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SUMMARY

Seismic imaging is an important tool for the exploration and production of oil & gas,

carbon sequestration, and the mitigation of geohazards. Through the process of seismic

migration, images of subsurface geological structures are created from data collected at the

surface. These images reflect changes in the physical rock properties such as wave speed

and density. While significant progress has been made in the development of 3D imaging

technology for complex geological areas, several challenges remain, some of which are

addressed in this thesis. The first main contribution of this thesis is in the area of creat-

ing so-called subsurface-offset gathers, which play an increasingly important role in seis-

mic imaging because they provide a multitude of information ranging from the reflection

mechanism itself to information of the dips of specific reflectors and the accuracy of the

background velocity model. Unfortunately, the formation and manipulation of these gath-

ers come with exceedingly high computational and storage costs because extended image

volumes are quadratic in the image size. These high costs are avoided by using techniques

from modern randomized linear algebra that allow for compression of extended image vol-

umes into low-rank factorized form—i.e., the image volume is approximately written as an

outer product of a tall and a wide matrix. It is demonstrated that this factorization provides

access to different types of sub-surface offset gathers, including common-image (point)

gathers, without the need to explicitly form this outer product. As a result, challenging

steep dip imaging situations, where conventional horizontal offset gathers no longer focus,

can be handled. Moreover, extended image volumes for one background velocity model

can directly be mapped to those of another background velocity model. As a result, fac-

torization costs are incurred only once when examining imaging scenarios for different

background velocity models. The second main contribution of this thesis is on the devel-

opment of computationally efficient sparsity-promoting imaging techniques and on-the-fly

source estimation. In this work, an adaptive technique is proposed where the unknown
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time signature of the sources is estimated during imaging. Without accurate knowledge

of these source signatures, seismic images can be wrongly positioned and can have the

wrong amplitudes hampering subsequent geophysical and geological interpretations. With

the presented technique, this problem is mitigated. Finally, a contribution is made to ad-

dress the detrimental effects of surface-related multiples. If not handled correctly, these

multiples give rise to unwanted artifacts in the image. A new technique is introduced to

address this issue in realistic settings where there is a strong density contrast at the ocean

bottom. As a result, the surface-related multiples are mapped to the reflectors. Because

bounce points at the surface can be considered as sources, this mapping of the multiples

rather than removal increases the subsurface illumination.



CHAPTER 1

INTRODUCTION

The petroleum industry conducts seismic exploration to search for subsurface deposits

of crude oil and gas. This exploration is based on the geophysical principle that seis-

mic waves reflect and refract at geologic interfaces where the impedances (i.e., the prod-

ucts of wave velocities and rock densities) change. We can use the dispersion features

of waves in the earth to detect the Earth’s interior properties within 10km (Sheriff and

Geldart 1983) at the human-generated waves bandwidths up to 100Hz. Such detection

can be carried out by either land or marine surveys, the latter of which is mainly con-

ducted in two ways. The first (illustrated in Figure 1.1a) uses specially-equipped ves-

sels that tow several cables, known as streamers, which contain a set of hydrophones that

record pressure at fixed intervals (Vaage 2004). Steamers are deposed below the sur-

face of the water, away from the vessel. The seismic sources generated by airguns are

set in the water between the vessel and the first receiver as in Figure 1.1a (figure from

https://www.tes.com/lessons/TJulnGRN16pfVg/copy-of-marine-seismic-survey). Marine

surveys can also be conducted by recording seismic waves by ocean bottom cables (i.e.,

ocean bottom nodes, OBN)(Vaage 2004), illustrated in Figure 1.1b ( figure from http://www.

peakseismic.com/content/ocean-bottom-seismic.asp). In general, marine surveys are capa-

ble of acquiring millions of recording traces covering an exploration area of 102km2 level

with the subsurface discretized by 106 − 109 gridpoints.

After the pro-processing of data quality controls such as denoise, demultiple, and deghost

(as shown in the workflow in Figure 1.2), the seismic workflow typically requires the con-

struction of a background velocity model that describes the long-wavelength characteristics

of the subsurface and predicts the kinematics of wave propagation in the true subsurface.

Then the short-wavelength features, including reflectivity or model perturbations with re-
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(a) Marine survey using hydrophones

(b) Marine survey using OBN

Figure 1.1: Marine surveys, (a) using hydrophones,(b) using OBN.
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spect to the background model need to be imaged to facilitate locating oil and gas deposits.

Among these imaging methods, the most popular method is reverse-time migration (RTM)

(Baysal, Kosloff, and Sherwood 1983; Chang and McMechan 1986) because of its ability

to generate images with all possible arrivals in lateral velocity variation scenarios with-

out any dip limitations. RTM (Figure 1.2) achieves the zero-offset images by applying the

zero-lag cross-correlation imaging condition to the forward and backward wavefields of the

source and recording data (or taking the real part of the element-wise multiplies between

the harmonic slices of the two wavefields) and depicting the reflectors as the locations in

which the likelihood that these two wavefields encounter one another is high. The extended

version (Figure 1.2) of this imaging condition uses the multi-dimensional correlation be-

tween these two wavefields (matrix-matrix multiplies between the harmonic slices of the

two wavefields). The extended image volumes (EIVs) resulted from this imaging condition

contain not only RTM image as their diagonal elements, but also the common image point

gathers (CIPs) (Rickett and Sava 2002; Leeuwen and Herrmann 2012; Leeuwen, Kumar,

and Herrmann 2017; Kumar, Graff-Kray, Leeuwen, and Herrmann 2018b) as their columns

and common image gathers (CIGs) (Symes 2008; Stolk, Hoop, and Symes 2009; Rickett

and Sava 2002), which help determine how accurate the background model is. The EIVs

generally contain information used for not only creating images, but also interpreting rock

properties and analyzing velocity in complex geological settings. Obtaining EIVs in a tra-

ditional way, however, may be impossible, especially in the case of an extensive number

of sources and receivers, which leads to a multitude of wave equations to solve and large

gridpoints in the subsurface requiring an enormous amount of memory for storage.

The challenges of exploiting reservoirs with complex geology such as faults or salt

bodies lead to increasing demand for high-resolution images of areas with complicated

structures. Such demand has given rise to inversion methods based on RTM, namely

least-squares RTM (Schuster 1993; Nemeth, Wu, and Schuster 1999; Guitton, Kaelin, and

Biondi 2006), the purpose of which is to iteratively fit the observed data to synthetic data
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(a)

Figure 1.2: Seismic workflow for marine data

in a lease-squares sense to remove the source and receiver imprints and the limited wavelet

bandwidth influence from RTM. As each iteration of LS-RTM requires one RTM, further

application of this method to realistic problems is compromised because of the exorbitant

potential cost incurred by solving wave-equations. This situation is further complicated by

the missing source function in real problems.

As the above imaging methods are based on single-scattering approximation (Keho and

Beydoun 1988; Claerbout, Green, and Green 1985), they are limited to only primaries in

marine data. Such data, however, contain strong surface-related multiples because waves

are strongly reflected multi times between the water-air interface and strong impedance in-

terface at the ocean bottom (Berkhout 1986). With migrations directly applied to untreated

marine data, the multiples will not be correctly mapped to subsurface reflectors locations,

resulting in artificial interfaces. A great deal of effort has been devoted to removing multi-

ples in imaging, including the most popular method—surface-related multiples elimination

(SRME) (Verschuur, Berkhout, and Wapenaar 1992).

Although the elimination of multiples from all reflection data avoids the artifacts from
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multiples, the abandonment of multiples wastes a large amount of energy in the total re-

flection data (Verschuur 2006; Guitton, Valenciano, Bevc, and Claerbout 2007; Whitmore,

Valenciano, Sollner, and Lu 2010; Lu, Whitmore, Valenciano, and Chemingui 2011). Whit-

more, Valenciano, Sollner, and Lu 2010 found that the multiples supply extra illumination

to the migrated images with more small incident angle energy because each receiver acts

as a secondary source, illustrated in Figure 1.3. The figure displays illuminations with

and without multiples. If traditional migration is applied, multiples will form phantom re-

flectors shown in Figure 1.4. Migrating multiples into high-resolution images efficiently,

however, remains an issue. Also, the traditional inversion for imaging only inverts the

velocity perturbations with a corresponding Born modeling kernel; that is, it converts the

data components generated by strong density variations at the ocean bottom into artificial

velocity perturbations, which is also problematic.
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(a) Illumination of only primaries

(b) Illumination of multiples and primaries

Figure 1.3: Illustration of illuminations. Red stars represent the source and yellow triangles
represent hydrophones. The illuminated areas are marked in yellow. The first blue layer
denotes the water column, and the arrowhead lines indicate the incident and reflected rays.
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(a) RTM with only primaries
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(b) RTM with primaries and multiples

Figure 1.4: Illustration the phantoms from multiples in RTM for a simple two-layer model
with only one interface. (a) RTM with only primaries, (b) RTM with both primaries and
multiples
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1.1 Objectives

To summarize, the aim of this thesis is to achieve the following objectives:

1. To develop a computationally feasible two-way wave-equation-based factorization

framework in time domain that provides us access to the amplitudes of full subsurface

extended image volumes without explicitly forming the source and receiver wavefields for

each shots; and to adapt this framework with velocity variation scenarios.

2. To develop a robust time-domain sparsity-promoting LS-RTM with on-the-fly source

estimation. Leveraging insights from both stochastic optimization and compressive sens-

ing to reduce the substantial computational cost of LS-RTM without compromising image

quality; and to develop an on-the-fly source estimation approach to enhance applications to

realistic problems.

3. To jointly invert the primaries and multiples in the time domain with only the Born

modeling operator with respect to velocity; and to propose a method of removing the strong

artificial velocity from the density perturbation at the ocean bottom without developing the

Born modelling with respect to density.

1.2 Outline

Chapter 2 begins by introducing the underlying theory of monochromatic EIVs, their low-

rank representations, and the probing technique used in low-rank recovery method—randomized

singular value decomposition (rSVD). To overcome computational bottlenecks and extend

the technique to large-scale application in the future, we derive a time-domain version of

EIV and corresponding probing techniques and rSVD based on a fast time-stepping prop-

agator and fast Fourier transforms. To alleviate the problem of the increasing ranks of

monochromatic EIV along frequency, we propose to combine power schemes to rSVD

to accelerate the decay of EIVs’ singular values at high frequency. We compare the per-

formance of the basic rSVD and two power schemes: block Krylov iterations (BKI) and
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simultaneous iterations (SI) with difference probing sizes and powers on a small EIV. We

also introduce the methods of extracting different image gathers from the low-rank fac-

tors, e.g. RTM, CIPs, CIGs and the geological dip-corrected CIGs, without any further

wave-equation solves; then we conduct the test on the Marmousi model.

In Chapter 3, we introduce the invariance relationship, which could facilitate the map-

ping of current low-rank factors to another pair of factors for velocity variation scenarios.

We begin by proposing the theory of low-rank factor mapping on monochromatic EIVs and

then extend it to the time-domain version. The mapping, which entails only wave-equation

solves, is an SVD-free approach. We test this method for velocity continuation scenarios

on a challenging part of the Sigsbee model, whose initial guess has the wrong salt dome,

which will make the reflectors of the RTM (i.e. diagonals of the EIV) under the salt dome

distorted, and the energy of the CIPs (i.e. columns of the EIV) or CIGs unfocused around

the image point. The update from the initial low-rank factors results in favorable image

volumes from which we extract and compare different image gathers.

