkin, Kumar, Man-
sour, Recht, and Herrmann 2014), modified weighted ( Equation 4.8), and the parallel
weighted method ( Algorithm 1) terminating at a same data residual.

Method S/R(dB) Time(seconds)
Original Weighted 16.28 37251
Modified Weighted 16.56 15128
Parallel Weighted 16.59 954

workers (two threads each) in the Cloud, we are able to achieve a significantly faster (39×)

runtime compared to the original weighted method with a signal to noise ratio that is very

close to results obtained with the original formulation.

In summary, consistent with earlier work (Eftekhari, Yang, and Wakin 2018) we found

that the choice of weights determines the accuracy of the wavefield recovery. In our ex-

perience, adding weighting matrices has little to no effect on convergence of the residuals.

Depending on the accuracy of the prior subspace information, there exists in principle an

optimal choice for the weights that will give the best possible recovery. In practice, we

do not have access to the ground truth to calculate these optimal weights. However, we

find that sub-optimal weights still provide improvements in the output quality compared to

when no prior information in the form of weight matrices is used. In the next section, we

will discuss a practical approach how to find sub-optimal weights.

4.5 Case studies

We proceed to perform a series of experiments to assess the accuracy of the proposed

weighted wavefield reconstruction methodology. It is important to note that although we

have access to the ground truth fully sampled data, we do not utilize this information for

selecting the weights. Instead, we solely rely on the ground truth data to evaluate the accu-

racy through visual inspection and S/R’s (Signal to noise ratio). Our experimental examples

encompass the seismic line from the Gulf of Suez, which was previously discussed, as well

as a complex full-azimuth synthetic 3D dataset.
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4.5.1 Gulf of Suez field data: 2D example

To access the performance of our recursively weighted wavefield recovery method on field

data, we revisit the 2D line from the Gulf of Suez. The fully sampled split-spread dataset

comprises 1024 time samples, acquired using 355 sources and 355 receivers, with a time

sampling interval of 0.004 s. The source-receiver spacing is 25 m. To evaluate our algo-

rithm, we reconstruct this 2D line using randomly subsampled traces obtained by removing

75% of the sources through optimal jittered subsampling (Herrmann and Hennenfent 2008).

We evaluate the performance of recursively weighted matrix factorization by compar-

ing wavefield recovery with and without weighting across different angular frequencies. To

mitigate the impact of noise at low frequencies, we start the recovery at 7.0 Hz. Given the

relatively small problem, we reconstruct the frequency slices by performing 150 iterations

of the SPG-LR algorithm (Berg and Friedlander 2009; Aravkin, Kumar, Mansour, Recht,

and Herrmann 2014) for each frequency to reconstruct the frequency slices. The results

of wavefield reconstructions with and without weights are compared, and the findings are

summarized in Figure 4.11. Based on these results, it is evident that including weights in

the reconstruction process yields clear benefits for frequencies above 17Hz compared to re-

constructions performed without weighting using the same number of iterations. We chose

w1,2 = 0.75 as values for the weights. This choice for the weights is informed by tests

we carried out for different weight parameters across all frequencies. The results of this

exercise are summarized in Figure 4.10, which includes plots for the S/R derived from the

residuals ( Figure 4.10a) and from the misfit between the recovered and fully sampled data

( Figure 4.10b). In practice, we only have access to the residuals, which are given by the

difference between the incomplete observed data and reconstructed data at the observed

locations. The different plots in Figure 4.10b suggest that weights between w1,2 = 0.50

and w1,2 = 0.75 give the best S/R across the different frequencies. While the S/R for

the residual and misfit with respect to the fully sampled data differ, the residuals provide

a practial way to select the weights. Based on the information in Figure 4.10a, the choice
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of w1,2 = 0.75 is reasonable since it leads to the best S/R. Notice that for increasing

weights, the S/R increase to decrease again for the large values. This behavior can be un-

derstood because for small weights, the solution will be dominated by the factorization at

the lower frequency and not by the data at the current frequency. As the weights increase,

the wavefield recoveries are informed by a combination of observed data and prior informa-

tion. Since the prior information decreases for increasing weights, we reach, as expected,

a point where the results deteriorate again.

Figure 4.12c and Figure 4.13c display the shallow and deeper parts of a reconstructed

common receiver gather obtained from the conventional method, resulting in an S/R =

6.99 dB. In the data residual plots ( Figure 4.12d and Figure 4.13d), we observe signal

leakage and noise, due to reconstruction artifact in both shallow and deeper parts. Signal

leakage refers to the presence of coherent events in the data residual plot, indicating incom-

plete data reconstruction. Additionally, there is noticeable signal leakage in the difference

plot at far offsets. Far offset data is crucial for FWI (Full Waveform Inversion) purposes

since it contains turning waves. In contrast, we observe better reconstructed data in the

common receiver gather ( Figure 4.12e and Figure 4.13e) extracted from reconstructed

data using the recursively weighted approach, exhibits improved quality with an enhanced

S/R of 11.91 dB. The corresponding data residual plot ( Figure 4.12f and Figure 4.13f)

demonstrates reduced signal leakage compared to its conventional counterpart. Even at far

offsets, the reconstructed signal is significantly improved.

4.5.2 Synthetic Compass model data: 3D example

In 2D seismic surveys, receivers only measure wavefields within the vertical plane along

sources and receivers, limiting the capture of reflections outside of this plane. This omis-

sion of out-of-plane scattering ultimately impacts the quality of the subsurface image, par-

ticularly in regions with significant lateral heterogeneity. To address this limitation and

account for 3D effects, modern seismic exploration surveys employ 3D data acquisition,
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(a)

(b)

Figure 4.10: S/R comparison of recursively weighted method with different weights for all
frequencies with 75% missing sources. (a) S/R of the residuals comparing wavefield re-
covery and observed data yielded by the recursively weighted method for different weights
across all frequencies, (b) S/R comparison between recovery and ground truth fully sam-
pled data. As expected other than for the lower frequencies slices, we achieve significant
improvements in S/R ( Figure 4.11) with our recursively weighted approach when the
weights are in a regime where they add prior information without dominating the recovery.
The latter occurs for small weights.
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Figure 4.11: (a) S/R comparison of conventional (dashed black line) and recursively
weighted method (solid black line) with (w1,2 = 0.75) for all frequencies
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Wavefield reconstruction in common receiver gather domain in the shallow
part. (a) True data, (b) Observed data with 75% missing sources. (c) Reconstructed data
using the conventional method with S/R = 6.99 dB and (d) corresponding difference with
respect to the true data. (e) Reconstructed data using the recursively weighted method with
S/R = 11.91 dB and (f) corresponding difference with respect to the true data.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Wavefield reconstruction in common receiver gather domain in the deeper
part. (a) True data, (b) Observed data with 75% missing sources. (c) Reconstructed data
using the conventional method and (d) corresponding difference with respect to the true
data. (e) Reconstructed data using the recursively weighted method and (f) corresponding
difference with respect to the true data.
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where sources and receivers are distributed across the surface rather than confined to a sin-

gle line. In order to assess the performance of our recursively weighted low-rank matrix

factorization methodology in this more challenging 3D setting, we utilize synthetic 3D data

generated on the Compass model, which incorporates velocity kickbacks, strong reflectors,

and small wavelength details constrained by real well-log data from the North Sea. Due to

the complexity of this dataset, resembling marine acquisition with a towed array, we face

similar challenges in wavefield reconstruction as we would encounter when dealing with

real 3D field data. The authors Da Silva and Herrmann 2015 also employed this 3D dataset

to evaluate their tensor-based wavefield reconstruction algorithm based on the Hierarchical

Tucker decompositions.

For this experiment, we use a subset of the complete data volume, consisting of 501×

201× 201× 41× 41 gridpoints—i.e., nt × nrx × nry × nsx × nsy along the time, receiver

x, receiver y, source x, and source y directions. Here, nt is the number of samples along

time, nrx, nry are number of receivers along x and y directions respectively and nsx, nsy

are number of sources along x and y directions respectively. In both spatial directions, the

spacing between the adjacent sources is 150.0 m and 25.0 m between adjacent receivers.

The sampling interval along time is 0.01 s. To obtain the subsampled data, we randomly

remove 75% of the receivers from jittered locations (Herrmann and Hennenfent 2008). We

employ this incomplete data as input to our recursively weighted wavefield reconstruction

scheme.

Before proceeding, let us first briefly discuss the organization of the data for wavefield

reconstructions. Although we could transform the data into the midpoint-offset domain, as

done in the 2D case, we follow Da Silva and Herrmann 2015 and Demanet 2006. We exploit

the fact that monochromatic 3D frequency slices rearranged along the x and y-coordinates

for sources and receivers can be effectively approximated using a low-rank factorization.

In this rearrangement the data is structured as a matrix with Sx, Rx and Sy, Ry coupled

along the columns and rows respectively, unfolding along the corresponding coordinate
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directions. Here Sx,y and Rx,y are the source and receiver coordinates along the x and y

directions. After rearrangement in this non-canonical form, the frequency slices are low-

rank while data with randomly missing receivers is not (juxtapose 10.0 Hz frequency slices

in Figure 4.15a and Figure 4.15b and the singular value plots in Figure 4.16a and Fig-

ure 4.16b). We choose 10 Hz frequency slice as the changes in the rate of decay of singular

values upon sampling at lower frequencies is more prominent in comparison to changes we

observe at higher frequencies. This frequency choice allows us to better demonstrate the

reasoning behind choosing Sx, Rx and Sy, Ry domain for reconstruction. In the canonical

organization, missing receivers leads to missing rows and this decreases the rank (cf. solid

lines in Figure 4.16) in the non-canonical rearrangements the rank increases (cf. dashed

lined in Figure 4.16). The sudden decrease in the singular values in the canonical arrange-

ment is a direct result of removing complete rows or columns, which reduces the rank of the

data. By examining the behavior of the singular values before and after receiver removal, it

becomes evident that the straightforward rearrangement of the data in the non-canonical or-

ganization can serve as the transform domain for data recovery through weighted low-rank

factorization.

As before, we now proceed with the full-azimuth 3D wavefield reconstruction for each

frequency slice using our proposed recursively weighted low-rank matrix factorization ap-

proach. Since this is a relatively large problem, we utilize the parallel framework presented

in the previous section ( Algorithm 1) with 4 alternations and 40 iterations of SPG-`2 per

frequency slice. These parameter values were chosen based on our observation of im-

proved signal continuity and reduced noise in the reconstructed data. In addition to setting

the number of alternations, i.e. switching between Equation 4.15 and Equation 4.16, the

algorithm needs us to specify the rank of the factorization and the weights. Furthermore,

we set the rank of the factorization to r = 228 and the weights tow1,2 = 0.75 after conduct-

ing tests with different values. These choices strike a good balance between data quality

(in terms of continuity of events, lesser noise) and computational efficiency. The weight
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(a)

(b)

Figure 4.14: 10.0 Hz Frequency slice from 3D data: True (a) in Sx, Sy domain and (b)
in Sx, Rx domain. Figures in left column show full data and in right column show data
zoomed in the small black box.
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(a)

(b)

Figure 4.15: 10.0 Hz Frequency slice from 3D data: Observed data (a) in Sx, Sy domain
and (b) in Sx, Rx domain with 75% missing receivers. Figures in left column show full data
and in right column show data zoomed in the small black box.
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(a)

(b)

Figure 4.16: Singular values decay comparison for (a) fully sampled and (b) subsampled
data with 75% missing receivers in Sx, Sy domain (solid black line) and Sx, Rx (dashed
black line) domain for 10.0 Hz frequency slice
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selection process for the 2D case is followed to determine the weights.

