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Marine acquisition

cover 10% km?

subsurface gridpoint 10° — 10°

10° traces

using Hydrophone using ocean bottom node
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Imaging inversion & wavelet influence

Depth [km]
Depth [km]

Lateral position [km]

From imaging to inversion
* remove source and receiver imprint
* remove band-limited effect from source
However
* expensive cost in iterations
Lateral position [km]

. prior knowledge of source SPLS-RTM w/ wrong source

Depth [km]
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Rich but expensive Extended image volumes

RTM Extended image volumes  Information can be used to

' ' » create images

» Infer rock properties

» QC background velocity model
Expensive in memory

Zero offset All offsets

(migration) (Bxtanded Image volume) Expensive computations involving wave-
equation solves that scale with 2n 4



Imaging w/ multiples

* Multiples elimination
removes illumination

» Naive usage of multiples
In Imaging introduces
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Purpose of thesis

Outline:

» Chapter 2-3: Low-rank recovery for subsurface extended
Image volumes based on time-stepping propagator and
power schemes, velocity continuation via invariance
relationship

» Chapter 4: Source estimation for time-domain sparsity
promoting least-squares reverse-time migration (LS-RTM)

» Chapter 5-6: Sparsity promoting least-squares reverse-
time migration with multiples, and removing density
effects in least square reverse-time migration with
matched low-rank filter




Chapter 4 Source estimation for time-domain

sparsity promoting least-squares reverse-time
migration (LS-RTM)




From LS-RTM to SPLS-RTM

» In practice, we have to solve the following optimization problem: (LS-RTM)

miﬂgm % Z?:Sl HVFZ(III(), q)5m — 5dzH2

1. Very large overdetermined system

2. Computationally expensive in each iteration

X

om

VF od

10 Dai W. et al, “3D multi-source least-squares reverse time migration”, SEG, 2010



From LS-RTM to SPLS-RTM

- Dimensional reduction + sparsity promoting optimization:

1, 1o Tolerance
5 I3

for noise
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X
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Lorenz D. et al, “The linearized bregman method via split feasibility problems: Analysis and generalizations”, SIAM, 2014
11 Witte P. et al, “Compressive least-squares migration with on-the-fly fourier transforms”, Geophysics, 2019



Influence of wavelet - Marmousi model, linear data

151 —true source
-------- initial guess
- — estimated source
+ estimated source w/ 50% noise

-g- --a-- astimated source w/ 200% noise
k>~ - 1 S A N O
c >

(4
e
ol c
o LLI
QO 0.5

o’ ..‘."'"'#::}"P:.Fh-q
Lateral position [km] 0 20 40 60

Frequency [HZ]

——true source
-------- initial guess
- — estimated source
+ estimated source w/ 50% noise | |
8- gstimated source w/200% noise

Depth [km]

Lateral position [km] 0 0.05 01 015

Time [s]




Source estimation

Solutions: deconvolution + penalization
Let: a=w=xqo ,qo0 IS well defined.

Property 1:
VF;(mg, w * qo)C'x = w x VF;(mg, qo)C ' x

Property 2:

Source function should decay smoothly to zero with
few oscillations within a short duration of time.

Property 3:
The energy of the source function can not explode.
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Time-domain SPLS-RTM w/ on-the-fly source estimation

New subproblem:

min )  [|w+ VF;(mo, qo)C"x — dd; |3 + [|Ir © (w * qo)|3
1€1LL

with weights

r(t) = v + log(1 + e2(t=10)).

estimate filter

14 Tu N. et al, “Fast imaging with surface-related multiples by sparse inversion”, Geophysical Journal International 2015
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Workflow - LB + on-the-fly source estimation

1: Initialize xg = 0,z¢ = 0, qp, A1, Wg = 9, v, batch size n), < ng,r

2: fork=0,1,--- do \N
3:

Randomly choose shot subsets Z C [1---ng|, |Z| = n)
4 Ap={VF;i(my,q)C' }icz
5: bk - {6d,},€I

6: Bk = Akxk

7: tp = ||br — by|2/||AF (br — by)|]3

8: Zp+1 = Zp — tkAI (Wk*Pa(Wk * Bk — bk))

estimate filter

11: end for

12: Output: q = Wi+1 * o, and dm = C Xpy1
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Stylized example
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(I)Robusfness over noise
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Challenge of salt model
0