In Chapter 4, we propose an on-the-fly source estimation method for time-domain spar-

sity promoting least-squares RTM (SPLS-RTM), in which the image condition is now the

zero-lag cross-correlation. We begin by introducing the time-domain SPLS-RTM as a Basis

Pursuit Denoise (BPDN) problem and replace the `1-norm by an elastic net consisting of a

strongly convex combination of `1− and `2-norm to relax the objective function. Then we

introduce an easily-implemented algorithm,the linearized Bregman method, which solves

the optimization problem. Following that, we propose on-the-fly source estimation via vari-

able projections that solve the least-squares sub-problem with penalties that prevents over-

fitting. Finally, we demonstrate the effectiveness of the proposed method with a stylized

example on how it eliminates overfitting in the estimated source and the sparsity solutions.

We also test the robustness of our method to noise on the Marmousi model and design a

hybrid framework for the challenging Sigsbee model that contains salt body.

In Chapter 5, we exploit the capability of our LB-based framework in the joint inversion
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of primaries and multiples. We first introduce the fundamental theory of the surface-related

multiples elimination relationship (SRME), widely used in the pre-processing of demulti-

ples and primaries prediction. We discuss the drawbacks of SRME in demultiples, that is,

the assumption of least energy for the predicted primaries, which will lead to failure of this

method in a shallow water scenario, where the multiples strongly interrupt the primaries.

Then we continue with the proposed joint inversion of primaries and multiples, which in-

corporates the SRME relationship into the wave equation by areal source injection. By

extending the work in Chapter 4, we implement this joint inversion in the time domain, and

to generate strong multiples in shallow water, we introduce strong density perturbation at

the ocean bottom. We initially test our method on a linear dataset based on a portion of

the Sigsbee model in the time-harmonic domain, and then we test the joint inversion for

nonlinear data in the time domain. Since we are inverting with only Born modeling with

respect to the velocity perturbation, we obtain some strong artificial velocity perturbations

converted from the true density perturbations at the ocean bottom.

In Chapter 6, we continue to discuss the problems encountered by sparsity-promoting

least-squares reverse-time migration when it inverts the strong density perturbation related

data components with the velocity-only Born modeling operator. As observed in chapter 5,

the strong density perturbation will be inverted as strong dummy velocity perturbation. In-

stead of developing the Born operator with respect to both density and velocity or modify-

ing the image condition, we propose a matched-filter-based LS-RTM for the velocity-only

Born modeling operator to remove the artifacts created by the strong density variations.

This method does not necessitate extra work on finite difference stencils. We conduct a

preliminary test based on a discontinuous layered model with strong density variations at

the ocean bottom to demonstrate the efficacy of the proposed formulation.

In Chapter 7, we summarize the work in this thesis and propose the possible research

directions in the future.
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CHAPTER 2

LOW-RANK RECOVERY OF SUBSURFACE EXTENDED IMAGE VOLUMES

BASED ON TIME-STEPPING PROPAGATOR AND POWER SCHEME

2.1 Summary

Extended image volumes (EIVs) contain rich subsurface information and is low rank due

to the rank limitation of the data term contained inside its formulation. Low-rank recovery

is proposed to explore the EIV instead of forming it explicitly which will take amounts of

memory storage and computation. Randomized SVD method could help to recovery the

low-rank factors of EIV based on randomized probing technology. To extend this work

to the possible industry scale in the future, we implement the low-rank recovery based on

rSVD in the time domain in this chapter. To make the randomized probing feasible and nu-

merical stable in time domain, we combine the source term in the formulation of EIV with

the Gaussian random noise to form the bandwidth limited source wavefield. The multi-

dimensional convolution is implemented by matrix-matrix multiplications monochromat-

ically along the discredited frequencies after fast Fourier transform to the corresponding

terms. Another problem that might impede the realistic application of low-rank recovery

of EIV is the fact that the rank of the data or EIV will increase along frequency. We have

to prob the EIV with larger probing size at higher frequencies or accelerate the decay of

the singular values of EIV. In this chapter we introduce the power scheme based rSVD

methods that help to narrow the gap between the neighbor singular values. We compare

the errors of the recovered singular values and the diagonal RTM by different probing size

and power settings for a small part of the Marmousi model to demonstrate the advantage

of the power iterations, and point out the block Krylov method (BKI) with power 1 would

be the best choice. Also we explain the ways of extracting different gathers out from the
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low-rank factors, e.g. reverse time migration(RTM), common image point gather(CIP),

common image gather(CIG) and dip corrected CIG. Finally we test our proposed method

on the Marmousi model to demonstrate its effectiveness by supplying good approximations

of the RTM, CIPs and CIGs with the cost smaller than one RTM,i.e. the probing size np

smaller than one quarter of the number of source ns/4.

2.2 Introduction

The formation of subsurface-offset gathers, such as common-image gathers (CIGs, (Symes

2008; Stolk, Hoop, and Symes 2009; Rickett and Sava 2002)), angle-domain common-

image gathers (ADCIGs, (De Bruin, Wapenaar, and Berkhout 1990; Sava and Fomel 2003;

Kroode 2012; Kühl and Sacchi 2003; Mahmoudian and Margrave 2009; Dafni and Symes

2016b; Dafni and Symes 2016a)), and more recently common-image point gathers (CIPs,

(Leeuwen and Herrmann 2012; Leeuwen, Kumar, and Herrmann 2017; Kumar, Graff-

Kray, Leeuwen, and Herrmann 2018b)), has become an essential component of modern

seismic imaging workflows. Each of these gathers provides information on the quality of

the velocity model and the scattering mechanism, which is dependent on the subsurface

itself as well as the acquisition geometry. Contrary to CIGs, CIPs provide information on

the complete scattering mechanism since they are a function of the full omni-directional

subsurface offset.

Usage of these gathers includes quality control during velocity model building (Yang

and Sava 2015; Biondi and Symes 2004a); automatic model updates during migration

velocity analysis (Symes and Carazzone 1991; Shen and Symes 2008); and inferences

made on rock properties from amplitude versus offset analysis (De Bruin, Wapenaar, and

Berkhout 1990). All of these usages rely on having access to high quality subsurface im-

age volumes. While access to fast hardware and memory has made imaging modalities,

such as reverse-time migration (RTM, (Baysal, Kosloff, and Sherwood 1983)) computa-

tionally feasible in 3D (Kukreja, Louboutin, Vieira, Luporini, Lange, and Gorman 2016),
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the formation of subsurface-offset image volumes remains a major challenge because it in-

volves a loop over the sources and multi-dimensional cross-correlations between (shifted)

spatial-temporal forward and adjoint wavefields. Aside from the extra computational bur-

den, subsurface-offset or angle gathers add one or more dimensions making image volumes

more challenging and costly to store and manipulate.

By relying on the wave-equation itself in combination with a (randomized) probing

technique, Leeuwen, Kumar, and Herrmann 2017 was able to get access to full subsurface-

offset images via actions of the double two-way wave equation on probing vectors. This

double wave-equation is the two-way wave-equation counterpart of Claerbout’s double

square-root equation (Claerbout 1970; Symes and Carazzone 1991; Biondi and Symes

2004b; Sava and Vasconcelos 2011a), which is based on the one-way wave equation lim-

iting its accuracy in media with steeply dipping reflectors. The two-way wave equation

remedies this shortcoming.

By choosing probing vectors consisting of a single point scatter, Leeuwen, Kumar, and

Herrmann 2017 was able to extract CIPs, which are the size of the original image but now

as a function of the omni-directional subsurface offset. Compared to conventional CIGs

that are generally computed as a function of the horizontal offset alone, CIPs contain all

offsets in all directions and this offers important advantages in situations where we are

dealing with steeply dipping reflectors in which case CIGs no longer focus (see Figure 11

of Leeuwen, Kumar, and Herrmann 2017).

While this probing method provides access to an object that can not be formed explicitly—

i.e., image volumes are quadratic in the image size, the cost of this access scales with the

number of probing vectors limiting its use. Despite this shortcoming, the formulation pre-

sented by Leeuwen, Kumar, and Herrmann 2017 provided new insights to migration veloc-

ity analysis, localized amplitude versus offset analysis including correction for the geologic

dip, and the derivation of completely novel approaches to velocity continuation (Leeuwen

and Herrmann 2012; Kumar, Graff-Kray, Leeuwen, and Herrmann 2018b), which derive
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from an invariance relation of the double two-way wave equation, and redatuming (Kumar,

Graff-Kray, Vasconcelos, and Herrmann 2019).

Even though the derivation of the double two-way wave-equation resulted in funda-

mentally new insights how to form and manipulate certain aspects of omni-directional full-

subsurface extended image volumes (EIVs), the proposed technique relied on frequency-

domain propagators and access via probing. This reliance limits its potential application to

more realistic imaging scenarios where time-domain propagators are needed for the wave

simulations and where access to many (geologic-dip) corrected CIGs is desired. We over-

come these shortcomings by proposing a low-rank matrix factorization technique, based

on the randomized singular-value decomposition (rSVD, (Halko, Martinsson, and Tropp

2011)). To allow low-rank approximations at higher frequencies, where the singular values

decay slower, we propose a Block-Krylov method (Musco and Musco 2015). This method

requires more costly probings but leads to more accurate low-rank factorizations of EIVs.

Aside from achieving a massive compression of EIVs, we will show that low-rank

factorizations also give us readily access to CIPs and (geologic dip-corrected) CIGs without

the need to form EIVs explicitly or to solve additional wave equations—an observation also

made by Da Silva, Zhang, Kumar, and Herrmann 2019 where subsurface-offset gathers

were formed from a tensor factorization based on the hierarchical Tucker format (Silva and

Herrmann 2015).

Our contributions are organized as follows. We first briefly review the definition of

monochromatic extended image volumes, their relation to the double two-way wave-equation,

and a low-rank factorization based on the rSVD. We also show how to migrate and derive

CIPs from this low-rank factorization. To accommodate more realistic imaging scenarios,

we introduce representations for time-domain EIVs including time-domain probing. Since

we are now able to image at high frequencies, we present and compare more elaborated

probing techniques that involve powers of the double-wave equation. After showing that

these method lead to more accurate factorizations, we show how CIPs and (dip-corrected)

14



CIGs can be formed from these factors directly and without the need of forming the EIVs

explicitly. Via carefully selected experiments, we validate the presented approach by com-

paring true CIPs and CIGs with their approximate counterpart calculated from the proposed

factorization.

2.3 Full subsurface monochromatic extended image volumes

Before discussing our novel approach to factorize image volumes, we first briefly summa-

rize the formation and probing of image volumes in the frequency and time domain.

2.3.1 Extended image volumes with Helmholtz

According to Leeuwen, Kumar, and Herrmann 2017, monochromatic extended image vol-

umes (EIVs), with subsurface offsets in all directions, can be formed by an outer prod-

uct. This product is calculated between the forward wavefields, collected for ns different

sources and N = nx × nz (with nx, ny number of gridpoints in the x− z directions) grid-

points in the tall matrix Ui ∈ CN×ns at the ith frequency, and the corresponding matrix for

the adjoint wavefields Vi ∈ CN×ns—i.e., we have

Ei = −ω2
iViU

∗
i , (2.1)

with ωi the ith angular frequency. In this expression, ∗ represents the complex conjugate

transpose. This monochromatic image volume represents a discretized version of E(~x; ~x′)

where in 2D ~x = (x, z) refers to the spatial coordinates and ~x′ = (x′, z′) to a second set of

coordinates from which we derive

~m =
~x+ ~x′

2
and ~h =

~x− ~x′

2
(2.2)

with ~m = (mx,mz) the midpoint coordinates and ~h = (hx, hz) the subsurface offset

coordinates along the two spatial coordinate directions. We use semicolons ; to separate
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the coordinate directions so that can be represented by a matrix.