To mitigate noise resulting from simulation artifacts at very low frequencies, we start

our recursively weighted from 4.4 Hz. For comparison, we also use conventional matrix

completion for wavefield reconstruction. As a point of comparison, we also employ con-

ventional matrix completion for wavefield reconstruction using the same number of alterna-

tions, SPG-`2 iterations and rank value of 228. For visualization purpose, we present results

in a common shot gather ( Figure 4.17a) extracted from 15 Hz frequency slice. Here we

choose higher frequency of 15 Hz instead of 10 Hz to show how the recursively weighted

method is able to give better reconstruction at high frequency in comparison to recon-

structed data obtained from the conventional method. In Figure 4.17b we show subsam-

pled shot gather with 75% missing receivers. Using the conventional method we get S/R of

17.7 dB for the reconstructed data at 15.0 Hz ( Figure 4.17c). Whereas, with the recursively

weighted method we get improved S/R of 19.9 dB ( Figure 4.17e). We also observe less

leakage of signal and less noise in the residual plots for the data reconstructed using recur-

sively weighted method ( Figure 4.17f) in comparison to the data reconstructed using the

conventional method ( Figure 4.17d). From Figure 4.18a, we also observe improvement in

theS/R of reconstructed data for all the frequencies with the recursively weighted method

(solid black line in Figure 4.18a) in comparison to its conventional counterpart (dashed

black line in Figure 4.18a). In Figure 4.19 and Figure 4.20 we also show comparison of

the recursively weighted and conventional method in time domain common shot gather at

earlier and later arrivals respectively. In Figure 4.19, we also show comparison of a time

slice at 1.6 s extracted from a 3D common shot gather. Figure 4.19a shows two common

shot gathers extracted from the true data along x and y directions along with a time-slice

on top left corner. Figure 4.19b shows the corresponding observed data with missing re-

ceivers. We observe improved reconstruction of signals in the common shot gather (with

S/R = 17.8 dB) reconstructed from recursively weighted method ( Figure 4.19e) in com-

parison to the reconstructed data from the conventional method ( Figure 4.19c) with S/R
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Table 4.2: Comparison of S/R (in dB) of reconstructed data from 75% and 90% subsampled
data using conventional and recursively weighted method.

Subsampling ratio Conventional Recursively weighted
75% (15 Hz) 17.67 19.92
75% (30 Hz) 11.63 14.12
90% (15 Hz) 3.71 12.49
90% (30 Hz) -0.03 6.64

of 15.3 dB. Even in the residual plots we observe less leakage of signal with the recur-

sively weighted method ( Figure 4.19f) in comparison to its conventional counterpart ( Fig-

ure 4.19d). In Figure 4.20a and Figure 4.20b, we show the same common shot gather at

later time along x and y directions extracted from true and observed data respectively. We

observe noise in the data and corresponding residual ( Figure 4.20c and Figure 4.20d) re-

constructed from the conventional method. Whereas, we observe better reconstruction and

less noise in the data reconstructed ( Figure 4.20e and Figure 4.20f) from the recursively

weighted method.

4.5.3 BG synthetic 3D data with 90% missing receivers

Next we test the ability of the recursively weighted method with a reduced number of sam-

ples. We subsample the BG synthetic 3D data by 90% using jittered subsampling, i.e. we

use only 10% of receivers for wavefield reconstruction. We use 4 alternations and 40 inner

iterations of SPG-`2 in each alternation per frequency slice for both conventional and re-

cursively weighted method. We use rank parameter of 228 for all the frequency slices. Like

before we arrive at these values by inspecting the quality of reconstructed data based on

the continuity of signal and attenuated noise in the reconstructed data. To find the weights,

we follow the same procedure as outlined in the 2D example. To avoid noise at lower

frequencies we start recursively weighted method from 4.4 Hz. As evident from the S/R

plot ( Figure 4.18b), we observe improvement in data reconstruction quality across all the

frequency slices using the recursively weighted method (solid black line in Figure 4.18b) in

comparison to its conventional counterpart (dashed black line in Figure 4.18b). In a com-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: Full azimuth wavefield reconstruction comparison for 15.0 Hz frequency slice
in common shot domain. (a) True frequency slice. Subsampled frequency slice with (b)
75% missing receivers. (d) Reconstructed data using conventional method with S/R =
17.7 dB and (e) corresponding data residual with respect to true data. (f) Reconstructed
data using recursively weighted method with S/R = 19.9 dB and (g) corresponding data
residual with respect to true data. 72



(a)

(b)

Figure 4.18: S/R comparison of conventional (dashed black line) and recursively weighted
(w1,2 = 0.75) method (solid black line) for all the frequencies for (a) 75% and (b) 90%
missing receiver scenarios.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.19: Full azimuth wavefield reconstruction in time domain for a common shot
gather along with time slice at 1.6 s. (a) True data. Subsampled data with (b) 75% missing
receivers. (d) Reconstructed data using the conventional method with S/R = 15.3 dB and
(e) corresponding data residual with respect to the true data. (f) Reconstructed data using
the recursively weighted method with S/R = 17.8 dB and (g) corresponding data residual
with respect to the true data. 74



(a) (b)

(c) (d)

(e) (f)

Figure 4.20: Full azimuth wavefield reconstruction in time domain for a common shot
gather (deeper section). (a) True data. (b) Subsampled data with 75% missing receivers.
(c) Reconstructed data using the conventional method and (d) corresponding difference
with respect to the true data. (e) Reconstructed data using the recursively weighted method
and (f) corresponding difference with respect to the true data.
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mon shot gather extracted from a frequency slice at 15 Hz, we observe better continuity and

less noise in the reconstructed wavefield ( Figure 4.21d) in comparison to the reconstruc-

tion obtained from its conventional counterpart ( Figure 4.21b). We observe more leakage

of signal in the data residual with the conventional method ( Figure 4.21c) in comparison to

the data residual obtained from recursively weighted method ( Figure 4.21e). In Figure 4.22

we compare data reconstruction in time domain using conventional ( Figure 4.22b and Fig-

ure 4.22c) and recursively weighted method ( Figure 4.22d and Figure 4.22e). We again

observe better data reconstruction and reduced data residual with the recursively weighted

method in comparison to reconstruction obtained from the conventional method. As an

additional measure of comparison, we also plot frequency-wavenumber (f-k) spectrum of

shot gathers in Figure 4.23 along both the x and y directions. We observe similarity of f-k

spectrum between the data reconstructed from recursively weighted method ( Figure 4.23d)

and the ground truth ( Figure 4.23a). We see improvements compared to the f-k spectrum

of data reconstructed with the conventional method ( Figure 4.23c).

4.6 Discussion

Our proposed method, which utilizes recursively weighted low-rank matrix completion,

surpasses its conventional counterpart in terms of the quality of the reconstructed data,

especially at higher frequencies. Conventional low-rank matrix completion exhibits poor

performance at higher frequencies due to the increasing complexity of matrices that even-

tually violate our low-rank assumption. As mentioned earlier, high-quality high-frequency

content in the data is crucial for high-resolution imaging of the earth’s subsurface and pre-

cise inversion of its physical parameters.

Weighted matrix completion was initially introduced by Aravkin, Kumar, Mansour,

Recht, and Herrmann 2014 to enhance the seismic data reconstruction quality within the

conventional matrix completion framework. In our work, we have harnessed the potential

of the weighted method by recursively reconstructing data from low to high frequencies.
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(a) (b) (c)

(d) (e)

Figure 4.21: Full azimuth wavefield reconstruction comparison for 15.0 Hz frequency slice
in common shot domain. Subsampled frequency slice with (a) 90% missing receivers. (b)
Reconstructed data using conventional method with S/R = 3.7 dB and (b) corresponding
data residual with respect to true data. (c) Reconstructed data using recursively weighted
method with S/R = 12.5 dB and (d) corresponding data residual with respect to true data.
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(a) (b) (c)

(d) (e)

Figure 4.22: Full azimuth wavefield reconstruction in time domain for a common shot
gather along with time slice at 1.6 s. Subsampled data with (a) 90% missing receivers. (b)
Reconstructed data using the conventional method with S/R = 3 dB and (c) corresponding
data residual with respect to the true data. (d) Reconstructed data using the recursively
weighted method with S/R = 10.2 dB and (e) corresponding data residual with respect to
the true data.

78



Moreover, we have improved the computational efficiency of the original weighted method

formulation proposed by Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 by shifting

the weights from the objective to the data misfit constraint function.

The success of the recursively weighted method heavily relies on the similarity between

adjacent frequency slices and the appropriate choice of weights. The conventional method

can be easily parallelized over frequencies, rendering it computationally efficient. How-

ever, the interdependence between frequency slices in the recursively weighted method

prevents parallelization over frequencies, posing computational challenges, particularly for

large-scale 3D datasets. Through the strategies of alternating minimization and decou-

pling, we have achieved computational efficiency for higher weights in the recursively

weighted method. Depending on the availability of computational resources, the recur-

sively weighted method can be efficiently applied to large-scale 3D datasets. Our parallel

weighted framework partially leverages the advantages of weighted low-rank matrix fac-

torization as it can only be parallelized for higher weights. Nonetheless, our numerical

experiments demonstrate improvements in the quality of the reconstructed data across all

frequencies for 3D seismic data generated on a geologically complex velocity model re-

sembling a part of the earth’s subsurface. To fully exploit the benefits of the weighted

method for large 3D datasets, our future work will focus on extending this methodology to

enable parallelism even for smaller weight values.

By directly utilizing the low-rank factors from a preceding frequency slice to calcu-

late the weight matrix, our recursively weighted framework avoids the need for computing

SVDs of the complete dataset to determine its row and column subspaces. This SVD-free

parallel weighted framework can be applied to industry-scale seismic datasets. With the

emergence of cloud computing, abundant computational resources are available. How-

ever, the challenge lies in optimizing both the turnaround time and the budget when uti-

lizing these resources. Therefore, our next steps will involve re-engineering the weighted

framework to efficiently utilize cloud-based computational resources by incorporating the
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principles of serverless computing. For example, Witte, Louboutin, Modzelewski, Jones,

Selvage, and Herrmann 2019 designed serverless computing architecture to perform large

scale 3D seismic imaging.

Both datasets used in our experiments feature sources and receivers on a uniform grid,

but in reality, this is not always the case. Due to environmental and operational constraints,

sources and receivers are often shifted from the uniform grid. If we neglect to account for

this shift in our reconstruction framework, the performance of the framework may suffer.

By incorporating an additional operator (Lopez, Kumar, Yilmaz, and Herrmann 2016) cor-

responding to these shifts from the uniform grid, our weighted framework can be applied

to field data recorded on a non-uniform grid.

4.7 Conclusions

While wavefield reconstruction based on matrix factorization is successful at low to midrange

frequencies, it encounters difficulties at higher frequencies where seismic data is no longer

low rank. To address this issue, we leverage the similarities between low-rank factoriza-

tions of adjacent monochromatic frequency slices organized in a way that reveals the un-

derlying low-rank structure of fully sampled data, which is often inaccessible for budgetary

and physical reasons. These similarities manifest as alignment of the subspaces in which

the low-rank factors reside during matrix factorization. By introducing weight matrices that

project these factors onto the nearby subspace of the adjacent frequency, we improve the

performance of the low-rank matrix factorization, especially when this beneficial feature is

recursively applied starting from lower frequencies.

However, transforming this approach into an algorithm capable of scaling to industry-

scale wavefield reconstruction problems for full-azimuth data requires several additional

crucial steps. Firstly, we need to avoid costly projections onto weighted constraints. We

achieve this by transferring the weights to the data misfit, resulting in a computationally

faster equivalent formulation. Secondly, although the recursively applied weighting matri-

80



ces enhance performance at high frequencies, they prevent a row-by-row and column-by-

column parallelization of the alternating minimization procedure. This issue is overcome

by striking a balance between the importance we assign to information from adjacent fre-

quency slices and our ability to decouple operations, thereby enabling parallelization of the

algorithm.

Through carefully selected examples using a 2D field dataset and a full-azimuth 3D

dataset, we demonstrate the capability of the proposed algorithm to handle high frequen-

cies. Additionally, we showcase the scalability of the algorithm to 3D problems with a large

percentage of missing traces. Based on these results, we argue that the proposed approach

could serve as a valuable alternative to transform-based methods, which are constrained to

operate on small multidimensional patches.

81



(a) (b)

(c) (d)

Figure 4.23: f-k spectrum comparison of (a) True and (b) observed data with 90% missing
receivers, reconstructed data using (c) conventional method and (d) recursively weighted
method.
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CHAPTER 5

A PRACTICAL WORKFLOW FOR LAND SEISMIC WAVEFIELD RECOVERY

WITH WEIGHTED MATRIX FACTORIZATION

5.1 Summary

While wavefield reconstruction through weighted low-rank matrix factorizations has been

shown to perform well on marine data, out-of-the-box application of this technology to

land data is hampered by ground roll. The presence of these strong surface waves tends to

dominate the reconstruction at the expense of the weaker body waves. Because ground roll

is slow, it also suffers more from aliasing. To overcome these challenges, we introduce a

practical workflow where the ground roll and body wave components are recovered sepa-

rately and combined. We test the proposed approach blindly on a subset of the 3D SEAM

Barrett dataset. With our technique, we recover densely sampled data from 25 percent

randomly subsampled receivers. Independent comparisons on a single shot demonstrate

significant improvements achievable with the presented workflow.