Data :
» Marine acquisition

* nonlinear

960 source & receivers
8km offset
S & R interval 25m

recording 10s

10 15
Distance (km)
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Philipp Witte et al, “Sparsity-promoting least-squares migration with the linearized inverse scattering imaging condition”, EA

inversion w/ inverse scattering image condition
0

]

2

N

Depth [km]
@)

0 ) 10 15 20
Distance [km]




inversion w/ inverse scattering image condition
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20 Philipp Witte et al, “Sparsity-promoting least-squares migration with the linearized inverse scattering imaging condition”, EAGE 2017
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Hybrid workflow for salt model




Hybrid workflow for salt model
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inversion w/ inverse scattering image condition
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Conclusion

LB combined w/ on-the-fly source estimation is capable of

generating high-fidelity true-amplitude images at the cost of 1~2
RTM.

» The penalized sub-problem solved during variable projection can
avoid overfitting to noise.

Hybrid framework of LB w/ on-the-fly source estimation and LB
based on inverse-scattering condition generates artifact-free
Images.
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Chapter 2 Low-rank recovery for subsurface
extended image volumes based on time-
stepping propagator and power schemes

Chapter 3 mapping for velocity variation
scenarios via invariance relationship




Extended Image Volumes

Extended image volume for single frequency

w, :angular frequency

H; (m) : discretization of the Helmholtz operator

(); :source

D, :data matrix

P, P, :projection operators that restrict the wavefields

Z' [km]

-0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2

X [km] X [km]

CIP gather CIP gather

260



Extended Image Volumes 700

Express image volume for single frequency 3

E;, = —w; V,Uj =

2100/
w, :angular frequency % L | | | |
T 20 40 60 80 100
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Low rank recovery for Extended Image Volumes

Monochromatic randomized SVD algorithm

0.Input: ¢ and n, random Gaussian vectors W = [wq,--- ,w,, |
1.Y .= EW.Y € CVNxm»

2.[Q,~] = qr(K),Q € CV*mr

3.2 =E*Q,Z € CN*"m»

4.|®,3, ¥| =svd(Z*), svd computes the top n, singular vectors
H.set P +— QP

6.L=dVER=TVXE

7.0utput:factors {L, R} yielding E ~ LR*

Pros : only 4n.,PDEs

:access to each element ( various image gathers, e.g. RTM)

Halko N et al, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions”, SIAM review, 2011
28 KumarR et al, “Low-rank representation of extended image volumes: Application to imaging and velocity continuation”, SEG Annual meeting 201



Low rank recovery for Extended Image Volumes

Monochromatic randomized SVD algorithm
Pros : only 4n,PDEs

100 +

—Data 1%
- - Data 5%
—Data 10%
—EIV 1%
- - EIV 5%
-------- EIV10% .

:access to each element ( various image gathers)

00)
o

(0D
o

Cons : Rank increasing along frequency

N
o

r (full = 101)

: Inefficient PDE solves for large 2D or 3D problem

N
o

: Investment in QR and SVD factorizations

o
B
H 5

f (Hz)
Ny 9 ~ 40

Threshold according 1%,5%,10%
of the maximum of singular values

29



Power scheme combined with rSVD : Simulianeous
lterations vs Block Krylov lterations

Sl BKI

2ny, + 4gn,|2n, + 4gn, wave-equation solves
O(Nn2)|O(N((g+ 1)ny,)?*) flops
2n,12(q + 1)n, wave-equation solves
O(Nn2)|O(N (g + 1)n) flops

Cost

K := (EE*)EW,K € CV*™ vs K := [EW,(EE*)EW, ... (EE*)/EW],K ¢ CV*{athns

Pros : increasing accuracy w/o increasing probing size
Cons : more WE scale w/ power

: more flops in gr, svd

Musco C et al, “Randomized block krylov methods for stronger and faster approximate singular value decomposition”, Advances in Neural Information
Processing systems, 2015

30 Yang M et al, “Low-rank representation of subsurface extended image volumes with power iterations, SEG Annual meeting 2019