The above forward and adjoint wavefields satisfy the following forward and adjoint

wave equations:

Hi(m)Ui = P>s Qi, (2.3)

H∗i (m)Vi = P>r Di, (2.4)

where Hi(m) represents the discretized Helmholtz operator at the ith frequency. The

Helmholtz operator itself is parameterized by the discretized squared slowness collected in

the vector m ∈ RN . The ns × ns matrix Qi denotes the source matrix, where ns is the

number of sources. The observed data itself is collected in the monochromatic nr × ns

data matrix Di, where each column represents a single monochromatic source experiment

with nr receivers. The matrices Ps and Pr are projections that restrict the full wavefields

to the source and receiver positions, respectively. The symbol > denotes matrix transpose.

Finally, by substituting equations 2.3 and 2.4 into Equation 2.1, we can express Ei as a

function of Qi and Di as follows:

Ei = −ω2
iH
−∗
i P>r DiQ

∗
iPsH

−∗
i = H−∗i P>r ḊiQ̇

∗
iPsH

−∗
i , (2.5)

where to simplify our notations as far as possible, we introduce the symbol˙to monochro-

matic matrix to involve the jωi implicitly. Equation 2.5 corresponds the solution of the

double two-way wave-equation given by

H∗iEiH
∗
i = P>r ḊiQ̇

∗
iPs. (2.6)

As during migration, EIVs are computed using a background velocity model, which

defines the squared slowness in the above discretized Helmholtz operators. For now, we
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assume this background velocity model to be known and we are interested in finding ways

to form and manipulate image volumes in realistic imaging scenarios. Because N easily

becomes too large, it becomes unfeasible to form, store, or even manipulate EIVs in explicit

form. We address this issue by exploiting reported (Leeuwen, Kumar, and Herrmann 2017;

Yang, Graff, Kumar, and Herrmann 2019; Kumar, Graff-Kray, Leeuwen, and Herrmann

2018a) low-rank properties of EIVs. Without loss of generality, we will work exclusively

on 2D imaging problems that can feasibly be extended to 3D. We will focus on accuracy

and develop techniques to cast EIVs into factored form, which allows for computationally

feasible manipulation and extraction of useful gathers for migration velocity, amplitude

versus offset analyses, and redatuming (Leeuwen, Kumar, and Herrmann 2017; Kumar,

Graff, Vasconcelos, and Herrmann 2019).

As in earlier work by Leeuwen, Kumar, and Herrmann 2017, our approach relies on

probing EIVs—i.e. computing the action of EIVs on certain probing vectors. Aside

from giving us access to Common Image Point gathers(CIPs)—i.e. full omni-directional

subsurface-offset gathers, probings provide information necessary to factor EIVs using ran-

domized Singular Value Decompositions (Halko, Martinsson, and Tropp 2011). To en-

abling scale up, we extend earlier work by using wave propagators based on time-stepping,

in combination with a more sophisticated randomized probing methodology. Before intro-

ducing probing with times-stepping, let us first briefly review probing of monochromatic

EIVs and show how this technique leads to and alternative formation of subsurface zero-

offset reverse-time migration (RTM).

2.3.2 Low-rank factorization of time-harmonic EIVs

To form our EIVs in a computationally feasible manner, we compute the action of these

EIVs on a limited number (np) of monochromatic probing vectors collected in the tall

matrix Wi ∈ CN×np with np < ns � N . Following Leeuwen, Kumar, and Herrmann
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2017, the probing entails

Yi = EiWi = H−∗i P>r ḊiQ̇
∗
iPsH

−∗
i Wi, (2.7)

which involves 2np wave-equation solves. There are several different choices possible

for Wi. For now1, we chose the entries of Wi to be drawn from zero-centered Gaussian

noise with unit standard deviation to span the range of Ei (Kumar, Graff-Kray, Leeuwen,

and Herrmann 2018a).

In situation where the EIVs can be approximated accurately by a low-rank matrix, the

result of the probing Yi contains all information on the range of Ei as long as np is slightly

larger than the rank k (Halko, Martinsson, and Tropp 2011). It also will allow to represent

EIVs via a low-rank factorization

Ei ≈ LiR
∗
i ,Li and Ri ∈ CN×np , (2.8)

where the factors Li and Ri are computed with the randomized singular-value decom-

position (Halko, Martinsson, and Tropp 2011) as described in Algorithm 6 included in the

Appendix. This algorithm takes the above probing as input. Compared to the more expen-

sive standard SVD method, which involves 2ns PDE solves cost in the order of O(N3) the

rSVD only costs 4np PDE solves and O(2Nn2
p).

To illustrate the concept of factorizing EIVs with rSVDs, we consider a small (N =

100× 100) EIV computed from the Marmousi model and study the behavior of its singular

values and the frequency dependence of its low-rank factored approximation. In addition

to giving us access to full subsurface-offset image gathers, low-rank factorization gives us

access to migrated images via

δm̂ =
∑
i

diag(Ei) ≈
∑
i

(Li � R̄i)1. (2.9)

1We can relax this assumption by using fast Fourier-based probing methods (Leeuwen, Kumar, and Her-
rmann 2017).

18



In this expression, diag( ) extracts the diagonal from the EIVs for each frequency and

the symbol � represents element-wise multiplication also known as the Hadamard prod-

uct. The symbol ¯ represents complex conjugation and 1 represents a column vector with

np 1’s. The second part of the above expression corresponds to taking the Hadamard prod-

uct of the factors for each frequency, followed by summing over the columns. The sum

over frequencies, which range between 5 and 50 Hz with a step of 0.5 Hz, corresponds to

the zero time-lag imaging condition (Berkhout 1986; Claerbout, Green, and Green 1985)

while extraction of the diagonal corresponds to imposing the zero subsurface-offset imag-

ing condition.

Results of this procedure are summarized in Figure 2.1, where we show how to ex-

tract a zero-subsurface offset migrated image (Figure 2.1b) from the diagonal of the EIV

plotting in Figure 2.1a. In addition to containing information to form a migrated image,

EIVs also contain CIPs, which correspond to extracting columns from the EIVs, followed

by summing over frequency. As with migration (cf. Equation 2.9), this information is

accessible from low-rank factored form given in Equation 2.8. As long as we increase the

rank from np = 10 to 40 for increasing frequencies, the low-rank approximation in Equa-

tion is 2.9, yielding images and CIPs close to the ones obtained with regular RTM, looping

over all ns sources, or CIP computation via probing. Compared to conventional Common

Image Gathers (CIGs), CIPs contain full-subsurface offsets in all directions (Leeuwen, Ku-

mar, and Herrmann 2017). As a result, they nicely show the directivity pattern and geologic

dip of the different reflectors as we can see from the overlays in Figures 2.1c and 2.1d.

We were able to obtain the results in Figure 2.1 by making use of the relative fast decay

for the singular values of the EIVs compared the decay for the singular values of the data

matrix as illustrated in Figures 2.2 and 2.3. This suggests we should aim to factorize

EIVs rather than the data. However, this fast decay for the singular values slows down

for increasing frequency. This effect is illustrated in Figure 2.3 where we plot the rank we

would need to choose for each frequency if we want to capture the singular values to within
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(a) (b)

(c) (d)

Figure 2.1: Extended image volume computed for the small Marmousi model for all fre-
quencies [5, 50]Hz with step 0.5Hz: (a) full EIV, (b) RTM image from the reshaped diagonal
of the EIV, (c) common image-point gather at (7110m, 480m) from the 3987th column of
the EIV, (d) common image-point gather at (7360m, 300m) from the 6494th column of the
EIV.
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(a) (b)

Figure 2.2: Extended image volume computed for the small Marmousi model (Figure 2.1)
at 5Hz: (a) singular value decay of the data matrix, (d) singular value decay of the corre-
sponding EIV matrix.

a 1, 5 or 10% of the largest singular value. Since the decays of the singular value decrease

with frequency, we observe that the minimal rank we can select increases with frequency.

Fortunately, this effect is smaller for the EIVs compared to the data and this explains why

np = 9-40 was sufficient in example included in Figure 2.1.

While the above approach allows us to form and manipulate EIVs in low-rank fac-

torized form, without ever forming the EIV matrix explicitly, several challenges remain

to scale this approach to more realistic settings, which include larger models and higher

frequencies. Both of these call for computationally more efficient wave propagators and

randomized SVDs able to factor matrices that can not be approximated accurately by low

rank factorizations. Before demonstrating our approach on a realistic example, we discuss

how to probe with times-stepping propagators and how to handle factorizations of high-

frequency EIVs.
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Figure 2.3: Estimated rank for the extended image volume computed for the small Mar-
mousi model with respect to the frequency [5, 50] Hz with step 0.5 Hz. This figure shows
the rank of the data matrix D and the EIV E when truncated at 1%, 5%, 10% of the highest
singular values.

2.4 Full subsurface extended image volumes based on time-stepping

2.4.1 Time-domain EIVs

To substitute time-harmonic wave-equation solvers in equation 2.5 with salable time-

stepping, we introduce discrete temporal forward, U, and adjoint wavefieldsV as the so-

lutions of

A(m)[U] = P>s [Q] (2.10)

and

A>(m)[V] = P>r [D]. (2.11)

In these expressions, the symbols U ∈ Rnt×N×ns and V ∈ Rnt×N×nr are tensors rep-

resenting the forward and adjoint wavefields, respectively, with nt the number of time
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subsamples. The linear operator A denotes the discretized wave-equation, which we solve

via time-stepping using Devito1. Similarly, we solve for the adjoint wavefield via backward

time-stepping with the adjoint A>. The square brackets [ ] are used to indicate application

of linear time-domain operators to the respective tensors. As before, the source terms are

given by impulsive sources and data collected in the tensors Q and D that are injected into

the computational grid by the linear operators Ps and Pr.

With these definitions for the time-domain wavefields, we can write the time-domain

EIV as follows:

E = V̇ ∗t U̇>

= F>[V̇ · U̇∗],
(2.12)

where the symbol ˙ applied to the wavefield tensors introduces the first order time

derivative to the corresponding term in time domain. And the symbol ∗t stands for multi-

dimensional convolution2 between the two derivative wavefields V̇ and U̇>. As before,

we implement these convolutions via matrix-matrix multiplies of the monochromatic fre-

quency slices V̇i and U̇∗i , i = 1 · · ·nf , which we shortly handle using the · operator be-

tween the respective frequency tensors V̇ and U̇∗. We obtain the time-domain EIV by

applying the inverse Fourier transform F> along time to the respective frequency tensor.

To set the stage for probing of EIVs formed with the above time-domain propagators,

1In our implementation, we used Devito ([https://www.devitoproject.org](https://www.devitoproject.org))
for our time-domain finite difference simulations and gradient computations (Luporini, Lange,
Louboutin, Kukreja, Hückelheim, Yount, Witte, Kelly, Herrmann, and Gorman 2018) and JUDI
([https://github.com/slimgroup/JUDI.jl](https://github.com/slimgroup/JUDI.jl)) as an abstract linear algebra
interface to our Algorithms (Witte, Louboutin, Kukreja, Luporini, Lange, Gorman, and Herrmann 2019).