5.2 Introduction

One of the critical phases in the early stages of oil and gas exploration is seismic data acqui-

sition. Inspired by relatively recent developments encouraged by the field of Compressive

Sensing (Candès, Romberg, and Tao 2006), seismic data is increasingly collected randomly

along the spatial coordinates to shorten the acquisition time and to reduce cost. While

random sampling improves acquisition productivity (Mosher, Li, Morley, Ji, Janiszewski,

Olson, and Brewer 2014), it does shift the burden from field acquisition to data processing

(Chiu 2019) since fully sampled seismic data is a prerequisite to subsequent steps such as

multiple removal and migration.
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Wavefield recovery is one of the key steps to reconstruct fully seismic data from sub-

sampled data. Recovery methods based on wavefield reconstruction that exploits data spar-

sity in different transform domains, such as wavelet (Villasenor, Ergas, and Donoho 1996),

Fourier (Sacchi, Ulrych, and Walker 1998), and curvelet (Herrmann and Hennenfent 2008),

have been proposed. More recently, several seismic studies have investigated wavefield re-

covery via low-rank matrix factorizations (Kumar, Da Silva, Akalin, Aravkin, Mansour,

Recht, and Herrmann 2015), which are relatively simple and computationally cheap. The

general idea of these methods is to exploit low-rank structure of fully sampled frequency

slices when they are organized in a matrix. Oropeza and Sacchi 2011 and Kumar, Da Silva,

Akalin, Aravkin, Mansour, Recht, and Herrmann 2015 showed that the presence of noise or

missing traces increases the rank of these matrices, and they used this property to recover

the fully sampled frequency slices via low-rank matrix factorization.

While the low-rank matrix factorization method has had some success, especially for

low to midrange frequencies, it struggles to recover high frequency slices, which require

higher ranks because they cannot be accurately approximated by low-rank factorizations.

To solve this problem, Aravkin, Kumar, Mansour, Recht, and Herrmann 2014, Eftekhari,

Yang, and Wakin 2018, and Zhang, Sharan, and Herrmann 2019 used the wavefield re-

covery via weighted matrix factorization to reconstruct seismic data by introducing matrix

weights defined in terms of factorizations at neighboring frequencies that live in close-

by subspaces. By moving the matrix weights from the constraint to the data-misfit term,

Zhang, Sharan, Lopez, and Herrmann 2020 proposed a computationally more efficient

scheme capable of handling high frequencies.

Even though this weighted approach has had success, there remains the challenge that

land seismic data contains ground roll, which because of its strong amplitude and high

spatial frequency content is known to (Liu 1999) degrade the wavefield reconstructions

based on promoting structure whether this is sparsity or low rank. The reason for this

possible degradation is two-fold. First, ground roll corresponds to Rayleigh-type surface
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waves, which are slow and for this reason often aliased. Second, ground roll has strong

amplitudes, which causes the reconstruction to focus on the ground roll at the expense of

reconstructing the low-amplitude body waves. While ground roll is typically dominant at

the low temporal frequencies, its separation from body waves is complicated by the fact

that it is spatially aliased. By reconstructing the wavefield to a fine grid, where the ground

roll is no longer aliased, we allow for a separation of ground roll and body waves using

f−k filtering (Yilmaz 2001) or Radon domain techniques (Trad, Ulrych, and Sacchi 2003).

During this chapter, we present a practical workflow aimed at removing the complications

of carrying out wavefield reconstruction on land data dominated by ground roll.

We organize this chapter as follows. First, we discuss the seismic wavefield reconstruc-

tion via weighted matrix factorization. Next, we discuss the impact of ground roll. And

then, we introduce our proposed practical workflow step by step. We conclude by demon-

strating our approach on synthetic 3D data simulated from the Barrett model and show

improved recovery quality compared to the conventional workflow.

5.3 Reconstruction with weighted matrix factorizations

In Aravkin, Kumar, Mansour, Recht, and Herrmann 2014, Eftekhari, Yang, and Wakin

2018 and Zhang, Sharan, and Herrmann 2019, the authors proposed a wavefield recovery

via weighted matrix factorization. These factorizations are carried out on data organized in

monochromatic frequency slices and involve the following optimization problem:

min
Xi

‖QXiW‖∗

subject to ‖A(Xi)−Bi‖F ≤ η.

(5.1)

In this expression, the symbol ‖ · ‖∗ represents the nuclear norm, given by the sum of the

singular values, and ‖ · ‖F denotes the Frobenius norm, the energy of the matrix entries.

The matrix Xi, for i ∈ [1, . . . , Nf ], represents a fully sampled monochromatic frequency

slice at the ith frequency. Nf corresponds to the number of frequencies, and the matrix
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A(·) represents a mask operator used to subsample the fully sampled frequency slice. The

matrix Bi represents the observed input data with missing traces at the ith frequency. The

misfit tolerance η depends on the noise level in the observed data.

To exploit the fact that seismic data exhibits low-rank behavior in the so-called non-

canonical organization (Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann

2015), we matricize the frequency slices in the source-x receiver-x organization—i.e., the

to-be-recovered monochromatic data is represented by the matrix Xi ∈ C(Nsx×Nrx)×(Nsy×Nry)

where Nsx, Nsy are the number of sources along the x and y coordinates, respectively. Nrx,

Nry are the corresponding numbers of receivers. The {Q,W} ∈ C(Nsx×Nrx)×(Nsx×Nrx)

are the weighting matrices, which include information on the subspaces of a neighboring

factorization as we reconstruct the wavefield from low-to-high frequencies (Zhang, Sharan,

and Herrmann 2019). These weighting matrices are given by

Q = w1UUH + U⊥U⊥H (5.2)

and

W = w2VVH + V⊥V⊥H . (5.3)

In these expressions, the symbol H denotes the Hermitian transpose. The projection ma-

trices U ∈ C(Nsx×Nrx)×r, V ∈ C(Nsy×Nry)×r contain rank r column and row subspaces

that derive from neighboring (lower) frequencies. The matrices U⊥, V⊥ are the orthogonal

complements of U, V. Because factorizations of neighboring (lower) frequencies share

information with the current frequency slice, they can serve as prior information aiding the

wavefield recovery. The scalars w1 ∈ (0, 1] and w2 ∈ (0, 1] quantify the similarity between

prior information and the current to-be-recovered frequency slice. Small values for these

scalars indicate that we have more confidence in the prior information.

As shown in Zhang, Sharan, and Herrmann 2019, considerable improvements can be

made during the recovery when reliable prior information is available. However, including
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weighting matrices in the nuclear norm objective function complicates the optimization

making the minimization in Equation 5.1 computationally more expensive. To avoid this

issue, we follow Zhang, Sharan, Lopez, and Herrmann 2020 and rewrite Equation 5.1 into

min
X̃i

‖X̃i‖∗

subject to ‖A(Q−1X̃iW
−1)−Bi‖F ≤ η.

(5.4)

To arrive at this formulation, we replace the optimization variable with X̃i = QXiW. After

solving Equation 5.4, the original solution Xi can be recovered by Xi = Q−1X̃iW
−1.

Mathematically, Equation 5.1 and Equation 5.4 are equivalent except that the solution of

the second formulation is easier to compute by moving the weighting matrices to the data

misfit constraint.

To prevent computationally expensive singular value decompositions (SVDs) part of

the nuclear norm computations, we write Equation 5.4 in the following factored form:

min
L̃i,R̃i

1

2

∥∥∥∥∥∥∥
L̃i

R̃i


∥∥∥∥∥∥∥
2

F

subject to ‖A(Q−1L̃iR̃
H
i W−1)−Bi‖F ≤ η.

(5.5)

In this expression, the L̃i ∈ C(Nsx×Nrx)×r and R̃i ∈ C(Nsy×Nry)×r represent the low-rank

factorization of X̃i with rank r � min(Nsx×Nrx, Nsy×Nry) (Zhang, Sharan, Lopez, and

Herrmann 2020).

While wavefield recovery based on weighted matrix factorization has been applied suc-

cessfully (see e.g., Zhang, Sharan, and Herrmann 2019 and Zhang, Sharan, Lopez, and Her-

rmann 2020), its performance is challenged by data that contains strong-amplitude aliased

ground roll. Because of its large-amplitude, ground roll dominates the reconstruction at the

expense of body waves that are of prime interest. In the next section, we will introduce a

practical workflow addressing this challenge.
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5.4 Impact of ground roll

Acquisition and processing of land data are often challenged because it is contaminated

by strong ground roll. Because ground roll is slow, it is often spatially aliased, compli-

cating subsequent processing efforts to remove this coherent noise component with f − k

or Radon filtering (Trad, Ulrych, and Sacchi 2003; Yilmaz 2001). Unfortunately, it is fi-

nancially unfeasible to decrease the periodic receiver sampling interval to avoid aliasing

(Bahia, Papathanasaki, and Sacchi 2020), and we have to resort to alternative randomized

acquisition methodologies (Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Her-

rmann 2015; Mosher, Li, Morley, Ji, Janiszewski, Olson, and Brewer 2014) that are in

principle conducive to in silico unaliased wavefield reconstruction. While this has proven

to work, the presence of strong-amplitude ground roll complicates wavefield reconstruc-

tion.

To investigate this issue, we collaborate with Klaas Koster from Occidental to conduct

a blind study where we were provided with a subset consisting of 21 source lines, ex-

tracted from the synthetic 3D SEAM Barrett dataset (Tan, Li, Jarrah, Lee, Holt, Coevering,

and Koster 2019; Van De Coevering, Koster, and Holt 2019). This dataset is designed to

benchmark land data processing. As part of this blind study, with the acquisition geometry

plotted in Figure 5.1, we receive 3D shot records that are randomly subsampled along the

receivers. The 8× 8km receiver aperture is moving with the source location, which means

that between neighboring shots randomly sampled receivers are mostly shared while some

drop-off and others are added (cf. red and blue rectangle in Figure 5.1). Approximately 75

percent of receiver positions are missing from the regular densely sampled periodic grid of

12.5m, yielding an effective average sample interval of 50m, which is well below Nyquist.

The data consists of 667 time samples with a sample interval of 0.006 s. The shots are

sampled periodically with a sample interval of 25m in the shot-line direction and 100m in

the perpendicular direction.
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To illustrate, the effects of the strong ground roll on our factorized low-rank wavefield

reconstruction scheme, we recover a patch of 4×4 shots with on the dense periodic receiver

grid of 641 receivers in each direction sampled at 12.5m. This recovery corresponds to

solving a total of 384 monochromatic matrix factorization problems involving data volumes

of 667×641×641×4×4. These volumes are factored into the product of two (641×4)×340

matrices where 340 is the rank r. After reconstruction, the results of which are plotted in

Figure 5.2 for a single shot record, we recover shot gathers sampled at 12.5m from receivers

collected at random at an average receiver spacing of 50m. While we are able to recover

this shot record, strong noisy artifacts remain especially at the long offsets. In addition,

important reflection and diffraction information is missing and the ground roll is not well

recovered making this wavefield recovery unsuitable for subsequent processing.

5.5 Proposed practical workflow

To mitigate the effects of ground roll, we propose the reconstruction of the body and surface

(ground roll) waves separately. In this approach, outlined in Figure 5.3, we use the fact that

ground roll is slow and relatively easily separable by applying a linear shift to the data.

Below, we describe the different steps outlined in the dashed boxes in Figure 5.3.