Simultaneous lterations vs Block Krylov lterations
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Pros : higher accuracy w/o
Increasing n,,

Cons :additional VEs scale w/q

: more flops in gr, svd

N . *

32



fime domain vs tfime harmonic domain

Full extended image volumes

. . /_/— /_/—
Ei — —(UZQVZU;k — HZ*P:DZQjP@* E=/Fo A_T o P;[D] y (.7:0 .A_l O PJ[Q])*
— ]:o@T 0737]_ O]:T[D . Q* (F o Py o A" o]:T[I])]
| Fast Fourier
Probing transform
Y, =E,W, =H *P/D,Q'P,H, *W, Y=FoA "oP[Dx (Pso A" [W])

e — FoAd ToP o F D (FoPso0 A T|W])

(Gaussian
noise

Band-limited
Gaussian
noise

Louboutin M et al, “Devito: an embedded domain-specific language for finite differences and geophysical exploration”, arXiv, 2018
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Traditional RTM vs exiracted RTM

| Experiment:

* 650 co-located sources
and receivers

 Ricker wavelet centered at
23 Hz

e Direct wave removed




Traditional RTM vs exiracted RTM

Experiment:

e BKI, ¢ =1
» Probing size n,, = 130

600 r

16 éO 50 40 50 éO 70
f(Hz)
Selected rank to capture 95% o

data’s energy
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Traditional image gathers vs exiracted image gathers

,.... .. ..

- IR
i ] Ny

R*

RRRYS &7 +—cp
N )
il / z,
“ | i

E[:ai.'z:;:a:]

v
zl

ClG

van Leeuwen T et al, “Enabling affordable omnidirectional subsurface extended image volumes via probing”, Geophysical prospecting 2017
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Traditional CIP vs exiracted CIP
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Depth (km)
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Traditional CIG vs exiracted CIG
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Geologic dip-correctied CIG
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Mapping via Invariance relationship

Starting Tomographic

background inversion, FWI Scenario1 g, svd Scenario 2
model BKI w/ WESs scale w/ BKI w/
model 1 power model 2
| Migration {L1,R1} {L2, Ra}
--
data ’ Uri)(dated . Scenario 3 WEs scale w/
' ac ggmlm mapping only probing
' moae {L1,R;} — {Ly, Ry} size

Low rank recovery via BKI
Final

background

Pros :access to every element,

model

: scale with probing size Lo=FoA, ' oAl [Li] with Ly = F'[Ly],

R2 — fOAgl OAl[Rl] with R1 — .FT[R&]



Scenario 1




Scenario 1
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Conclusion

By combining EIV probing w/ double two-way wave equation
w/ randomized linear algebra

» EIVs in highly compressed form & manipulations on factors
High-resolution high-accuracy imaging via

» probing w/ time-domain propagators & Block-Krylov rSVD
The low-rank factors provide

» access RTM, CIPs, CIGs, geologic dip-corrected CIGs

» w/o0 additional wave-equation solves

Velocity continuation

» via direct mapping factors from one background model to
another

» wave-equation solves scale w/ only probing size

45
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Chapter 5 Sparsity promoting least-squares
reverse-time migration with multiples

Chapter 6 removing density effects in least
square reverse time migration with matched
low-rank filter
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Contribution

« Computationally efficient method for recovering the low-rank
representations of the full subsurface extended image
volumes, based on time-stepping propagator.

* Examination of power schemes combined with basic
randomized linear algebra.

» SVD-free approach to mapping the low-rank factors for
velocity variation scenarios.

 On-the-fly source estimation for time-domain sparsity-
promoting least-squares reverse-time migration avoiding
overfitting.

» Design of a low-rank filter that matches the destiny effect
from the strong density variations at the ocean bottom in
least-squares reverse time migration w/ only velocity-related

Born modelling.
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Future work

» Limit large memory usage in 3D by applying on-the-fly
Fourier transform with time-stepping, and choose optimal
probing size per frequency.

» Design preconditioner to mitigating the ill-conditioning of the
subsurface extended image volumes, during the low-rank
recovery.

» Design preconditioner for specific image gathers w/ low-
rank factors

» Design other optimization method to avoid the SVD
factorizations in the estimation of the matched low-rank filter
and combine with joint inversion of primaries and multiples.
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