2With some abuse of notation, we assume that the wavefields collected in the tensors are multiplied as in
an outer product.
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we write

E = (

V̇︷ ︸︸ ︷
F ◦ A−> ◦ P>r [Ḋ]) ·

U̇∗︷ ︸︸ ︷
(F ◦ A−1 ◦ P>s [Q̇])∗

= F ◦A−> ◦ P>r ◦ F>[Ḋ · Q̇∗ · (F ◦ Ps ◦ A−> ◦ F>[I])].
(2.13)

The symbol ◦ refers to the composition operator between the time-domain operators.

As we can see, the above expression represents the double two-way wave-equation

(cf. Equation 2.6) as proposed by Leeuwen, Kumar, and Herrmann 2016 but now based

on wave propagation via time-stepping. The temporal convolutions are carried out by

complex-valued matrix-matrix products in the temporal Fourier domain. Here the fre-

quency tensor I contains a set of monochromatic identity matrices Ii ∈ CN×N , where

i = 1 · · ·nf .

2.4.2 Time-domain probing

While equations 2.12 and 2.13 in principe allow us to form EIVs in the time or Fourier do-

main using time-domain propagators, these expressions do not readily lend themselves to

probing. Moreover, time-stepping propagators impose additional conditions on the wave-

fields they propagate—e.g. the source wavefield has to be bandwidth limited in time to

ensure stability of our numerical scheme3. To ensure this requirement, we assume a sin-

gle temporal source signature for all sources that are assumed to be delta distributions in

space—i.e., Q̇i = jωiαiIns where αi is the ith Fourier coefficient of the source and Ins the

identity matrix of size ns × ns. Because of this particular choice, the action of the source

commutes with the other operators so we can probe our EIVs with independent realizations

3All our time-domain wave simulations are carried out with the open-source package Devito (Kukreja,
Louboutin, Vieira, Luporini, Lange, and Gorman 2016).
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of bandwidth-limited Gaussian random noise—i.e. we have

Y = F ◦ A−> ◦ P>r [Ḋ ∗t (Ps ◦ A−>[W])]

= F ◦ A−> ◦ P>r ◦ F>[Ḋ · Q̇∗ · (F ◦ Ps ◦ A−> ◦ F>[I])].

(2.14)

In this expression, the probing is carried out by the tensor W ∈ Rnt×N×np , which

contains zero-centered Gaussian noise that is filtered by the time signature of the source-

time function. As we will show below, the tall matrices Y contain the necessary infor-

mation to factor EIVs from which subsurface-offset gathers can be computed. Contrary

to subsurface-offset gathers computed via image-domain cross-correlations of the forward

and adjoint wavefields, each of which are of size N × nt, the above probing involves for

each probing vector a single matrix-vector multiply with the ns × nr × nf data matrices.

Since ns × nr � N and nf � nt, the probings are relative cheap.

The above expression for time-domain probing forms the basis for the remainder of

this paper where the randomized SVD and other manipulations are carried out for each

frequency, indexed by i = 1 · · ·nf , separately. To simplify notation, we will tacitly assume

loops over the frequency whenever we refer to monochromatic entities, e.g Y = f(X)

corresponds to Yi = f(Xi) for i = 1 · · ·nf and f(·) arbitrary function. Note that the

extraction of RTM image or CIGs in time-domain are similar as we implement in frequency

domain. Here we avoid to show the duplicate extracted images as in the above subsection.

Even though the use of time-domain propagators allows us to computationally feasibly

probe EIVs, the singular values for high-frequency EIVs decay slowly (as shown in Figure

2.3), which prevents us from forming low-rank factorizations at these frequencies. Unless

we have a solution for this problem, lack of low-rank representations for the EIVs prohibit

manipulations such as extracting subsurface offset images and CIPs. In addition, the slow

decay of the singular values calls for a larger number of probings, which may render our

approach computationally infeasible.
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2.4.3 Low-rank representation via rSVD

To efficiently recover the low-rank representation, the forward and adjoint operations in

line 2 and 4 will be substituted by the corresponding forward (Equation 2.14) and adjoint

based on time-stepping. Also, the QR and SVD factorizations will be overloaded, which

implicitly include the operations that loop over all frequencies.

Note that all the QR factorization and SVD decomposition are implemented on the re-

lated single monochromatic matrix in looping over all the frequencies. And the extractions

of RTM image, CIPs or CIGs based one time-stepping are similar as the way in frequency

domain. So far we achieve the computational efficient expression of the low-rank recovery

of the full EIVs in time-domain.

2.5 Low-rank factorization with the power method

To address the problem of forming and manipulating EIVs at high frequencies, we propose

an alternative approach where we increase the decay of the singular values through linear

algebra manipulations. More specifically, we follow recent work by Musco and Musco

2015, which provably offers guarantees on the accuracy of low-rank factorizations in both

the Frobenius and spectral norms, and on the accuracy of the factors themselves compared

to k-term factorization based on an unattainable singular value decomposition of the orig-

inal matrix, the EIV in our case. Their core idea to improve the accuracy is to use the fact

that the decay of singular values of a matrix increases when we raise this matrix to some

q ≥ 1 power. Due to this property, the accuracy of low-rank factorizations improves since

the truncation error decreases because of the increased decay for the singular values. How-

ever, as we can see in Algorithm 1, this improvement comes at the cost of having to solve

more wave equations. The increase in computational cost depends on the selected power q

in line 2, which involve multiple applications of E and its adjoint.
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2.5.1 Power schemes

According to Musco and Musco 2015, the use of the power method for rSVD amounts to

the slightly modified Algorithm below.

Algorithm 1 Monochromatic rSVD with simultaneous power iterations (SI)

1: given power q and generate np random Gaussian vectors W = [w1, · · · ,wnp ]

2: K := (EE∗)qEW,K ∈ CN×np with probing according to Equation 2.14

3: [Q,∼] = qr(K),Q ∈ CN×np

4: Z = E∗Q,Z ∈ CN×np

5: [Φ,Σ,Ψ] = svd(Z∗), svd computes the top np singular vectors

6: set Φ← QΦ

7: L = Φ
√

Σ,R = Ψ
√

Σ

8: Output: factors L,R from which actions can be formed via E ≈ LR∗

The above algorithm computes for each frequency, a rank k factorization using np > k

probings (actions of the double wave equation on random probing factors, see Equation

2.14), a ‘qr‘-factorization on a tall matrix and a ‘svd‘ on a wide matrix of size np × N .

After the ‘qr‘ factorization, we capture the range of the EIVs in the matrix Q not to be

confused with the source matrix we introduced earlier. After applying the ‘svd‘, we obtain

the left and right singular vectors collected in Φ and Ψ and Σ, a k × k matrix with the

singular values on its diagonal. As before, the output of Algorithm 1 are the left and right

factors L and R for each frequency.

Compared to the original rSVD (see Algorithm 6 in the Appendix), Algorithm 1

includes more involved probing (line 2), which now includes the action of E and (EE∗)q.

The latter requires q iterations of K := (EE∗)K where K is initialized by K = EW. For

increasing powers of q, the accuracy improves as ε = O( logN
q

), which in practice means

that the low-rank factorizations at the higher frequencies become more accurate but this

comes at the price of having to carry out an extra 2qnp probings. However, the memory
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imprint of Algorithm 1 is roughly the same as Algorithm 6.

While the simultaneous power iterations(SI) in Algorithm 1 allow for an improvement

in accuracy by increasing the largest singular values in comparison to the small singular

values in the tail, the error only decays linearly in q. To overcome this problem, we fol-

low Musco and Musco 2015 and introduce Algorithm 2, which involves more intricate

Block Krylov iterations (BKI) that are better capable of capturing the tail of the singular

values. The use of these iterations results in an improvement for the error (ε = O( logN
q2

))

, which now decreases quadratically with q. As a consequence, algorithms based on BKI

iterations allow for smaller q to attain the same accuracy. However, as we can see in line 2

of Algorithm 2, this improvement goes at the expense of extra memory use because the al-

gorithm works now with multiple vectors defined in terms of the intermediate iterations we

used to compute (EE∗)qK. Aside from extra memory use, these additional vectors lead to

additional computational costs during the subsequent ‘qr‘ and ‘svd‘ factorizations, which

now involve (q + 1)np vectors rather than np as before. The number of probings, however,

remains the same.

Algorithm 2 Monochromatic rSVD with block Krylov iteration (BKI)

1: given power q and generate np random Gaussian vectors W = [w1, · · · ,wnp ]

2: K := [EW, (EE∗)EW, · · · , (EE∗)qEW],K ∈ CN×(q+1)np

3: [Q,∼] = qr(K),Q ∈ CN×(q+1)np

4: Z = E∗Q,Z ∈ CN×(q+1)np

5: [Φ,Σ,Ψ] = svd(Z∗), svd computes the top np singular vectors

6: set Φ← QΦ,Q choose the fist npsingular vectors

7: L = Φ
√

Σ,R = Ψ
√

Σ

8: Output: factors L,R from which actions can be formed via E ≈ LR∗
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2.5.2 Complexity analysis for power scheme based rSVDs

Although with the same probing size, the recovery accuracy of EIV based on SI and BKI in-

crease with power, the investment in computation and storage also increase with the power.

It is necessary to draw complexity analysis and comparison to guide in investing strategy

when we have limited resources.

Step Size Cost
1). Generate an N ×np Gaussian random
matrix W

N × np -

2). Form K = (EE∗)qEW N × np 2np+4qnp wave equations
3). Construct [Q,∼] = qr(K) N × np O(Nn2

p) flops
4). Form Z = E∗Q N × np 2np wave equations
5). [Φ,Σ,Ψ] = svd(Z∗) np × np, np, N × np O(Nn2

p) flops
6). Update Φ← QΦ N × np, np, N × np

Table 2.1: Storage and computational cost for rSVD with simultaneous iterations
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Step Size Cost
1). Generate an N ×np Gaussian random
matrix W

N × np -

2). Form K = [EW, · · · , (EE∗)qEW] N × (q + 1)np 2np+4qnp wave equations
3). Construct [Q,∼] = qr(K) N × (q + 1)np O(N((q + 1)np)

2) flops
4). Form Z = E∗Q N × (q + 1)np 2(q+ 1)np wave equations
5). [Φ,Σ,Ψ] = svd(Z∗) with only np
singular vectors

np × np, np, N × np O(N(q + 1)n2
p) flops

6). Update Φ← QΦ N × np, np, N × np -

Table 2.2: Storage and computational cost for rSVD with block Krylov iteration

In an effort to deal with the challenge of factorizing large-scale EIVs at high frequen-

cies, we introduce an algorithm based on probing alone, rSVD (see Algorithm 6 in the

Appendix), and more involved algorithms based on SI (Algorithm 1) and BKI (Algorithm

2) iterations, designed to handle situations where the singular values decay more slowly.

These three algorithms differ in attainable accuracy as a function of the number of prob-

ings, memory use, and computational expense to carry out the ‘qr‘ and ‘svd‘ factorizations.

With these different approaches, we have freedom to select the algorithm that best fits our

needs. To help with this selection process, we include Tables 2.1 and 2.2. Based on these

tables, we can make the following observations: *(i)* the accuracy of the factorizations

based on SI and BKI increases with the power q; *(ii)* as we increase q, the computational

cost increases for both SI and BKI iterations; and *(iii)* the memory use and computa-

tional cost increase for BKI with increasing q with an error that decreases quadratically.