5.5.1 Ground roll estimation

Because the speed of the ground roll is slower than that of the body wave, it is steep in the

’travel-time’ plot and therefore at least in an approximate sense, separable from the body

waves. This allows us to devise a separate reconstruction scheme to recover the ground roll

before adding it back to the reconstruction of the body waves. We obtain an estimate of

the ground roll by carrying out the following steps: (1) after zero-padding the input data

(Figure 5.4a), we apply a linear shift aligning the ground roll (Figure 5.4b); (2) we apply

a smooth taper with smooth cutoffs around at t = 0s and t = 1s designed to extract the

ground roll (Figure 5.4c), followed by (3) undoing the linear shift, yielding an estimate of
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Figure 5.1: Acquisition geometry for the recovered patch. Black ·’s represent receiver
locations, and red ·’s in the middle represent the source locations. The red rectangle is the
receiver aperture for the top left source and the blue rectangle is the receiver aperture for
the bottom right source.
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(a) (b)

Figure 5.2: One common-shot record obtained by factorized wavefield reconstruction. (a)
Time slice at 2.7 s. (b) Shot record along the y direction.

Figure 5.3: Flowchart of proposed method.
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the randomly subsampled ground roll plotted in Figure 5.4d. This estimate for the ground

roll serves as input for the reconstruction.

5.5.2 Ground roll recovery

We use the estimated ground roll as input to our wavefield reconstruction based on weighted

matrix factorizations for a rank r = 250, which we find empirically by observing continuity

of signals and limited noise in the reconstructed data. We run the reconstruction over all

shots simultaneously for 320 iterations of SPG-`2 (Lopez, Kumar, and Herrmann 2015) per

frequency slice. To avoid reconstruction leakage, we apply steps (1)-(3) from the previous

section again to get the final ground roll recovery.

5.5.3 Body wave recovery

After reconstruction of the ground roll, we apply the mask A to restrict the ground roll

reconstruction to the observed receiver positions again and subtract it from the original

subsampled input data. The resulting “ground roll free” estimate for the body waves subse-

quently serves as input to a second wavefield reconstruction now for the body waves. Since

these waves are more complex than ground roll, we choose the rank higher (r = 340).

As we can observe from Figure 5.5, the reconstructed body waves contain, as expected,

some remaining low-amplitude ground roll. Before inverse Fourier transforming the recon-

structed body waves, we apply a f − k filter to each shot along both receiver coordinates

to remove remnant noise. The resulting recovery for the body waves shown in Figure 5.5b

shows reconstruction of high frequency reflected and diffracted energy. To arrive at the

final result, we combine the wavefield reconstructions for the ground roll and body waves.

The result of this blind study for a single shot is included in Figure 5.6.
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(a) (b)

(c) (d)

Figure 5.4: Ground roll estimation. (a) Input shot record. (b) Input after linear shift. (c)
Tapered data. (d) Estimate subsampled ground roll after undoing linear shift.
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(a)

(b)

Figure 5.5: Body waves in the time domain. (a) Observed body waves. (b) Reconstructed
body waves 94



(a)

(b)

Figure 5.6: Seismic data reconstruction in the time domain. (a) Observed shot gather. (b)
Reconstructed shot gather. 95



(a) (b)

(c)

Figure 5.7: Wavefield recovery of one common shot gather. (a) Time slice at 2.1s of ground
truth. (b) Time slice at 2.1s of reconstructed data. (c) Time slice at 2.1s of difference
between ground truth and recovery. All the subfigures are plotted on the same scale.
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5.6 Quality control (QC)

By comparing Figure 5.6b with Figure 5.2b, we observe that the proposed method produces

results with less artifacts at the long offsets, and the ground roll is well recovered, especially

at the near offsets (see Figure 5.6b for the receiver coordinate y between 4 − 6 km for the

time interval 1− 1.5 s).

To further verify our proposed practical workflow, we sent one reconstructed shot gather

to Occidental and obtained the following plots in return. Figure 5.7 contains time slices at

2.1s with the ground truth (Figure 5.7a), reconstructed wavefield (Figure 5.7b) and dif-

ference plot (Figure 5.7c). From these plots, we observe that the proposed method suc-

cessfully recovers body waves (reflections and diffractions) despite the presence of strong

aliased ground roll.

5.7 Conclusions

We presented a practical workflow successfully recovering a subset of the synthetic 3D

SEAM Barrett dataset randomly sampled at 25 percent receiver sampling. Our workflow

consists of the combination of a weighted matrix factorization scheme and a separation of

the subsampled input data into ground roll and body wave components. Thanks to this

decomposition, we were able to mitigate the effects induced by the strong aliased ground

roll. Initial findings of the blind test we carried out in collaboration with Occidental show

that our method is capable of dealing with ground roll while recovering high-frequency

body waves.

5.8 Related materials

The Julia code for this work is available on the SLIM GitHub page https://github.com/

slimgroup/Software.SEG2021.
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CHAPTER 6

A SIMULATION-FREE SEISMIC SURVEY DESIGN BY MAXIMIZING THE

SPECTRAL GAP

6.1 Summary

Due to the tremendous cost of seismic data acquisition, methods have been developed to

reduce the amount of data acquired by designing optimal missing trace reconstruction al-

gorithms. These technologies are designed to record as little data as possible in the field,

while providing accurate wavefield reconstruction in the areas of the survey that are not

recorded. This is achieved by designing randomized subsampling masks that allow for

accurate wavefield reconstruction via matrix completion methods. Motivated by these re-

cent results, we propose a simulation-free seismic survey design that aims at improving

the quality of a given randomized subsampling using a simulated annealing algorithm that

iteratively increases the spectral gap of the subsampling mask, a property recently linked to

the quality of the reconstruction. We demonstrate that our proposed method improves the

data reconstruction quality for a fixed subsampling rate on a 2D and 3D realistic synthetic

datasets.

6.2 Introduction

Due to relatively recent breakthroughs in compressive sensing (Candès, Romberg, and Tao

2006), seismic data is increasingly gathered randomly along spatial coordinates to decrease

acquisition productivity (Mosher, Li, Morley, Ji, Janiszewski, Olson, and Brewer 2014;

Kumar, Da Silva, Akalin, Aravkin, Mansour, Recht, and Herrmann 2015; Chiu 2019).

Wavefield reconstruction is used to recover fully sampled data from randomly subsampled

observed seismic data (Hennenfent and Herrmann 2008; Kumar, Da Silva, Akalin, Aravkin,
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Mansour, Recht, and Herrmann 2015; Zhang, Sharan, Lopez, and Herrmann 2020). To re-

move the imprint of large gaps in uniform random sampling, Gilles (Gilles 2008) proposed

jittered subsampling, which by controlling the maximum gap size of subsampled data cre-

ates favorable conditions for seismic wavefield recovery based on sparsity promotion in a

transformed domain made of localized atoms including curvelets (Herrmann, Wang, Hen-

nenfent, and Moghaddam 2008). While uniform random (Candes and Recht 2009; Candès

and Tao 2010) and random jittered subsampling schemes (Herrmann and Hennenfent 2008;

Hennenfent and Herrmann 2008) are relatively straightforward to generate, these sampling

strategies are almost certainly suboptimal and have shown to be improvable by solving cer-

tain optimization problem (Mosher, Li, Morley, Ji, Janiszewski, Olson, and Brewer 2014;

Manohar, Brunton, Kutz, and Brunton 2018; Li, Kaplan, Mosher, Brewer, and Keys 2017).

For instance, Mosher, Li, Morley, Ji, Janiszewski, Olson, and Brewer 2014, Li, Kaplan,

Mosher, Brewer, and Keys 2017, and later Titova, Wakin, and Tura 2019 improved the

reconstruction quality by devising a global optimization scheme that uses the mutual co-

herence.

In addition to wavefield reconstruction with optimized sampling schemes, Mosher, Li,

Morley, Ji, Janiszewski, Olson, and Brewer 2014 also proposed a simulation-based acqui-

sition design to support the use of compressive sensing in seismic data acquisition. For

time-lapse seismic, Guo and Sacchi 2020 also used a data-driven approach where the ac-

quisition is optimized by using prior information on the seismic data (Manohar, Brunton,

Kutz, and Brunton 2018). While these methods have lead to promising results, they either

require significant computational resources to determine the optimal source-receiver lay-

out using combined wavefield simulations and recoveries or require detailed information

on the to-be-collected seismic data. Neither is feasible for the design of optimized sam-

pling strategies in 3D. However, the massive cost of 3D acquisition calls for methods to

reduce the number of receivers by designing optimal receiver sampling masks.

To overcome this difficulty, this chapter provides a global optimization strategy for de-
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termining improved source-receiver layouts suitable for wavefield reconstructions based

on matrix completion (Recht, Fazel, and Parrilo 2010; Kumar, Da Silva, Akalin, Aravkin,

Mansour, Recht, and Herrmann 2015; Kumar 2017) without the need to carry out expensive

wavefield simulations. Similar to Li, Kaplan, Mosher, Brewer, and Keys 2017 and Mosher,

Li, Morley, Ji, Janiszewski, Olson, and Brewer 2014, who propose a simulation-free opti-

mization method based on the mathematical property of mutual coherence for transform-

based wavefield reconstruction, our method involves improving the connectivity of graphs

spanned by the binary sampling masks in the midpoint-offset domain for 2D case and the

non-canonical Source-X/Receiver-X (columns) Source-Y/Receiver-Y (rows) domain for

3D case. According to Bhojanapalli and Jain 2014, by maximizing the spectral gap—

i.e., the distance between the two first singular values—of the binary sampling mask the

connectivity of the graph is improved, which favors reconstruction by matrix completion,

an observation recently confirmed by López, Kumar, Moldoveanu, and Herrmann 2023

for 2D and 3D seismic wavefield reconstructions. While recent work by López, Kumar,

Moldoveanu, and Herrmann 2023 indeed negates the need to run multiple costly wavefield

reconstructions for different candidate sampling masks, this work does not yet provide a

constructive method to generate sampling masks that maximize the spectral gap.

Unfortunately, the design of acquisition masks that maximize the spectral gap is an NP-

hard problem (Guo and Sacchi 2020) whose solution requires a brute-force search through

all combinatorial possibilities (Manohar, Brunton, Kutz, and Brunton 2018). When the

number of sources or receivers becomes “large” (Li, Petropulu, and Trappe 2016), this

precludes its practical use; for example, there are
(
n
m

)
= n!

m!(n−m)!
= 75287520 possi-

ble combinations when selecting m = 5 subsampling positions from a pool of n = 100

candidate sites. For this reason, we propose to obtain an approximate solution by maximiz-

ing the spectral gap using simulated annealing (Kirkpatrick, Gelatt Jr, and Vecchi 1983),

a stochastic local search optimization technique that is straightforward to implement, ap-

ply, and computationally feasible. Beside studies on 2D seismic showed that maximizing
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the spectral gap of the subsampling mask leads to better wavefield reconstruction results.

We enrich the current study by proposing the simulation-free method to generate optimal

3D acquisition in the non-canonical Source-X/Receiver-X (columns) Source-Y/Receiver-Y

(rows) domain by maximizing the spectral gap of the subsampling mask via the simulated

annealing algorithm. The proposed method depends only on binary mask optimization, has

a minimal computational cost, and should be adaptable to large-scale survey design.

We organize this chapter as follows. First, we present the proposed optimization prob-

lem to maximize the spectral gap of subsampling masks. Next, we explain how to obtain

the approximate acquisition masks via simulated annealing for 2D case and 3D case. We

conclude by demonstrating numerical experiments on the 2D as well as the 3D synthetic

Compass datasets (Jones, Edgar, Selvage, and Crook 2012) and show the improvements

in recovery quality compared to wavefield reconstruction of data collected with jittered

subsampling method (Hennenfent and Herrmann 2008).

6.3 Methodology

Successful matrix-completion based seismic wavefield reconstruction (Kumar, Da Silva,

Akalin, Aravkin, Mansour, Recht, and Herrmann 2015; Recht, Fazel, and Parrilo 2010;

Kumar 2017) hinges on three critical factors, namely: (1) an appropriate randomized sub-

sampling scheme, such as uniform random or jittered subsampling (Hennenfent and Her-

rmann 2008; Herrmann and Hennenfent 2008); (2) existence of a transform domain in

which the fully sampled seismic data organized as a matrix exhibits low-rank structure;

(3) a computationally scalable matrix completion technique, which exploits the property

that missing source and/or receivers increases the rank of these matrices. In this chapter,

we propose a new constructive method to automatically generate improved source-receiver

sampling masks, which favor seismic wavefield reconstruction via matrix completion in the

midpoint-offset domain for 2D case and the non-canonical domain for 3D case. We begin

by describing our approach to acquisition design.
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6.3.1 spectral gap ratio based acquisition design for 2D seismic

Following López, Kumar, Moldoveanu, and Herrmann 2023, we constitute the spectral

gap by the spectral gap ratio (SGR, the ratio of the first to second singular values), which

becomes small for a large spectral gap. While the SGR indeed has been shown to be a

valuable quantity to predict the quality of wavefield reconstruction with matrix completion

(López, Kumar, Moldoveanu, and Herrmann 2023), ways to automatically generate acqui-

sition masks with small SGRs have so far been lacking. To meet this challenge, we cast the

problem of finding optimized acquisition masks with small SGRs as a minimization prob-

lem. Given ns source locations, nr receiver locations, and the source subsampling ratio r,

we propose to solve a non-convex combinatorial optimization problem with respect to the

subsampling mask M ∈ {0, 1}ns×nr—i.e., we have

L(M) = min
M

σ2(S(M))

σ1(S(M))

subject to

‖M‖0 = bns × rc × nr ∩M ∈ J ∩M ∈ {0, 1}ns×nr .