Remember that errors in our context refer to inaccuracies related feasible SVDs based on

random-probing compared to the inaccessible ground truth given by the k-term SVD de-

rived from the full EIV. This means that we assumed the number of probing vectors to be

fixed and equal to k.

Our main goal is to get the most accurate k-term factorization of EIVs through np = k

random probings with the double wave equation (cf. Equation 2.14). Because all sub-

sequent manipulations on the factored form of these EIVs scale with k, whether we ex-

tract CIPs, derive subsurface offset images, redatum or carry out velocity continuation
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(Leeuwen, Kumar, and Herrmann 2017), we want to control the error. Contrary to trun-

cation errors in conventional svd-based factorizations, factorizations based on randomized

probing have additional inaccuracies related to the tail of the singular values. When mov-

ing to higher frequencies, it is important that we control these additional errors because the

singular values decay slower at these frequencies.

2.5.3 Numerical experiments for power schemes

To illustrate the performance of SI and BKI iterations compared to conventional rSVD, we

carry out experiments on the small 25Hz monochromatic frequency slice of the small EIV

included in Figure 2.1, for which we can form the EIV itself and its factorization explicitly

via a conventional SVD. Our results are summarized in figure 2.4, where we plot the first np

singular values for factorization based on probings with np = 8, 16, 30. Comparing the bar

plots in Figure 2.4a, 2.4c, and 2.4e, leads to the following observations. First, inaccuracies

in the estimates for the singular values are large when there is a large truncation error—i.e.,

when there is still a lot of energy left in the tail. In that case, there is a large difference

between the actual singular value (depicted in dark blue) and the singular values obtained

by the standard rSVD method. These errors are much smaller when using factorizations

based on SI and BKI iterations for either q = 1 or q = 2. Smaller errors in the singular

values lead to smaller errors in the factorization. Second, the plots for the relative errors

in Figure 2.4b, 2.4d, and 2.4f show a rapid increase towards the smaller singular values.

Even for a probing size np as high as 30 where we leave only 0.4% of the total energy in

the tail, the relative error for 30th singular value calculated by rSVD exceeds 35%. Both

power methods SI and BKI help to accurately recover the singular values and decrease the

relative errors. Even for a very small probing size of np = 8, where we leave 11.4% energy

in the tail, the BKI with power q = 2 recovers the first np singular values very well. SI,

on the other hand, still leaves some errors in the recovery for q = 1, 2. For np = 16, the

remaining energy in the tail decreases to 5% and the BKI recovers the np singular values
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very well with q = 1, 2. We can also see that BKI with q = 1 works even better than SI for

q = 2. In summary, both the SI and BKI methods help in decreasing the relative errors in

the singular values. With the same probing size np and power q, BKI always outperforms

the other methods.

Usually BKI with q = 1 can satisfy our requirement of a good recovery of the first np

singular values. As we can observe from Figure 2.5, the errors in the RTM recovered by

the rSVD method (cf. Figure 2.5a and b) for np = 8 are more obvious than those from the

BKI with q = 1 (cf. Figure 2.5a and c). For the rSVD, coherent energy is lost (cf. Figure

2.5d and e).
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(a) (b)

(c) (d)
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(e) (f)

Figure 2.4: (a) The singular value bars obtained by SVD, rSVD, SI and BKI with np = 8.
(b) The corresponding relative errors of the singular values obtained by rSVD, SI and BKI.
(c) The singular value bars obtained by SVD, rSVD, SI and BKI with np = 16, (d) the
corresponding relative errors of the singular values obtained by rSVD, SI and BKI. (e)
The singular value bars obtained by SVD, rSVD, SI and BKI with np = 30. (f) The
corresponding relative errors of the singular values obtained by rSVD, SI and BKI.
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(a) (b)

(c) (d)

(e)

Figure 2.5: Comparison between RTMs obtained via carrying out the conventional SVD(a),
the rSVD(b),and BKI for q = 1. We only use the first eight singular values – i.e. np = 8�
ns where ns = 100. (d) The difference between (a) and (b), (e) the difference between (a)
and (c).
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2.6 Slicing and dicing

Now that we have established a method to factorize EIVs based on time-domain propaga-

tors, we would like to discuss how to extract different gathers without having to form the

EIVs themselves explicitly (see also Da Silva, Zhang, Kumar, and Herrmann 2019 who ac-

complished the same when using a tensor factorization in the hierarchical Tucker format).

Aside from having major advantages regarding memory use and storage, all described op-

erations scale with the rank of the factorization and as long as this rank k < ns

4
we gain

computationally compared to methods that loop over shots. In addition, after the EIVs are

factorized, no additional wave-equation solves are needed to extract the gathers. We are in-

terested in three different gathers, namely Common Image Point gathers (CIPs), Common

Image Gathers (CIGs), and geological dip corrected CIGs. The latter correspond to CIGs

where we compute the subsurface offset in the direction perpendicular to the geological

dip. As outlined by Leeuwen, Kumar, and Herrmann 2017, including this rotation has ad-

vantages for amplitude versus offset analyses and as we will show that it leads to improved

focusing.

To set the stage, we use the following notation for the discretized image volume E[iz, ix; jz, jx]

with iz = 1 · · ·nz, ix = 1 · · ·nx the indices along the spatial coordinates (we use the

”FORTRAN” convention where first dimension runs over the rows) and with jz = 1 · · ·nz,

jx = 1 · · ·nx the indices that run over the second set of coordinates. For notational sim-

plicity we drop the frequency index. We impose the time imaging condition by summing

over this index after extracting the different gathers.

While formally a matrix of size N ×N , we consider the discretized image volume as a

four dimensional array. Similarly, we can regard the factors as multi-dimensional arrays—

i.e., we have L[iz, ix; ip] with ip = 1 · · ·np and R[jz, jx; ip] as depicted in Figure 2.6a). We

adopt the Matlab-like : notation to extract vectors or matrices from these multi-dimensional

arrays.
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According to Leeuwen, Kumar, and Herrmann 2017, a CIP gather indexed by a single

point (iz, ix) is given by the following 2D slice E[iz, ix; :, :], indicated by the green plane

in Figure 2.6b. To avoid having to form the EIV explicitly, we implement the extraction of

CIPs directly on the factors as outlined in Algorithm 3. In this algorithm, we extract the

vector l = L[iz, ix; :] ∈ C1×np once followed by a loop over depth during which this vector

is applied to the transpose of the matrix R[j, :; :] ∈ Cnx×np for j = 1 · · ·nz.

Algorithm 3 Pseudo code for CIP gather extraction

1: Input: location common image point (iz, ix) and low rank factors {L,R}

2: extract the vector l = L[iz, ix; :] ∈ C1×np

3: for j=1:nz

4: E[iz, ix; j, :] = lR∗[j, :; :]

5: end

6: output: Real part of E[iz, ix; :, :]

CIG gathers for horizontal subsurface offset correspond to extracting E[iz, ix; jz = iz, :

], iz = 1 . . . nz as depicted by the red plane in Figure 2.6b. Algorithm 4 extracts CIGs

along all depth and at a single lateral index ix by extracting the vector l = L[j, ix, :] ∈

C1×np now within the loop over the vertical coordinate followed by a multiplication with

the matrix R∗[j, :; :]. The resulting CIG corresponds to real part of E[iz, ix; jz = iz, :] for

iz = 1 · · ·nz.

Algorithm 4 Pseudo code for CIG gather extraction

1: given the lateral index of the CIG ix and low rank factors {L,R}

2: for j=1:nz

3: extract the vector l = L[j, ix; :] ∈ C1×np

4: E[j, ix; j, :] = lR∗[j, :; :]

5: end

6: output: Real part of E[iz, ix; jz = iz, :] for iz = 1 · · ·nz
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(a) Element-wise extraction schematic diagram

(b) Element-wise extraction and different slices through the 3D sub-cube of EIV

Figure 2.6: (a) shows the low-rank representation L and R and organize the 4D EIV into
2D matrix. The diagonal dash line indicates where the traditional RTM images extracted
from. (b) presents the L and R by 3D cubes whose third dimension is the probing size np,
and the 3D sub-cube of EIV is E[:, ix; :, :] by fixing x dimension with ix, where the green
cross section E[iz, ix; :, :] indicates one CIP gather at iz, ix, and the red slice E[iz, ix; jz =
iz, :], iz = 1 · · ·nz indicates one CIG gather at ix along all the depth.
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In addition to the CIPs and CIGs, we introduce geologic-dip corrected CIGs that com-

bine information from both gathers by estimating the geologic dip as a function of depth

along the CIG. We find the geologic dip by maximizing the stack power in CIPs as illus-

trated in Figure 2.7. As shown by Leeuwen, Kumar, and Herrmann 2017, CIGs computed

with horizontal offsets poorly focus when reflectors are steeply dipping. These authors

showed that there is a complete lack of focusing for vertical reflectors using horizontal off-

sets and for horizontal reflectors using vertical offsets. Following their work, we compute

the geologic dip using stack power and subsequently correct for it such that the offset di-

rection is always taken perpendicular to the geological dip. The procedure that we follow

to correct CIGs is summarized in Algorithm 5.

Algorithm 5 Pseudo code for dip corrected CIG gather extraction

1: Input: lateral index ix, offset range d, number of angles nθ, and {L,R}

2: θ = [0, π]

3: for j=1:nz

4: extract the vector l = L[j, ix; :] ∈ C1×np

5: for i=1:nθ

6: find indices Iz, Ix = {(iz, ix)| along lines with angle θi}

7: extract R̂ = R[Iz, Ix; :]

8: e = lR̂∗

9: Stack Power Γ[i, j] = ‖e‖2

10: end

11: find the maximum of Γ[:, j] and the corresponding θmax and e perpendicular to

θmax

12: CIGdip[:, j] = e

13: end

14: output: Real part of CIGdip and the stack power image Γ
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Figure 2.7: schematic diagram for stacking power on the slice E[iz, ix; :, :] within d offset.

2.7 Numerical experiments

We presented a numerical framework to represent and manipulate EIVs by low-rank factor-

izations obtained via randomized probing and BKI iterations. We argue that these factor-

izations are a natural parameterization for full-subsurface offset EIVs. We will now show

how these factorizations can be applied to a series of imaging problems with an emphasis

on how to make informed choices on the rank and the order of the BKI method given com-

putational constraints. As we observed from the example with the explicit EIV calculated

from a small subset of the Marmousi model, the BKI method with power q = 1 outper-

forms the rSVD and SI. For this reason, we will employ BKI iterations for q = 1 for the

remainder of the paper.

Our imaging experiments will be conducted on the Marmousi model and are designed

to demonstrate our ability to compute RTM images, CIPs, CIGs, and dip corrected CIGs,

from factorization obtained with randomized probing and BKI iterations. To establish ac-

curacy of the proposed method, we compare exact CIPs and CIGs with their approximate

counterparts derived from the low-rank factorization without the need to form the full EIV.

To handle imaging problems with steep dips, we show how CIGs can be calculated that
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correct for the local geologic dip.

To verify the validity of the proposed factorization, we conduct a series of imaging

experiments that involve the Marmousi model, which is 8km wide and 3.2km deep and

discretized on a 6 × 6m grid. We acquire data from 650 co-located sources and receivers

positioned at a depth of 18m and sampled with a 12m interval horizontally. We simulate

data with the acoustic constant density wave equation with an absorbing boundaries all

around and a Ricker wavelet centered at 23Hz. Before imaging, we remove the direct wave

from the simulated ”observed” data.

Given this factorization, we compute a migrated image via Equation 2.9 and we com-

pare this result with a regular computed over all ns = 650 � 130 sources. Aside from

some noise, the migrated image obtained from the factorization and conventional RTM

compare well (cf. Figure 2.9b and 2.9a). As we can see in Figure 2.9, the extracted RTM

from the recovered low-rank factorization of EIV has good quality, the image is not perfect

due to the lose of the energy presented by the singular values after 130th singular. The fact

that these images are not the same is not surprising because our factorization is approxi-

mate, which makes the image a bit noisy and the amplitudes are slightly less well resolved.

However, we argue that this is a relatively small price to pay since the factorization gives

us access to much more information such as CIP gathers without the need to compute ad-

ditional wave-equation solves. To demonstrate that this is indeed the case, we compare

in Figure 2.10a true CIP, obtained by time-domain probing of the EIV with a bandwidth-

limited point source located at (z = 870m, x = 5250m) (Leeuwen, Kumar, and Herrmann

2017), with a CIP computed from the factors using Algorithm 3. As with the RTM image

itself, the CIP derived from the factors while noisy captures most of the energy. As with

the true CIP, the approximate CIP shows a nice directivity pattern with a rotation that is

consistent with the geologic dip. Remember that the approximate CIP did not require addi-

tional wave-equation solves. Finally, we also computed three CIGs at x = 1.8, 3.6, 5.4km

for an offset range between−150 to 150m. The results are included in Figure 2.11. Again,
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Figure 2.8: Selected rank to capture 95% of the data’s energy as a function of frequency.

the results computed from the factorization with Algorithm 4 compare well with the true

CIGs. Except for the presence of some noise, the approximate CIGs (Figure 2.11b) capture

the behavior of the true CIGs (Figure 2.11b). As expected, the energy is well focused for

flat reflectors because the background velocity model is kinematically correct.

To improve the focusing of CIGs for steeply dipping reflectors, we ran Algorithm 5 at

x = 5.4km. This algorithm is designed to correct for the geologic dip so that the subsurface

offset is always taken in the direction perpendicular to the reflector. As we can see from

Figure 2.12a, the CIG is not well focused at locations where the geologic dip is steep. We

can correct for this geologic dip by computing the stack power of CIPs for each depth level

along lines with different angles (see Figure 2.7). The stack power is maximum when the

angle is close to the geologic dip as can be seen in Figure 2.12, where the stack power is

plotted as a function of the angle for three different depth levels. By using the angles where

the stack power is maximum, we are able to correct for the geologic dip by rotating the

direction of the subsurface offset by 90 degrees compared to this angle. The dashed white
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(a)

(b)

Figure 2.9: Comparison RTM images. (a) The true conventional RTM image obtained by
migration 650 shot records and (b) the RTM image computed with a factorization with the
BKI method for q = 1 and np = 130.

43



(a)

(b)

Figure 2.10: Comparison CIP images at (z = 870m,x = 5250m). (a) The true CIP image
via probing with a bandwidth-limited point source and (b) the CIP image extracted with
Algorithm 3.
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(a)

(b)

Figure 2.11: The exact and approximate CIGs at x = 1.8, 3.6, 5.4km, where the offset
range is from −150 to 150m. (a) The merged exact CIGs, (b) the recovered CIGs from the
low-rank representation via Algorithm 4.
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lines in Figure 2.12a correspond to the estimated geologic dips, which is close to the true

but unknown geologic dip. The CIGs computed with this correction using Algorithm 5 are

included in Figure 2.12c. Compared to the CIG included in Figure 2.12a, the corrected

CIG is much better focused in areas where the geologic dip is large.

These examples nicely demonstrate that accurate imaging results can be obtained using

our factored formulation. Aside from being able to approximate RTM images well, the

factored from also provides rapid access to CIPs and (dip-corrected) CIGs at no additional

wave-equation solves. This is made possible by working with the low-rank factored form

without the need to form full EIVs.
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(a) (b)

(c)

Figure 2.12: (a) The original CIG image at x = 5.4km with offset range 150m, (b) the
stack power curves at depth z = 0.432, 1.44, 2.07km, (d) the corrected CIG image with the
dips from stack power.
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2.8 Discussion

Aside from incurring the cost of solving two wave equations per source, conventional RTM

imaging runs substantial costs in computing subsurface offset gathers such as CIGs (Symes

2008; Stolk, Hoop, and Symes 2009; Rickett and Sava 2002) or angle-domain CIGs (De

Bruin, Wapenaar, and Berkhout 1990; Sava and Fomel 2003; Kroode 2012; Kühl and Sac-

chi 2003; Mahmoudian and Margrave 2009; Dafni and Symes 2016b; Dafni and Symes

2016a). CIGs are routinely used during migration-velocity and amplitude-versus offset

analyses (De Bruin, Wapenaar, and Berkhout 1990) and as part of quality control dur-

ing (automatic) velocity-model building (Symes and Carazzone 1991; Shen and Symes

2008). Calculation of these gathers often occurs via brute force cross-correlations between

space-, or sometimes time- (Sava and Fomel 2006), shifted versions of the forward and

adjoint wavefields. Depending on the number of offsets and the number of CIGs, the costs

of these multidimensional cross-correlations (Sava and Vasconcelos 2011b) can become

comparable to calculating the wave equation solves themselves.

Probing techniques based on the double two-way wave-equation (cf. Equation 2.6)

avoid some of these costs by computing CIPs for all subsurface offsets at the price of only

two wave equation solves and a multi-dimensional convolution with the data matrix per

probing vector. While this probing technique, introduced by Leeuwen, Kumar, and Her-

rmann 2017, gives us access to objects (e.g. CIPs) to which we normally would not have

access, its complexity scales linearly with the number of CIPs, which rapidly becomes

computationally infeasible. By using randomized probing techniques in combination with

Block Krylov iterations, we overcome this shortcoming by casting EIVs in an approximate

low-rank factored form. As we have shown, this factored form gives us access to conven-

tional RTM images (cf. Equation 2.9), various subsurface-offset gathers (Algorithms 3 –

5), and multi-scenario imaging with costs that scale with the number of factors np. This

number is typically much smaller than the number of source experiments, ns � np.
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While the examples were all in 2-D, our formulation is suitable to scale to 3-D for the

following reasons: *(i)* our use of highly optimized time-domain finite-difference prop-

agators from Devito; *(ii)* our Fourier-domain implementation of the multi-dimensional

convolution with the data matrix (see Equations 2.7 or 2.14); and *(iii)* the factorizations

themselves. Because we work with subsets of frequencies, we are able to limit memory use

and the compute needed to factorize. For now, we implemented the probing with the regular

Fourier transform, followed by subsampling, which requires storage of the full wavefield.

As shown recently by Witte, Louboutin, Luporini, Gorman, and Herrmann 2019, we can

remove the need to store the full wavefield by using the on-the-fly Fourier transform. Since

the factors are in the Fourier domain, it is trivial to implement the zero-time imaging con-

dition via a simple stack.

In addition to having a computational feasible and manipulatable representation for

EIVs, our factorization allows for the establishment of a completely new iterative seismic

imaging workflow during which

1. we follow the heuristic explained in the experiment section and select np, followed by

probing with random Gaussian vectors to calculate K := [EW, (EE∗)EW, · · · , (EE∗)qEW]

(line 1 Algorithm 2) requiring 6np wave-equation solves when we set q = 1. From K, we

compute its QR-factorization, followed by another probing with E∗ at 2np wave-equation

solves in turn followed by an SVD producing our factorization {L,R} with E ≈ LR∗ for

each frequency.

2. we have access to migrated images via Equation 2.9, to CIPs (via Algorithm 3),

and (dip-corrected) CIGs (via Algorithms 4 or 5) at costs that scale with np and which do

not require additional wave-equation solves. We compute these gather for each frequency,

followed by summing to impose the zero-time imaging condition.

Aside from having access to different kinds of subsurface offset CIGs or angle-domain

ADCIGs (Dafni and Symes 2016b), this new imaging scheme has the advantage that it

can relatively cheaply recompute these CIGs for a different velocity model via velocity
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continuation. We consider this as a highly desirable feature. For instance, this feature

would allow us to recompute CIGs for quality control during velocity model building. It

would also allow for the evaluation of different models during redatuming (Kumar, Graff-

Kray, Vasconcelos, and Herrmann 2019).

Subsurface-offset image gathers exist in various forms and are parameterized by sub-

surface offset as in CIGs or by angle as in angle-domain CIGs (ADCIGs). In either case, the

parameterization of these gathers, and their recent extensions including dip-angle decompo-

sition (Dafni and Symes 2016b; Dafni and Symes 2016a) or micro-local parameterization

(see e.g. Kroode 2012), does not make use of the underlying low-rank structure of EIVs.

By explicitly using this low-rank structure, our ability to probe, factorize, and velocity-

continue, we offer an alternative formulation where the underlying linear algebra offers a

natural and scalable parameterization. Informed by the singular-value decay of the data and

tolerance for errors, we make an informed decision on the underlying rank np. This number

determines the overall computational complexity. As long as np is sufficiently small, our

formulation can arguably compete computationally while offering unique features such as

access to arbitrary subsurface-offset or angle gathers, to geologic dips, and to the option to

recompute these gathers for different background velocity models at significantly reduced

costs.

The above workflow during which we produced geologic-dip corrected CIGs is one

example of what our factored approach has to offer. Other imaging schemes are possible.

Since we have access to omni-directional subsurface offset gathers, we have flexibility to

derive filters designed to remove certain imaging artifacts as recently proposed by Dafni

and Symes 2016a. Since CIPs contain the full scattering information for each point in the

image, we have access to the local geologic dip. The latter corresponds to the specular dip

angle of reflection discussed in recent work by Dafni and Symes 2016a.

In addition to allowing for manipulations of full subsurface-offset EIVs, the proposed

formulation essentially boils down to an imaging algorithm with a computational com-
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plexity that scales with the number of probing factors np instead of with the number of

shots ns. We found empirically, that the singular values of EIVs decay faster then those

of monochromatic data matrices. This allows us to chose the probing size and an imaging

paradigm with determined by np, which is smaller than ns and arguably also smaller then a

low row-rank approximation of the data matrix as proposed by Hu, Abubakar, and Habashy

2009. In future work, we plan to select the rank adaptively per frequency, which should

increase the performance of or low-rank factorization even further.

2.9 Conclusion

Wave-equation based imaging techniques, such as reverse-time migration including the for-

mation and manipulation of subsurface-offset gathers, is becoming more and more common

place in modern-day seismic imaging workflows. While subsurface-offset image gathers

carry important information on the velocity model and the local scattering mechanism, they

are because of their high dimensionality difficult to form and manipulate. By combining

probing of full-subsurface offset extended image volumes via the double two-way wave

equation with techniques from randomized linear algebra, we were able to cast these ex-

tended image volumes into a highly compressed and manipulatable factored form. To meet

the demands of high-resolution imaging, we based our factorization on probing with the

time-domain wave equation and an advanced Block-Krylov randomized singular-value de-

composition technique. The latter is designed to increase the accuracy of the factorization

for high frequencies where the singular values decay more slowly. Given this factorization,

we demonstrated how various subsurface image gathers can be computed without having

to form the extended image volume explicitly.