(6.1)

In this optimization problem, the objective function consists of the spectral gap ratio (SGR),

defined by the ratio of the first, σ1(·), and second, σ2(·), singular values. S stands for

the transformation operator with seismic reciprocity (Fenati and Rocca 1984) from the

source-receiver domain to the midpoint-offset domain. We constrain the solution to con-

serve the subsampling ratio (‖M‖0 = bns × rc × nr) and to stay jittered sampled with

J ⊆ {0, 1}ns×nr being the set of all possible jittered subsampling acquisitions. This con-

straint guarantees that the spread of the survey will not be modified, but only the local

source position will be optimized. The symbol b·c denotes the floor operation. As we

previously mentioned, in order to solve this combinatorial optimization problem, we im-

plemented a simulated annealing method to obtain a solution in a finite and acceptable time.

We now describe this algorithm and link each step to its subsampling mask counterpart.
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6.3.2 Simulated annealing

Stochastic local search optimization algorithms are viable approximate methods for solving

combinatorial optimization problems (e.g., Equation 6.1). Simulated annealing is a global

optimization technique that uses local search to find approximate solutions to combinatorial

optimization problems given a computational budget (Şahin, Ertoğral, and Türkbey 2010;

Kirkpatrick, Gelatt Jr, and Vecchi 1983).

This optimization method has three main components(Van Laarhoven and Aarts 1987):

(1) an initial state, M0, representing the initial solution to the optimization problem (Equa-

tion 6.1); (2) a set of neighboring states for any given state, which will be used to update

the current state randomly; and (3) a transition probability that determines the probability

of moving from one state to another. During optimization, at each given state, Mk, which

represents the current solution to the optimization problem Equation 6.1, a candidate state,

M̃k, is chosen randomly from the neighboring states. Next, the algorithm transitions from

the current state to the candidate state, i.e., from Mk to M̃k, if this transition reduces the

objective function, i.e., L(M̃k) < L(Mk). On the other hand, if the objective function

evaluated at the candidate state is larger than the current value, the algorithm makes the

transition to the candidate state according to a transition probability, defined as follows

(Kirkpatrick, Gelatt Jr, and Vecchi 1983):

p(δL, k) = exp
(−δL
T (k)

)
, (6.2)

where k is the iteration number, δL = L(M̃k)−L(Mk) indicates the change in the objec-

tive function (Equation 6.1) by moving to the candidate state, and T (k) : R → R+, typi-

cally called temperature function, is a monotonically decreasing function that reduces the

uphill transition probability towards the end of optimization while allowing uphill move-

ment early in the optimization. We choose the temperature function as T (k) = T0 × αk,

following a geometric reduction rule, which is the most commonly used function in the
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simulated annealing with a start temperature T0 and the decrease rate α (Abramson, Kr-

ishnamoorthy, Dang, et al. 1999; Kirkpatrick, Gelatt Jr, and Vecchi 1983). This allows

the algorithm to escape from local minima in the initial stages of the optimization while

ensuring downhill movement towards the end. Finally, the transition probability is smaller

for candidate states that increase the objective function more, i.e., δL � 0, minimizing the

probability of moving to very bad solutions.

To adapt simulated annealing to the acquisition design optimization problem (cf.Equation 6.1),

we define the states as arbitrary positioning of sources. The algorithm is summarized in Al-

gorithm 2. This algorithm is initialized with a subsampling mask M0 that is generated by

using jittered subsampling method, known to facilitate seismic wavefield recovery (Hen-

nenfent and Herrmann 2008). After updating the temperature function T (k) (line 1) (Ma

2002), we select a source position M̃k within the neighborhood of the current position (line

2). We then update the source position to this updated state according to the loss decrease

and probabilistic update rule (lines 3− 8). After a predetermined number of iterations, the

algorithm outputs the source sampling mask MK with smaller SGR.

Algorithm 2 spectral gap ratio minimization via simulated annealing.
Inputs:

M0: Initial source positions using jittered subsampling method.
K: Maximum number of iterations.
T (k): Temperature function.
p: Transition probability (cf. Equation 6.2).

0. for k = 0 to K − 1 do
1. T (k) = T0 × αk

2. M̃k ← randomly pick a neighboring state
3. δL = L(M̃k)− L(Mk)
4. if δL ≤ 0
5. Mk+1 = M̃k

6. else

7. Mk+1 =

{
M̃k with probability p(δL, k)

Mk

8. end if
9. end for
Output: MK
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In order to satisfy the constraints introduced in Equation 6.1, we carefully define the

neighborhood of acceptable state to prevent sources positions to cluster around a few areas

of the survey. We now detail its design.

Neighboring states

Given the source sampling at an iteration, we randomly select 20% of the source posi-

tions in the current state to balance between exploring the search space and avoiding too

large change between adjacent iterations (Assad and Deep 2018; Olorunda and Engelbrecht

2008). Using the subsampling factor f = 1
r
, the fine grid with all possible source locations

is divided into f equal regions. Each selected source is allowed to randomly shift within

the region in which it is located. For clarity, we summarize the perturbation rule in Fig-

ure 6.1 with ns = 20 source positions and a subsampling factor of f = 5. We choose the

movement range R to ensure that we remain close to the jittered sampling, which has been

shown to result in better wavefield recoveries (Hennenfent and Herrmann 2008). We now

detailed our synthetic numerical experiment demonstrating the benefits of our method for

data reconstruction.
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Figure 6.1: Random state perturbation rules to satisfy the constraints. White circles (◦)
indicate all possible source locations. Five red circles represent an initial state. The blue
circle represents the 20% of sources that we will move within movement range R to arrive
at a neighboring state (purple circle).
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6.3.3 spectral gap ratio based acquisition design for 3D seismic

Motivated by the success on 2D survey design methods driven by SGR minimization, we

consider 3D survey design where receivers are missing and sources are fully sampled.

Because 3D wavefield reconstruction based on low-rank matrix completion relies on the

non-canonical Source-X/Receiver-X (columns) Source-Y/Receiver-Y (rows) organization

of the data into a matrix, we aim to minimize the SGR of the subsampling mask in that

domain. Fortunately, when sources are fully sampled, each single-receiver block of the

global sampling matrix is either fully sampled or empty depending on whether that specific

receiver is sampled. Consequently, the block structure of the global matrix leads to the

exact same singular values as a single-source receiver sampling mask. We can therefore

optimize a single-source mask to obtain the global optimized mask (Figure 6.2). The main

computational cost is computing the first two singular values of the receiver sampling mask,

which is negligible compared to approaches that require wave simulations. The resulting

optimal mask with the lowest SGR indicates the receiver sampling locations that favor 3D

wavefield reconstruction via matrix completion in the non-canonical organization domain.
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Figure 6.2: SGR of the data matrix in the non-canonical Source-X/Receiver-X (columns)
Source-Y/Receiver-Y (rows) domain is the same as the SGR of the single-source receiver
sampling matrix.
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6.4 Numerical experiments

We consider a 2D and a 3D marine datasets simulated over the realistic Compass model

(Jones, Edgar, Selvage, and Crook 2012).

6.4.1 Experiments for 2D dataset

The 2D dataset consists of 300 sources and 150 receivers sampled at 12.5 m. The data is

recorded at a 2 ms sampling rate for 2.046 s (1024 time samples). Based on this dataset,

we proceed in two steps. First, we will compare the subsampling mask we obtain with our

proposed method against the standard jittered sampling mask. Second, we will show that

the recovered data is of better quality as expected from the optimal SGR that quantifies

the expected quality of recovery. The jittered subsampling method used in this abstract

allows neighboring subsamples (non-gap subsamples), which creates favorable conditions

for recovery and is defined as optimally-jittered subsampling in Hennenfent and Herrmann

2008. We use the weighted matrix completion method (Zhang, Sharan, Lopez, and Her-

rmann 2020) to recover the observed data and evaluate the quality of the recovered dataset.

We start with picking a subsampling mask using the jittered method (Herrmann and

Hennenfent 2008) that includes 20% of the sources. In Figure 6.3a, we show the subsam-

pling mask in the source-receiver domain. Under the assumption of the source-receiver

reciprocity (Fenati and Rocca 1984), we apply this reciprocity on the subsampling mask

to implement a realistic seismic survey design. The subsampling mask in the midpoint-

offset domain with seismic reciprocity is depicted in Figure 6.3b. With this mask as an

initial guess, we perform 4000 iterations of simulated annealing to obtain an optimal sub-

sampling mask. Figure 6.3c and Figure 6.3d show the resulting subsampling mask in the

source-receiver and midpoint-offset domains, respectively. We observe that the SGR was

reduced by 30% with a fixed subsampling rate hinting towards well-improved data recon-

struction. The proposed method is a simulation-free method that depends only on binary
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mask optimization.

With this optimized subsampling mask, we now perform data reconstruction via weighted

matrix completion (Zhang, Sharan, Lopez, and Herrmann 2020) and compare the result

against reconstructing the data sampled with the initial jittered subsampled mask. In both

cases, we use the same algorithm and hyperparameters (e.g., number of iterations, rank)

for a fair comparison. We summarize the recovery in Figure 6.4.

We first show the ground truth in Figure 6.4a, where the right plot shows the full shot

record and the left one depicts the later arrival events between about 1 s to 2 s. By applying

these two masks (jittered mask and proposed mask) individually on the ground truth, we

obtain two observed datasets with 80% of sources missing. The proposed subsampled data

is illustrated in Figure 6.4b. Figure 6.4c shows the reconstruction from jittered observed

data with a signal-to-noise ratio (SNR) of 14.6 dB for the full shot record and 12.8 dB for

the later arrival events. The reconstruction from the proposed subsampled data is shown

in Figure 6.4d, with SNRs of 14.91 dB for the full shot record and 12.9 dB for the later

arrival events. Figure 6.4e illustrates the difference between Figure 6.4c and Figure 6.4a,

whereas Figure 6.4f shows the difference between Figure 6.4d and Figure 6.4a. The wave-

field reconstructions demonstrate that the reconstruction from the proposed subsampling

mask gives a more accurate data reconstruction for the full shot record and the later arrival

events in terms of SNR. The difference is significantly reduced in Figure 6.4f in contrast to

Figure 6.4e.

To further validate the performance of our proposed method, we show that our proposed

mask outperforms on the average standard jittered acquisition and not just for a single ex-

periment. We randomly generate five independent jittered subsampling masks (removing

80% of sources) and then utilize the proposed approach to minimize the SGR of these

five jittered subsampling layouts. These five jittered and proposed masks are then used to

perform weighted matrix completion (Zhang, Sharan, Lopez, and Herrmann 2020; Zhang,

Sharan, and Herrmann 2019) and reconstruct the full dataset. The results are summarized
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(a) (b)

(c) (d)

Figure 6.3: Jittered subsampling mask in the (a) source-receiver domain and (b) midpoint-
offset domain (SGR = 0.331). Optimized subsampling mask in the (c) source-receiver
domain and (d) midpoint-offset domain (SGR = 0.242).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Wavefield reconstruction results in the time domain. (a) Ground truth. (b)
80% subsampled seismic data with proposed subsampling. Reconstructions and differences
from 80% missing sources: (c) jittered subsampling, SNR = 14.6 dB and 12.8 dB for later
arrival events, (d) improved subsampling with SNR = 14.91 dB and 12.9 dB for later arrival
events, (e) difference of jittered subsampling, (e) difference of improved subsampling.
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in Figure 6.5. The bar plots in Figure 6.5 lead to the following observations. First, our pro-

posed method consistently reduced the spectral gap ratio by at least 11% leading to a similar

optimal SGR for this given subsampling ratio and acquisition. Second, the recovered data

always presents a higher SNR representative of a more accurate wavefield reconstruction.