While the initial cost of the factorization may exceed the cost of regular reverse-time

migration, the factors give us access to gathers as a function of the omni-directional subsur-

face offset. These gathers allows for the computations of geologic-dip corrected common

image gathers that remain focused in situations where the reflectors are strongly dipping.
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Common image gathers based on horizontal offset alone do not focus in this situation even

when the background velocity model is correct.

2.10 Appendix

Due to the low-rank property of the EIV, we expect to express the monochromatic Ei as

the products of small or narrow matrices. For instance, we can approximate Ei with the

singular value decomposition truncated for the np larger singular values of Ei:

Ei ≈ ΦiΣiΨ
∗
i , (2.15)

where Φi and Ψi are now the N ×np matrix containing the np left singular vectors and

right singular vectors respectively, associated to the np larger singular values listed in the

np×np diagonal matrix Σi. As np � N , we expect to be able to store the matrices Φi, Ψi

and the diagonal of matrix Σi, and extract information, e.g, RTM or CIPs by matrix-vector

multiplication successively.

In the same spirit, we may write E as the product

Ei ≈ LiR
∗
i , (2.16)

with Li and Ri being two N × np matrices, obtained from the SVD ( 2.15):

Li = Φi

√
Σi,

Ri = Ψi

√
Σi.

(2.17)

Note that for this monochromatic Ei, matrix Si is real, positive and diagonal, so the

computation of its square root is implemented element-wisely on the diagonal. Then the

construction of Li and Ri is really cheap once we have the SVD decomposition of Ei.

However the basic SVD method has limitations in computation which involves (1) 2ns

PDE solves that are extraordinarily expensive for large-scale model, (2) the cost of SVD on
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the full EIV which is of the order of O(N3) according to Holmes, Gray, and Isbell 2007.

To circumvent the computational cost of the basic SVD, we propose to use the ran-

domized SVD based approach (Halko, Martinsson, and Tropp 2011) to obtain the low-rank

representation of the full EIV. Note that we have already wrapped up the monochromatic

EIV as a linear operator Ei based on Helmholtz solves, and EIVs along frequency as a

linear operator E based on time-stepping solves. To keep it simple and concise, we adopt

the monochromatic notations in all the low-rank recovery algorithms below, following with

explanations on the implementation in both frequency harmonic domain and time-domain.

The randomized SVD algorithm with the subscript neglected, is listed as Algorithm 6:

Algorithm 6 Monochromatic randomized SVD algorithm from Halko, Martinsson, and
Tropp 2011.

1: Generate np random Gaussian vectorsWi = [w1, . . . ,wnp ]

2: Y = EW,Y ∈ CN×np

3: [Q,T] = qr(Y),Q ∈ CN×np

4: Z = E∗Q,Z ∈ CN×np

5: [Φ,Σ,Ψ] = svd(Z∗), svd computes the top np singular vectors

6: Φ← QΦ

7: L = Φ
√

Σ,R = Ψ
√

Σ

8: output: factors L,R from which actions can be formed via E ≈ LR∗

Here in line 0 the vector wnp is one Gaussian vector. And the following steps in Al-

gorithm 6 are implemented monochromatically. The corresponding step 0 in time-domain

version generates the tensor W which is the band-limited noisy simultaneous shots located

at every subsurface grid point, used in time-domain probing method. Analogously, the fol-

lowing steps in time-domain version get the corresponding monochromatic tensors: Y, Q,

Z, Φ, Ψ, L and R. Also the ‘qr‘ and ‘svd‘ factorizations are overloaded and implemented

over all frequency slices of the corresponding tensors Y and Z∗. Finally this algorithm

combined with time-domain wave-equation solver can get the recovered EIVs along all
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frequencies.
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CHAPTER 3

LOW-RANK RECOVERY FOR EXTENDED IMAGE VOLUMES VIA

INVARIANCE RELATIONSHIP

3.1 summary

Continued with the work in chapter 2, the proposed factorization provides a mechanism to

use the invariance relation of extended image volumes in factored form. This invariance

relation states that extended image volumes obtained for one background velocity model

can directly be mapped to those of another background velocity model without the need

to re-factorize. Our low-rank factorization inherits this invariance property so we only

incur the relatively high factorization costs once for common imaging workflows during

which different velocity model scenarios are examined. All subsequent imaging experi-

ments only involve the factors and are therefore computationally cheap compared to con-

ventional imaging where the cost scale with the number of source experiments.

3.2 Introduction

In chapter 2 we introduce the extended image volumes (EIVs) that contain rich subsurface

information, including RTM, CIPs and GIGs used for not only creating images, but also for

the interpretation of rock properties and velocity analysis in complex geological settings

(Shen and Symes 2008; Sava and Vasconcelos 2011c). And we also commend that the

full EIVs are too expensive in computation and storage, which impedes the widely usage in

industrial large-scale problem. Leeuwen, Kumar, and Herrmann 2017 proposed the probing

technology that extracts the desired CIPs (column of the EIVs) or angle gathers with limited

computation that only proportional to the number of columns (usually proportional to the

grid points 2nz in depth dimension). However if the RTM image (diagonal elements of
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EIVs) is desired, this probing technology still needs to compute as high as N , the number

of the subsurface grid points.

Thanks to the redundancy of the full EIVs that we explained in chapter 2, we are

able to present the EIVs with low-rank representations (Kumar, Graff-Kray, Leeuwen, and

Herrmann 2018a). As we have shown in chapter 2, the rank of the EIV at low frequency is

much lower than that of the data. We can imagine that the upper limitation of EIV’s rank is

the rank of data because the definition of monochromatic EIV involves full-rank operators

of wave-equation solver and the low-rank data matrix. Finally we show in chapter 2 that

we can recover EIVs based on rSVD methods, where the range of the EIV is first obtained

by probing the implicit function of EIV’s forward with np simultaneous random shots, then

extracted out by QR factorization and probed back to EIV’s implicit adjoint function. The

computation for any image gather could be limited to 4np wave-equation solves, where

np slightly larger than the rank of EIV leads to accurate recovery (Kumar, Graff-Kray,

Leeuwen, and Herrmann 2018a).

However the implementation in the early stage, which based on frequency Helmholtz

solvers, scales badly to the size of the model due to the Helmholtz solver involved here

is harder to solve for larger model and higher frequencies. In order to extend this idea to

the industrial scale 2- or 3-D problem in the future, we implement the low-rank recovery

of EIV based on time-stepping propagator Devito (Kukreja, Louboutin, Vieira, Luporini,

Lange, and Gorman 2016) instead of Helmholtz solver. However there still are open issues

to solve. For example, the rank of the EIV will increase along frequency, which makes

it more expensive to recover sharper EIV because higher rank for higher frequencies is

demanded, rising again the PDE-related (or wave-equation-related) cost and storage.

To limit the probing size, in chapter 2, we propose to use power iterations (Halko,

Martinsson, and Tropp 2011)—i.e. simultaneous iterations and block Krylov iterations,

which could promote the decay of the singular values of the aimed frequency components,

together with time-stepping probing framework. We compare the performance of these two
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power schemes for a small model from Marmousi with limited power q = 1, 2 by analyz-

ing the errors in the recovered singular values and the RTMs, and give the computation

and storage complexity analysis. The experiment demonstrates that we could improve the

recovery accuracy without increasing the probing size when the rank goes higher along

frequency. So the following slicing and dicing do not cost any extra PDE solves. However,

according to the computation and storage complexity analysis, the power scheme based

rSVD still cost more wave-equation-related computations. And the BKI method even takes

more temporary memory to form the Krylov space that gathers different orders together.

Yet the superiority of the power scheme based rSVD over the basic rSVD is not very clear

in computation and storage. Since EIVs are solutions to the double two-way wave equa-

tion, which itself adheres to an invariance relation, they exhibit this invariance as well and

we will show this property is inherited by our factorization. We will demonstrate that this

invariance leads to imaging workflows where we incur the relatively expensive computa-

tional costs of the factorization only once. All subsequent costs scale with the rank of

the factorization and this includes imaging in different background velocity models. This

property is unique and can be seen as an image-domain extension of early work by Hu,

Abubakar, and Habashy 2009.

In this chapter, based on the work of chapter 2, we discuss time-harmonic and time-

domain versions of the invariance relationship for EIVs. This relation ship allows is to

map EIVs for one background velocity model to another without the need to re-factorize.

We demonstrate that a multi-scenario imaging workflow that works on the factors alone is

feasible by virtue of velocity continuation that derives from the invariance relationship of

EIVs by carrying out a realistic imaging scenario involving salt. During that experiment,

we demonstrate that a multi background velocity model imaging scenario that work on the

factors alone are computationally feasible by virtue of our velocity-continuation approach.

which derives from the invariance relationship of EIVs (Leeuwen and Herrmann 2012;

Kumar, Graff-Kray, Leeuwen, and Herrmann 2018b).
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3.3 Invariance relationship of EIV

So far, we concentrated on finding representations for EIVs using factorizations informed

by randomized probings. Our factorizations incurred an upfront cost dominated by the

number of randomized probings that determined the number of wave-equation solves. All

subsequent manipulations, such as forming CIPs and (angle corrected) CIGs, did not in-

volve wave-equation solves and are therefore relatively cheap. Moreover, the number of

probing vectors is often smaller then the number of source experiments, i.e.,np � ns.

To allow for more realistic imaging workflows, where different imaging scenarios in-

volving different velocity models are conducted, we propose to leverage an important in-

variance property of the double wave equation, which model EIVs. This property allows

us to do velocity continuation (Kumar, Graff-Kray, Leeuwen, and Herrmann 2018b)—i.e.,

to directly map an image volume obtained with one velocity model to an image volume

yielded by another velocity model without the need to remigrate involving a loop over ns

shots. We will adapt this invariance property of the double wave equation to the low-rank

factorizations for the EIVs as introduced earlier. Since np � ns, this formulation will al-

low us to test different imaging scenarios with varying background velocity models—e.g.,

different picks of top salt, at a greatly reduced cost. To firmly establish this opportunity

where we derive invariance relations for the factors themselves, we first introduce the in-

variance relationship in factored form in the Fourier domain, followed by its time-domain

equivalent.

3.3.1 Monochromatic invariance relationship

Because the right-hand-side of the two-way wave-equation does not depend on the back-

ground velocity model, Leeuwen, Kumar, and Herrmann 2017 derived an invariance re-

lationship directly linking image volumes E1 and E2 pertaining to background velocity

model mi, i = 1, 2 (for simplicity, we abandoned the frequency subscript and the subscript
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now specifies extended image volumes pertaining to velocity models for scenario 1 or 2).

According to the double wave equation, these image volumes are related via

H∗1 · E1 ·H∗1 = H∗2 · E2 ·H∗2, (3.1)

where the Helmholtz operators Hi = H(mi), i = 1, 2 depend on the background

velocity models for the two imaging scenarios. This relationship allows us to directly

calculate EIV, E2, for imaging scenario 2 from the EIV yielded by imaging scenario 1 via

E2 = H−∗2 ·H∗1 · E1 ·H∗1 ·H−∗2 . (3.2)

Since EIVs can be represented in factored form, the factors for both imaging scenarios

are related via

L2 = H−∗2 ·H∗1 · L1,

R2 = H−12 ·H1 ·R1.