These two results show that despite being a potentially aleatory method, our simulated an-

nealing based SGR minimization method consistently provides a subsampling mask best

fitted for data reconstruction.
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(a)

(b)

Figure 6.5: (a) SGR comparison (lower is better) of subsampling masks using jittered
method versus proposed method. (b) Reconstruction SNR comparison (higher is better)
from observed data using jittered method and proposed method. The results are obtained
by five independent experiments.
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6.4.2 Experiments for 3D dataset

To illustrate the efficacy of our method via a numerical experiment on a simulated 3D

marine dataset over the compass model. The data volume consists of 501 time samples,

1681 sources and 10 k receivers. The distance between the adjacent sources and receivers

are 150 m and 25 m in each direction, respectively, with a time sampling interval of 0.01 s .

By removing 90% of receivers using jittered subsampling, we obtain a binary matrix with

the SGR 0.507 in the non-canonical domain. After applying simulated annealing algorithm,

the SGR of mask effectively decreases to 0.328. To validate the efficacy of our acquisition

design method, we perform data reconstruction on a frequency slice at 16.8 Hz via weighted

matrix completion for the two subsampled datasets with jittered subsampling mask and

the proposed mask, with results shown in Figure 6.6. The reconstruction signal-to-noise

ratio from the observed data at proposed receiver locations is 12.27 dB , which is about

1.4 dB higher than the reconstruction signal-to-noise ratio 10.88 dB achieved from data

observed at jittered sampled receiver locations. This confirms that the proposed optimized

receiver sampling locations result in a superior seismic survey that leads to better wavefield

reconstruction performance.

6.5 Conclusions

We proposed a simulation-free method for seismic survey design in this chapter by min-

imizing the spectral gap ratio using the simulated annealing algorithm. This are the first

numerical case studies that applies spectral gap ratio minimization techniques to seismic

acquisition design that favors 2D and 3D wavefield reconstructions. Because the proposed

method solely relies on a binary mask optimization rather than being data-driven, the com-

putational cost is minimal and should scale to industry-size survey design. Through anal-

ysis and experiments, we conclude that the proposed method generates the improved 2D

and 3D seismic surveys better suitable for wavefield reconstruction.
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Figure 6.6: Comparison of data reconstruction performance for receiver locations sampled
by the jittered method and the proposed method. There is about 1.4 dB SNR improvement.
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CHAPTER 7

OPTIMIZED TIME-LAPSE ACQUISITION DESIGN VIA SPECTRAL GAP

RATIO MINIMIZATION

7.1 summary

Modern-day reservoir management and monitoring of geological carbon storage increas-

ingly call for costly time-lapse seismic data collection. In this chapter, we show how

techniques from graph theory can be used to optimize acquisition geometries for low-cost

sparse 4D seismic. Based on midpoint-offset domain connectivity arguments, the proposed

algorithm automatically produces sparse non-replicated time-lapse acquisition geometries

that favor wavefield recovery.

7.2 Introduction

Time-lapse seismic data acquisition is a costly but crucial endeavor for reservoir manage-

ment and monitoring of geological carbon storage. While sparse randomized collection of

seismic data can lead to major improvements in acquisition productivity (Herrmann and

Hennenfent 2008; Hennenfent and Herrmann 2008; Herrmann 2010; Mosher, Li, Mor-

ley, Ji, Janiszewski, Olson, and Brewer 2014), systematic approaches to performance pre-

diction, other than computationally expensive simulation-based studies, are mostly lack-

ing. Besides, acquisition optimization approaches, such as minimizing the mutual coher-

ence (Tang, Ma, and Herrmann 2008; Mosher, Li, Morley, Ji, Janiszewski, Olson, and

Brewer 2014; Obermeier and Martinez-Lorenzo 2017) or minimizing the spectral gap ra-

tio (SGR, Zhang, Louboutin, Siahkoohi, Yin, Kumar, and Herrmann 2022; López, Kumar,

Moldoveanu, and Herrmann 2023) , do not handle the unique challenges of time-lapse

seismic data acquisition.

To meet these challenges, inversion with the joint recovery model (JRM, Ogheneko-
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hwo, Wason, Esser, and Herrmann 2017; Wason, Oghenekohwo, and Herrmann 2017) will

be combined with automatic binary sampling mask generation driven by SGR minimiza-

tion (Zhang, Louboutin, Siahkoohi, Yin, Kumar, and Herrmann 2022). We opt for the JRM

because it inverts baseline and monitor surveys jointly for the common component, which

contains information shared between the surveys, and innovations with respect to the com-

mon component. Since the fictitious common component is observed by all surveys, its

recovery improves when the time-lapse surveys contain complementary information. This

is the case when sparse surveys are not replicated (Oghenekohwo, Wason, Esser, and Her-

rmann 2017; Wason, Oghenekohwo, and Herrmann 2017) or when the time-lapse datasets

contain independent noise terms (Tian, Wei, Li, Oppert, and Hennenfent 2018). In ei-

ther case, the JRM leads without insisting on replication of the surveys to high degrees

of time-lapse repeatability both in the data (Oghenekohwo, Wason, Esser, and Herrmann

2017; Wason, Oghenekohwo, and Herrmann 2017) and image space (Yin, Erdinc, Gahlot,

Louboutin, and Herrmann 2023). It also yields better interpretability of time-lapse field

data (Wei, Tian, Li, Oppert, and Hennenfent 2018).

As demonstrated by this chapter, including the common component offers additional

advantages when optimizing time-lapse acquisition via SGR minimization. To demonstrate

this, we first explain the relationship between the SGR and connectivity within graphs

associated with binary sampling masks. Next, we describe how this connectivity, which

favors wavefield reconstruction, can be improved by minimizing the SGR via optimization.

To enhance inversion of time-lapse data with the JRM, a new optimization objective will

be introduced that contains SGRs of the common component and of the baseline/monitor

surveys. After a brief discussion on minimizing this objective with simulated annealing,

the proposed methodology for automatic time-lapse binary mask generation is numerically

validated on realistic synthetic 2D data.
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7.3 Optimized time-lapse acquisition

While the SGR has been used successfully to predict and improve the performance of

wavefield reconstruction, it has not yet been used to optimize time-lapse acquisition. After

briefly discussing the SGR and JRM, we introduce our methodology to optimize time-lapse

data acquisition.

7.3.1 The spectral gap ratio

As shown by López, Kumar, Moldoveanu, and Herrmann 2023, the success of seismic

wavefield reconstruction via universal matrix completion (Bhojanapalli and Jain 2014)

can be predicted by the ratio of the first two singular values of binary sampling masks,

σ2(M)/σ1(M) ∈ [0, 1] where M is a binary matrix with 1’s where data is sampled and with

0’s otherwise. This ratio is known as the spectral gap ratio (SGR) and provides a cheap-to-

compute quantitative measure to predict recovery quality. The smaller the SGR, the better

the connectivity within graphs spanned by binary sampling masks. Improved connectivity

leads to improved wavefield recovery (López, Kumar, Moldoveanu, and Herrmann 2023).

While useful, the SGR itself is not constructive because it does not produce sampling masks

with small SGRs. With simulated annealing, Zhang, Louboutin, Siahkoohi, Yin, Kumar,

and Herrmann 2022 came up with a practical algorithm to generate acquisition geometries

with small SGRs. In this work, we extend this approach by optimizing sparse geometries

for time-lapse data acquisition.

7.3.2 Optimized sampling mask generation

Given an initial binary mask, M ∈ {0, 1}ns×nr , with ns sources and nr receivers, Zhang,

Louboutin, Siahkoohi, Yin, Kumar, and Herrmann 2022 proposed a methodology to mini-

mize the SGR via

minimize
M

L(M) subject to M ∈ C, (7.1)
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with the objective, L(M) = σ2(M)/σ1(M), given by the SGR. To ensure feasibility of

the optimized binary masks with source subsampling ratio ρ ∈ (0, 1), the constraint,

C =
3⋂

i=1

Ci, is included, which consists of the intersection of the cardinality constraint,

C1 = {M | #(M) = bns × ρc × nr}, the binary mask constraint, C2 = {M | M ∈

{0, 1}ns×nr}, and a constraint on the maximum gap size between consecutive samples,

C3 = {M | maxgap(M) ≤ ∆}, where ∆ is the maximal permitted gap size. By solving

Equation 7.1, Zhang, Louboutin, Siahkoohi, Yin, Kumar, and Herrmann 2022 produced bi-

nary sampling masks that improved wavefield reconstruction compared to masks generated

with randomized jittered sampling (Hennenfent and Herrmann 2008). Figure 7.1 contrasts

jittered with optimized sampling in the midpoint-offset domain, reducing the SGR from

0.333 to 0.196. The optimized mask increases the sampling at the near offsets where there

are more ways to connect to midpoints, which favors wavefield reconstruction (López, Ku-

mar, Moldoveanu, and Herrmann 2023). This chapter delves deeper into time-lapse survey

design and proposes a novel simulation-free method to find near optimal sparse source lo-

cations for a baseline survey and one or more monitor survey(s). Our method is guided

by the joint recovery model, which has a successful track record in time-lapse wavefield

reconstruction (Oghenekohwo, Wason, Esser, and Herrmann 2017; Wason, Oghenekohwo,

and Herrmann 2017). Next, we introduce the joint recovery model and present our spectral

gap ratio minimization framework, which is tailored to optimize time-lapse survey design

in accordance with the joint recovery model.

7.3.3 Joint recovery model

Lowering costs while ensuring time-lapse repeatability are the main challenges in the de-

sign of seismic monitoring systems employed to optimize reservoir management and to

safeguard geological carbon storage. Both challenges can be met by inverting sparsely

sampled baseline and monitor data jointly. For time-lapse acquisition with a single monitor
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(a)

(b)

Figure 7.1: (a) Jittered versus (b) optimized sampling mask in the midpoint-offset domain.
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survey, this entails inverting

b = A (Z) with A (·) =

A1 A1 0

A2 0 A2

 (·) . (7.2)

In this JRM, the linear operators,Aj, j = 1, 2, stand for the combined action of converting

monochromatic time-lapse data from the midpoint-offset to the source-receiver domain,

followed by trace collection with the acquisition geometries defined by the binary sampling

masks, Mj, j = 1, 2 with j = 1 and j = 2 masks for the baseline/monitor surveys.

With this model, time-lapse data, b, which contains the baseline, b1 and monitor data,

b2, are linearly related to Z, which contains matrices for the unknown densely sampled

common component, Z0, and innovations with respect to this common component, Zj, j =

1, 2. Compared to recovering the baseline/monitor surveys separately, the JRM produces

repeatable results from non-replicated (Oghenekohwo, Wason, Esser, and Herrmann 2017;

Wason, Oghenekohwo, and Herrmann 2017; Kumar, Wason, Sharan, and Herrmann 2017),

non-calibrated (Oghenekohwo and Herrmann 2017), and noisy (Tian, Wei, Li, Oppert,

and Hennenfent 2018), time-lapse data. These enhanced results are due to the improved

recovery of the fictitious common component, and therefore, better resolved vintages and

time-lapse differences.

7.3.4 Time-lapse optimized mask generation

Based on the success of the JRM, we carry the argument of minimizing the SGR a step

further by optimizing this quantity for the baseline/monitoring surveys. Because Z0 is

observed by both surveys, the set of sampling points, {M0}, equals the union {M0} =

{M1} ∪ {M2}. When surveys are replicated, {M0} = {M1} = {M2}. However, M0

becomes larger when the baseline and monitor surveys are not replicated explaining why

the common component is better resolved when the surveys are not replicated.

While Equation 7.1 leads to improved sampling masks for individual surveys, it does
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not exploit the fact that the common component is observed by all surveys. For this reason,

we propose an optimization procedure with respect to M1 and M2 with an objective that

also includes the SGR for the common component. To avoid generation of poor sampling

masks, we follow a mini-max principle where the maximum—i.e., the `∞-norm—of the

SGRs for the common and innovation components is minimized. To compensate for likely

smaller SGRs for the common component when the surveys do not overlap (# {M0} >

# {M1} ,# {M2}), we also introduce a scaling. We base this scaling on the property (see

Definition 3.1 in Bhojanapalli and Jain 2014; Hoory, Linial, and Wigderson 2006) that the

second singular value of d-regular graphs—i.e., seismic sampling masks with d non-zero

entries per midpoint or offset— scales with
√
d. Given this scaling, we propose to minimize

the following constrained optimization problem, for j = 1, 2:

minimize
M1,M2

L(M1,M2) subject to {M0} = {M1} ∪ {M2} ,Mj ∈ Cj, (7.3)

with L(M1,M2) =
∥∥∥[L(M0),

√
#(M1)
#(M0)

L(M1),
√

#(M2)
#(M0)

L(M2)
]∥∥∥
∞
. As before, the mini-

mization is subject to constraints, Cj, j = 1, 2, with a slight abuse of notation, representing

the cardinality, binary mask, and maximum gap constraints for the baseline and the monitor

surveys, respectively.

Figure 7.2 demonstrates deployment of the proposed time-lapse acquisition design

and how to recover the fully sampled time-lapse data jointly. To calculate the optimized

source locations for the baseline and monitor surveys, we solve the optimization problem in

Equation 7.3. After collecting seismic traces with the optimized (by minimizing the SGRs)

acquisition, we recover fully-sampled time-lapse data by inverting the system of equations

included in Equation 7.2 with structure promotion (Kumar, Wason, Sharan, and Herrmann

2017). To produce time-lapse sampling masks, we employ simulated annealing as proposed

by Zhang, Louboutin, Siahkoohi, Yin, Kumar, and Herrmann 2022 but with the following

differences: (i) randomly perturbed masks are drawn for each survey independently; (ii)
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the compound objectives and constraints of Equation 7.3 are used; (iii) to be relocated

sample points are allowed to move more freely than during jitter sampling, which allows

us to better explore candidate sampling masks. Figure 7.3 illustrates how the algorithm

progresses in very early iterations when initialized with a replicated jittered subsampled

(removing 80% of the sources) acquisition. From Figure 7.2 and Figure 7.3a, we observe

that the co-located source positions (denoted by the black dots) are gradually replaced by

non-coincident source locations for the baseline (blue dots) and monitor surveys (red dots).

Even though the objective of Equation 7.3 decreases non-monotonically (see Figure 7.3b),

the reconstruction SNR increases for the baseline and monitor surveys for the selected

points.

7.4 Numerical validation

To confirm the benefits of optimized acquisition, we consider time-lapse data, which dif-

fers by a complex gas cloud (Wason, Oghenekohwo, and Herrmann 2017; Jones, Edgar,

Selvage, and Crook 2012). Using finite-differences (Witte, Louboutin, Kukreja, Luporini,

Lange, Gorman, and Herrmann 2019; Louboutin, Witte, Yin, Modzelewski, and Herrmann

2022; Louboutin, Lange, Luporini, Kukreja, Witte, Herrmann, Velesko, and Gorman 2019;

Luporini, Louboutin, Lange, Kukreja, Witte, Hückelheim, Yount, Kelly, Herrmann, and

Gorman 2020), fully sampled (split spread) 2D baseline and monitor surveys are simulated

each consisting of 300 sources/receivers sampled at 12.5 m. By using a single jittered sub-

sampling mask 80% of the sources are removed, yielding an average source sampling rate

of 62.5 m with 100% overlap. After running 40, 000 iterations of the simulated annealing

algorithm, the SGRs of the baseline/monitor surveys decreases from 0.346 to 0.268 and

0.262, respectively. The reduction in the overlap ratio (to 22%) leads to improvement in

wavefield recovery via matrix completion (Kumar, Da Silva, Akalin, Aravkin, Mansour,

Recht, and Herrmann 2015; Kumar, Wason, Sharan, and Herrmann 2017), which results in

better SNRs for the baseline from 6.55 dB to 17.03 dB and for the monitor from 6.67 dB

to 16.99 dB, shown in Figure 7.4. For reasons explained by Oghenekohwo, Wason, Esser,
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Figure 7.2: Illustration of proposed optimized time-lapse acquisition design. Optimized
source locations for the baseline and the monitor surveys are calculated first with Equa-
tion 7.3, followed by collecting sparse samples in the field. Fully sampled time-lapse data
are obtained by inverting the system of Equations in Equation 7.2 with structure promotion
(Kumar, Wason, Sharan, and Herrmann 2017). The black dots of the sampling masks plot-
ted on the left represent replicated source positions. The blue and red dots correspond to
non-replicated source locations for the baseline and the monitor surveys. To better highlight
replacement of co-located by non-coincident source locations after the SGR minimization,
we only display a representative subset of the actual non-optimized and optimized source
locations.
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(a)

(b)

Figure 7.3: Automatic time-lapse sampling mask generation. (a) Starting from a jittered
replicated sampling mask, the algorithm produces masks that have smaller SGRs but are
no longer replicated. The overlap ratio decreases from 100% to 39%. The color scheme for
markers remains consistent with Figure 7.2. (b) Non-monotonically decaying objective
and reconstruction SNR evaluated at points where the objective decreased by more than
0.003.
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and Herrmann 2017 and Wason, Oghenekohwo, and Herrmann 2017, time-lapse difference

plots are not included because the benefits of exact replication vanish when acquisition

geometries undergo relatively small (1− 2m) random shifts.

While these improvements are encouraging, the proposed optimization is approximate

and the produced binary masks will be different for different starting masks. To investigate

this effect, 30 overlapping jittered masks are generated by removing 75% of the sources.

By reducing the overlap to 29% ± 8%, the optimized masks improve the SGRs as can

be observed from the violin plots in Figure 7.5a. As before, the reductions in SGRs

translate into improved SNRs as can be seen in Figure 7.5b. Compared to box plots,

violin plots display the entire distribution including lines for the median (long dashes), first

and third quartile (short dashes). We can make the following observations: (i) the SGRs

for the baseline/monitor surveys decrease significantly; (ii) because of the larger number

of sampled sources, the SGR for the common component is smaller and more narrowly

distributed; (iii) the distribution of the SGRs of the baseline/monitor surveys is also narrow

compared to the one of the initial jittered binary sampling masks; (iv) the SNRs for the

recovered baseline/monitor surveys improve significantly.

Even though the above results are encouraging and consistent with published reports

that claim benefits of the JRM (Oghenekohwo, Wason, Esser, and Herrmann 2017; Wason,

Oghenekohwo, and Herrmann 2017; Yin, Erdinc, Gahlot, Louboutin, and Herrmann 2023),

further scrutiny is in order. To this end, additional experiments were conducted to better

understand robustness of the proposed methodology. Aside from predictable behavior for

different starting masks ( Figure 7.5), we also found that optimized SGRs are relatively in-

sensitive to different runs of the simulated annealing algorithm and to random perturbations

in the optimized masks. The first observation implies that while the simulated annealing

algorithm may produce different masks, the SGRs remain very close, yielding wavefield

reconstructions of near equal quality. The second observation indicates that postplot errors

by single gridpoint shifts (12.5m) in the worst scenario offset the gains made by the opti-
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(a)

(b)

Figure 7.4: Time-lapse wavefield reconstruction in the time-domain. (a) wavefield recon-
struction from 80% jittered subsampling for the baseline SNR = 6.55 dB, monitor SNR =
6.67 dB, and errors between the ground truth and the reconstructed wavefields. (b) the same
but with optimized sampling masks, yielding improved recovery baseline/monitor surveys
with SNR = 17.03, 16.99dB, respectively.
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(a)

(b)

Figure 7.5: Violin plots for the SGRs (a) and recovery SNRs (b) for 30 independent exper-
iments. These experiments show systematic reductions in SGR and significantly improves
reconstruction SNRs for optimized surveys.
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mization. However, on average improvements are mostly preserved although with higher

variability.

The observed robustness of the presented method is consistent with reported behavior

of the JRM. Even though we only considered the on-the-grid case, the argument can be

made that improvements will carry over to the off-the-grid situation (Wason, Ogheneko-

hwo, and Herrmann 2017; Oghenekohwo and Herrmann 2017; Lopez, Kumar, Yilmaz, and

Herrmann 2016). However, to turn this claim into a more solid argument, we would have to

extend the presented approach to the infinite-dimensional case, which is beyond the scope

of this chapter.

7.5 Conclusions

Acquisition costs form a major impediment to time-lapse seismic. To reduce these costs

while ensuring time-lapse repeatability, a novel acquisition optimization scheme was pro-

posed that produces binary sampling masks that favor wavefield reconstruction with the

joint recovery model. Optimized sampling masks were generated automatically by mini-

mizing a new objective function consisting of spectral gap ratios for the baseline/monitor

surveys and for the common component shared by the surveys. Aside from allowing for

wave-simulation free, and therefore computationally feasible, optimized acquisition de-

sign, the proposed method also reaffirms the suggestion that deliberate relaxation of sur-

vey replication may lead to improved quality of jointly inverted surveys. This claim is

solely based on connectivity arguments for the acquisition geometries associated with the

baseline/monitor surveys and the common component. Because the spectral gap ratio is

extremely cheap to evaluate, it lends itself very well to be extended to multiple monitor-

ing surveys and to 3D. As long as the time-lapse acquisition geometries are relatively well

calibrated—i.e. errors between actual and assumed geometries are small, our simulation-

free survey design methodology also eliminates the need for cumbersome 4D processing

to a large degree. It enables low-cost surveys, and utilizes the joint recovery model to ac-

curately invert for fully sampled repeatable time-lapse data without insisting on replicating
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the surveys in the field. The recovered data can subsequently be imaged and inverted to

extract changes in the reservoir’s elastic properties. The proposed method should also be

capable of accommodating pre-existing constraints in the field, including restricted areas

where no source/receiver can be placed due to production platforms, to private properties,

or due to governmental minimum source/receiver line distance regulations. In principle,

these additional constraints can be incorporated to refine the search space of the simulated

annealing algorithm. Off-the-grid acquisition geometries are also conducive to being im-

proved by spectral gap ratios, but we will leave these extensions to future work.
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CHAPTER 8

CONCLUSIONS

This chapter summarizes the primary contributions of the thesis, discusses its limitations,

outlines potential expansions, and proposes future research.

Seismic imaging is crucial in various industries, especially in the exploration and man-

agement of hydrocarbon reservoirs. The quality of the acquired seismic data directly affects

the image quality, including its spatial and temporal sampling. However, conventional ac-

quisition systems are limited by operational, cost, and environmental considerations, result-

ing in the collection of sparse and under-sampled data. These under-sampled data cause

aliasing artifacts during processing, which degrade the final imaging results. Therefore,

wavefield reconstruction is essential for recovering these under-sampled seismic data.

Among the most promising techniques for wavefield reconstruction, matrix completion

is computationally efficient and easy to implement by utilizing the low-rank structure of

seismic data. However, low-rank factorization cannot accurately approximate monochro-

matic frequency slices at high frequencies, reducing the efficiency of this method. To

address this limitation, this thesis contributes a recursively weighted matrix completion

method for reconstructing dense seismic data at higher frequencies. Moreover, a computa-

tionally weighted matrix completion method is proposed, which reduces the computational

cost of weighted matrix completion. To expand the applicability of this novel method to 3D

seismic acquisition, this thesis proposes a parallelized alternating optimization technique

for parallelizing the weighted low-rank factorization procedure.

In comparison to marine data, land data are contaminated by ground roll, which is a

strong surface wave with a high spatial frequency content. This thesis contributes to a

practical workflow that improves the land seismic wavefield recovery via weighted ma-

trix completion. However, designing optimized masks to improve the quality of wavefield
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reconstruction with matrix completion remains a challenging task. To address this issue,

this thesis proposes a simulation-free 2D and 3D seismic survey design that utilizes simu-

lated annealing to optimize the spectral gap of the subsampling masks, thereby improving

reconstructions. Additionally, the thesis proposes a method for optimizing the design of

a time-lapse seismic survey by combining the spectral gap method and the joint recovery

model to generate a sparse, non-replicated time-lapse survey that improves the reconstruc-

tions of each survey.

8.1 High frequency seismic data reconstruction using recursively efficient weighted

matrix completion

In the first two chapters of this thesis (Chapter 2 and Chapter 3), I proposed a recursively

efficient weighted matrix completion method to improve seismic reconstructions at higher

frequencies. Aravkin, Kumar, Mansour, Recht, and Herrmann 2014 proposed a weighted

matrix completion approach that considers the fact that matrix completion works well at

low to mid frequencies and that row and column subspaces of adjacent frequencies exhibit

some similarity. However, it should be noted that this method was only implemented to

a certain degree of success because they did not justify the method or apply weighting

recursively from lower to higher frequencies.

Thanks to the good performance of conventional matrix completion at lower frequen-

cies, we can obtain useful prior information for the weighted matrix completion. The

recursively weighted matrix completion is an efficient method that enables the accumula-

tion of this advantage across frequencies. Furthermore, the full potential of the recursively

weighted approach requires careful selection of the weight parameters, which indicate the

correlation between row and column subspaces of adjacent frequencies.

The original weighted matrix completion method (Aravkin, Kumar, Mansour, Recht,

and Herrmann 2014) requires a highly computational projection operation to be performed

on each iteration. By relocating the weights to the data constraints of the original weighted
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matrix completion problem, we can efficiently solve an equivalent version of the original

weighted formulation problem. Experiments on 2D field data demonstrate that our pro-

posed method improves reconstructed results over the conventional method and the pair

weighted method (Aravkin, Kumar, Mansour, Recht, and Herrmann 2014).

8.2 Large scale high-frequency wavefield reconstruction with recursively weighted

matrix factorizations

In Chapter 4 of this thesis, I proposed a large-scale, high-frequency wavefield reconstruc-

tion based on parallel, recursively weighted matrix factorizations. The conventional method

for reconstructing matrices can be easily parallelized across frequency slices, making it

computationally efficient and scalable to large-scale seismic data. However, while our pro-

posed recursively weighted matrix completion performs well with 2D seismic data, the

interdependence between frequency slices prevented parallel processing across frequency

slices. Furthermore, the introduction of recursively applied weighting matrices improves

performance at high frequencies but prevents row-by-row and column-by-column paral-

lelization of the alternating minimization procedure.

To address these challenges, we assume that weight matrices with higher weights are

nearly diagonal. Under this assumption, we solved for individual rows of low-rank com-

ponents in parallel using the recursively weighted technique, combining the alteration and

decoupling strategies. As a result, our existing parallel, recursively weighted framework

can partially exploit the advantages provided by the recursively weighted method.

Experiments on synthetic 3D seismic data demonstrate that our proposed method im-

proves the reconstructed results compared to the conventional method. Additionally, a

comparison of the conventional method, the effective method, and the parallel method

demonstrates the effectiveness of the proposed parallel method.
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8.3 A practical workflow for land seismic wavefield recovery with weighted matrix

factorization

In Chapter 5 of this thesis, I propose a practical workflow for seismic wavefield recovery

using weighted matrix factorization. While the weighted technique has been successfully

applied to marine data, ground roll in land seismic data is known to degrade wavefield re-

constructions by promoting structure. There are two potential explanations for this. Firstly,

ground roll corresponds to slow-moving surface waves of the Rayleigh type, which fre-

quently alias. Secondly, the reconstruction places greater emphasis on the high-amplitude

ground roll than on the lower-amplitude body wave.

To reduce the effects of ground roll, I propose a practical workflow that incorporates a

weighted matrix factorization scheme with the separation of the subsampled input data into

ground roll and body wave components.

Tests on a subset of the synthetic 3D SEAM Barrett dataset, randomly sampled at a

25 percent receiver sampling rate, demonstrate that the proposed workflow is capable of

producing significant enhancements.

8.4 A simulation-free seismic survey design by maximizing the spectral gap

In Chapter 6 of this thesis, I proposed a simulated annealing-based optimization strategy to

improve the quality of wavefield reconstruction with matrix completion. To reduce costs,

seismic data is increasingly collected using random subsampling, but optimal acquisition

geometries continue to be a topic of ongoing study.

To address this challenge, we used the spectral gap, which is a measure of the con-

nectedness of the graph in expander graph theory and has been used to predict the quality

of wavefield reconstruction with a particular subsampling scheme in matrix completion

theory. We proposed a simulation-free 2D and 3D seismic survey design that increases

the spectral gaps of subsampling masks. Our proposed method effectively increases the
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spectral gap of the subsampling mask using synthetic 2D and 3D datasets. This increased

spectral gap enhances the connectivity between sources and receivers, and as a result, im-

proves wavefield reconstruction.

8.5 Optimized time-lapse acquisition design via spectral gap ratio minimization

In Chapter 7 of this thesis, I proposed a joint recovery model-based simulation-free time-

lapse seismic survey design. Although time-lapse seismic has been successfully applied

to CO2 sequestration monitoring, it remains a challenging problem due to the extremely

high cost of replicated density field surveys. As previously mentioned, wavefield recon-

struction based on matrix completion from randomized subsampled data is a cost-effective

method for reducing expenses. This technique also enables precise time-lapse reconstruc-

tion by using the joint recovery model (JRM), which takes advantage of the fact that various

vintages share a common component. However, combining JRM with optimal time-lapse

acquisition survey design is an unexplored field of study.

To expand the seismic survey design based on the spectral gap to the time-lapse seismic

survey design, we integrated the JRM with the optimal survey design. By designing the al-

gorithm and selecting the parameters carefully, we demonstrate how the spectral gap from

graph theory can be used to optimize low-cost sparse 4D seismic acquisition geometries

to generate non-replicated time-lapse surveys. Tests on 4D synthetic seismic data con-

firm that the spectral gap increases from replicated to non-replicated time-lapse acquisition

geometries, favoring wavefield recovery with the JRM.

8.6 Future research direction

There are several potential research directions to explore in the future, including the fol-

lowing:

1. Our recursively weighted method is computationally inexpensive and yields excel-
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lent results for higher frequency slices. However, the current framework cannot automat-

ically select key parameters such as the rank of the data to be recovered, the rank of the

prior information, and the weights across frequencies. Because a constant parameter is used

across all frequencies, the advantages of the recursively weighted method are only partially

utilized. Thus, a future direction for research is to create an algorithm that autonomously

selects these crucial parameters.

2. We developed a parallel, computationally effective version of the recursively weighted

technique for large-scale seismic data. However, the present implementation of this paral-

lel framework is weight-dependent and cannot operate with smaller weights, limiting the

benefits of the weighted technique. Therefore, a potential topic for future research is the

development of a computationally efficient variant of the recursively weighted method for

smaller weights, so that the proposed method can realize its full potential.

3. We proposed a practical workflow to handle land seismic data and implemented our

algorithm on subsets of the data to reduce computational costs. The number of iterations

is a crucial parameter, with smaller subsets requiring fewer iterations and larger subsets

requiring more. However, our algorithm cannot automatically select this vital parameter.

Therefore, a future direction for research would be to develop an algorithm that automati-

cally selects this crucial parameter.

4. This thesis proposes a seismic survey design free of simulations by optimizing the

spectral gap ratio using simulated annealing. Although simulated annealing approximates

the global optimal, a large number of iterations can be computationally intensive. Hence,

discovering a computationally efficient algorithm to solve this optimization and further im-

prove the outcome could be the subject of future study.
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5. We proposed a design for a time-lapse seismic survey that includes the JRM and

spectral gap. Our objective function takes into account both the subsampling masks for

each vintage and those for the common components. However, we were unable to find a

suitable method to describe the subsampling masks for 4D seismic data. Future research

could focus on identifying the subsampling mask for 4D signals and incorporating it into

our objective function to design a more effective time-lapse seismic survey.
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APPENDIX A

EXPERIMENTAL EQUIPMENT

In this section, we justify our parallel implementation of the weighted matrix completion

problem. Beginning at equation Equation 4.2, our original weighted program, we will ar-

rive at equations Equation 4.15 and Equation 4.16 which specify our implemented parallel

counterpart.

Recall equation Equation 4.2

X := arg min
Y

‖QYW‖∗ subject to ‖A(Y)−B‖F ≤ ε.

Because this is a convex program and Q,W are invertible when w1, w2 > 0, we can show

that

QXW := arg min
Y

‖Y‖∗ subject to ‖A(Q−1YW−1)−B‖F ≤ ε, (A1)

where

Q−1 =
1

w1

UUH + U⊥U⊥
H

and

W−1 =
1

w2

VVH + V⊥V⊥
H

.

From a numerical perspective, we wish to avoid implementing the operators Q−1, W−1

due to the factors w−11 , w−12 which may be large and cause algorithmic instability. Instead,

by multiplying both sides of the constraint of equation Equation A1 by w1w2 we obtain the
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equivalent program

QXW := arg min
Y

‖Y‖∗ subject to ‖A(Q̂YŴ)− w1w2B‖F ≤ w1w2ε, (A2)

where we have defined

Q̂ = UUH + w1U
⊥U⊥

H

and

Ŵ = VVH + w2V
⊥V⊥

H

.

Choosing a rank parameter r, we now apply a factorization approach and solve

L̄, R̄ := arg min
L̄#,R̄#

1

2

∥∥∥∥∥∥∥
L̄#

R̄#


∥∥∥∥∥∥∥
2

F

subject to

‖A(Q̂L̄#R̄H
#Ŵ)− w1w2B‖F ≤ w1w2ε,

(A3)

which gives the approximation L̄R̄H ≈ QXW. Given an initial left factor estimate, L̄0,

we proceed with a block coordinate descent (Xu and Yin 2013) approach which at the k-th

iteration solves

R̄k := arg min
R̄#

‖R̄#‖2F subject to ‖A(Q̂L̄k−1R̄H
#Ŵ)− w1w2B‖F ≤ w1w2ε, (A4)

and upon output switches to optimize over the left factor

L̄k := arg min
L̄#

‖L̄#‖2F subject to ‖A(Q̂L̄#(R̄k)HŴ)− w1w2B‖F ≤ w1w2ε. (A5)

After k iterations, we obtain estimate L̄k(R̄k)H ≈ QXW.

Our next goal is to approximately solve problems Equation A5 and Equation A4 in
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a distributed manner, to be implemented in a parallel computing architecture. To this

end, we apply our approximate commutative property, i.e., A(Q̂YŴ) ≈ A(Q̂Y)Ŵ and

A(Q̂YŴ) ≈ Q̂A(YŴ) for large values of w1 and w2. Using these approximations, we

obtain

L̄k ≈ arg min
L̄#

‖L̄#‖2F subject to ‖Q̂A(L̄#(R̄k)HŴ)− w1w2Q̂Q̂−1B‖F ≤ w1w2ε.

(A6)

Define B̂L = Q̂−1B. Using the inequality property ‖AB‖F ≤ ‖A‖‖B‖F for any two

matrices, where ‖ ◦ ‖ is the spectral norm, in the constraint, we see that

‖Q̂
(
A(L̄#(R̄k)HŴ)− w1w2B̂L

)
‖F ≤ ‖Q̂‖‖A(L̄#(R̄k)HŴ)− w1w2B̂L‖F

= ‖A(L̄#(R̄k)HŴ)− w1w2B̂L‖F .

The last equality holds since ‖Q̂‖ = max{1, w1} = 1. Therefore, if we instead solve

L̃k := arg min
L̄#

‖L̄#‖2F subject to ‖A(L̄#(R̄k)HŴ)− w1w2B̂L‖F ≤ w1w2ε, (A7)

we expect L̃k ≈ L̄k due to approximate commutativity and therefore L̃k is feasible for Equa-

tion A6 . A similar argument can be established for the right factor, where we solve

R̃k := arg min
R̄#

‖R̄#‖2F subject to ‖A(Q̂L̃k−1R̄H
#)− w1w2B̂R‖F ≤ w1w2ε, (A8)

with B̂R = BŴ−1.

The main advantage in computing iterates R̃k, L̃k, rather than R̄k, L̄k, is that these

programs allow for a distributed implementation. The data matrices B̂R and B̂L in equa-

tions Equation A8 and Equation A7 are dense (have all non-zero entries) making compu-

tation expensive. However, when the weights w1,2 are relatively large we observe that both
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dense matrices B̂R, B̂L can be well approximated by the sparse observed data matrix B.

This leads to subproblems Equation 4.15 and Equation 4.16 and concludes our derivation.
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