(3.3)

With this relationship, we only need to factor an EIV once, say for the velocity model

of scenario 1. All subsequent factors for different imaging scenarios with different velocity

models can be derived with Equation 3.3, avoiding the computational expensive step of

randomized probing, followed by the relative expensive BKI iterations. Consequently, we

arrived at a formulation where the expensive computational costs of factorizing EIVs are

incurred only once up front. After the initial factorization, we only need to spend 2npwave-

equation solves per factor, which easily negates the computational overhead associated

with the initial factorization. Obviously this is a powerful result in situations where there

is uncertainty in the background velocity model. In the next section, we discuss how to

implement these invariance relations using time-domain wave-equation solvers.
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3.3.2 Velocity continuation in the time domain

The combination of low-rank factorizations with the above invariance relationship gives

us the possibility to directly form factored EIVs for different velocity models without the

need redo the factorization including the probing. According to Equation 3.3, we only

need access to the factors in the current velocity model, the action of the forward and

adjoint wave equation itself in the current and the new velocity model, and the solution of

these wave equations for the two velocity models.

While the monochromatic invariance relations allows us to map factors from one veloc-

ity model to another, the formulation hinges on having access to the action of the discrete

wave-equation operators and their inverse. The need for the latter can become problem-

atic since Helmholtz solvers do not scale very well to high frequencies and 3D models.

To address this issue, we employ wave-equation solvers, including the action of the wave-

equation operators, based on time-stepping and finite differences implemented with De-

vito (Louboutin, Lange, Luporini, Kukreja, Witte, Herrmann, Velesko, and Gorman 2018).

Based on this time-domain implementation, the new factors, which now become tensors,

can be written as

L2 = F ◦ A−>2 ◦ A>1 [L1] with L1 = F>[L1],

R2 = F ◦ A−12 ◦ A1[R1] with R1 = F>[R1].

(3.4)

Here A−12 represents forward modeling in the velocity model m2 for scenario 2, and

A−>2 is the corresponding adjoint operator. The linear operator A1 is the inverse forward

modeling operator for imaging scenario 1 with the velocity model m1, and A>1 is the cor-

responding adjoint operator. As in the monochromatic case, the direct mapping of the

factored form of an EIV from one to another velocity model only involves 2np actions of

the forward/adjoint wave-equation and their inverses. Note that compared to the frequency

domain formulation, the action of time-domain operators and their inverses is roughly the

same while the cost of applying the Helmholtz operator is cheap compared to applying its
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inverse.

3.3.3 Power scheme based rSVD plus invariance relationship together

Aside from reducing the cost (from O(ns) to O(np) actions with wave operators and their

inverse), the main advantage of working with factored EIVs is that we only incur the costs

of the initial factorization once, which involves randomized probing and a SVD based on

BKI iterations. After this initial cost, factorizations of EIVs for different imaging scenar-

ios with different velocity models can be formed and this process can be repeated at will

because the mapping in Equation 3.4 preserves accuracy of the original factorization. We

base this claim on the fact that the action of the wave-equation operators on their inverse

is the identity by definition. This means that if we apply the wave-operator to a factor, we

will undo possible wave simulation errors, such as numerical dispersion. In view of these

properties, we argue that it is beneficial to develop a strategy where we work with as few

as possible factors (np) calculated with an as high as possible accuracy.

3.4 Numerical experiments

To test the approach we proposed above, we consider a large-scale complex imaging prob-

lem with Salt. To mimic a realistic imaging scenario, we examine an imaging scenario

where the background velocity model for the top salt is wrong. We demonstrate that our

velocity continuation technique is capable of mapping the low-rank representation for the

wrong velocity model to corrected factors that lead to an image that is well focused without

the need to recompute the factorization.

While working with EIVs in factored form gave us access to accurate RTM images and

subsurface offset gathers at limited costs, imaging in complex areas remain challenging be-

cause of inaccuracies in the background velocity model. For instance, errors in top salt can

lead to a rapid deterioration of the imaging quality beneath salt. In practice, this means that

imaging teams go through many cycles of updating the velocity model, followed by imag-
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ing. By using the invariance relation for EIVs, we propose to use a velocity-continuation

technique based on our factorization and captured by Equation 3.3. According to those

equations, the left and right factors can be mapped directly from one velocity model to an-

other without the need to completely recompute the factorization. Instead, we incur costs

equalling 4np, which is relatively cheap when np is small.

To mimic a realistic subsalt imaging scenario, we compare three scenarios that derive

from a subset of the Sigsbee model. In the first scenario, we compute an image for a

background velocity model where top salt is wrong. We compare this result to the second

scenario where the background velocity model is corrected but where we remigrate the data

by recomputing the factorization. In the third scenario, we compute the image by mapping

the EIV in factors form with Equation 3.3. To avoid salt-related imaging artifacts, we use

the inverse-scattering imaging condition [add references] on linearized data simulated with

the correct background velocity model depicted in Figure 3.1b and the true perturbation

given by the difference between the 2.7× 5.4km true velocity model, sampled on a 6× 6m

grid, and the correct background velocity model. We simulate the data for 450 co-located

sources and receivers spread over the top of the model and at a depth of 18m sampled with

a 12m interval. The source signature is a Ricker wavelet centered at 23Hz.

As before, we choose np according to the rank needed to capture 95% of the energy in

the data. We plot this rank in Figure 3.2. Based on our empirical finding that the singular

values of EIVs decay more rapidly, we choose np = 100 roughly half of the maximum

rank needed to accurately represent the data at 70Hz. Figure 3.3a contains the image

obtained with a background velocity model that contains errors in the definition of top salt

(cf. Figures 3.1a and 3.1b). Figure 3.1a misses key details on the salt sediment boundary,

which has a detrimental effect of the image beneath the salt (cf. Figures 3.3a and 3.3b).

Not only the bottom salt is out of focus but so are the sediments and fault beneath the

salt. The image for the correct background velocity model is obtained via a completely

new probing, factorization, and application of diagonal extraction. This shows that our
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factorization is capable of handling imaging complex salt areas, and observation confirmed

by the CIPs (cf. Figures 3.4a and 3.4b) and CIGs (cf. Figures 3.5a and 3.5b). While

all slightly noisy, the images and subsurface offset gathers behave as expected with energy

focused onto the reflectors. What is more important, is that exactly the same image quality

is attained for the RTM and subsurface-offset gathers when we directly map the original

factorization, obtained for the wrong velocities of scenario one, to the factorization for the

correct velocity model using Equation 3.3 instead of recomputing the factorization after

probing. As a result, we are with scenario three able to obtain the RTM image (Figure

3.3c), CIP (Figure 3.4) and CIG (Figure 3.5) at only 4np wave-equation solves. For

comparison, conventional RTM without having access to EIVs would have cost 2ns wave-

equation solves while scenario two would, according to Table 2.2 for q = 1, have cost

2np + 4np + 4np = 10np, while the direct map only costs 4np. Remember we choose

np = 100 � ns = 450, which means that we incur slightly more cost when conducting a

single migration (1000 wave-equation solves versus 900 for conventional RTM). However,

after this factorization each additional RTM only costs 400 wave-equation solves. Also,

remember that factorizing EIVs gives us easy access to subsurface offset gathers.
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(a)

(b)

Figure 3.1: The background models used as different velocity scenarios for velocity con-
tinuation test. (a) The initial guess of the background model where the top of the salt is not
correct, (b) the kinematically correct background model.
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Figure 3.2: Selected rank to capture 95% of the data’s energy as a function of frequency.
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(a)

(b)
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(c)

Figure 3.3: The RTMs extracted from the recovered low-rank representations of the EIV
from (a) the initial guess model, (b) the kinematical correct model, (c) the RTM extracted
from the recovered EIV that mapped from the initial guess model to the correct model.
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(a) (b)
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(c)

Figure 3.4: The CIP images extracted from the recovered EIVs at x = 2640m, z = 1590m.
(a) the CIP image of the EIVs from the initial guessed model, (b) the CIP image of the
EIVs from the correct model, (c) the CIP image of the EIVs via mapping from the initial
guess to the correct model.
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(a)

(b)

70



(c)

Figure 3.5: The CIGs extracted from the low-rank representations with (a) the initial guess
of the background model (as in Figure 3.1a), (b) the kinematically correct background
model (as in Figure 3.1b), (c) via invariance relationship mapping from the initial back-
ground model to the correct background model.
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3.5 Discussion

In this chapter, we introduce the invariance relationship in both frequency domain and

time domain. And we use the invariance relationship to map between different background

models. In the numerical experiments, we test with part of the Sigsbee2A model. The

initial guessed smooth model has wrong salt dome, so the corresponding RTM has wrong

located reflectors, and the CIPs are not focused to the image points, so neither do the

CIGs. After mapping the low-rank factors we obtained with BKI method from this initial

guess to the kinematically correct background model, we get the updated low-rank factors,

where the reflectors of RTM are located correctly, and the CIPs are focused correctly to

the image point. When we use power method to obtain the low-rank factors for the initial

model, we spend more than 4np + 4qnp and 2np + 4qnp + 2(q + 1)np wave-equation

solves for SI and BKI respectively, and the corresponding ‘qr‘ and ‘SVD‘ factorizations.

But the mapping to other model only costs 4np wave-equation solves and no factorizations

anymore. The superiority of the power-scheme-based rSVD combined with the invariance

relationship indicates that when the computational resource is limited, we could consider

to achieve more accurate low-rank representations with the probing size as low as possible

via powered rSVDs.

Based on the invariance relationship, it is also possible to update the background model

according to the diagonals of the gradient of the EIV by minimizing the objective functions

that focus the EIV commute with diagonal weighting matrices that penalize off-diagonal

energy (Leeuwen, Kumar, and Herrmann 2017). And as we mentioned in the discussion in

chapter 2, when there is salt, the EIV would be ill-conditioned, which means the singular

values are dominated by the salt. We need to design some preconditioners in the future to

improve the images extracted from the low-rank factors of EIV.
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3.6 Conclusion

Because we are able to directly map the factors from one background velocity model to

another, without the need to factorize again, we are justified to incur the relatively high

initial factorization costs. This direct mapping of the factors is known as velocity continua-

tion. We argue that our approach is one of the first concrete examples where this technique

results in a viable workflow for imaging involving salt. We demonstrate that we are capa-

ble of carrying out a completely new imaging experiment without the need to refactor. We

accomplish this by using the invariance relation of extended image volumes whose applica-

bility extends to its factored form. Since our factorization is low rank, the costs of repeated

imaging experiments is small since the rank is typically much smaller then the number of

shots in an imaging experiment.
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CHAPTER 4

TIME-DOMAIN SPARSITY PROMOTING LEAST-SQUARES REVERSE TIME

MIGRATION WITH SOURCE ESTIMATION

4.1 Summary

In chapter 2, we mainly discuss the low-rank recovery on the extended image volume

(EIV), where the imaging condition is multi-dimensional convolution in time domain and

matrix-matrix multiplication in monochromatic frequency domain. The future work on

EIV could be focused on developing the preconditioners which could alleviate the ill-

conditioning of the EIV and compensate the wavelet imprint from the source and receivers,

so further improve the resolutions. From this chapter on, we focus on imaging problems

limited to only the diagonals of the EIV, namely the reverse time migration image where the

imaging condition is the cross-correlation between the forward and backward wavefields,

instead of multi-dimensional convolutions in time domain, and element-wise multiplication

instead of matrix-matrix multiplication in monochromatic frequency domain. Reverse time

migration also suffers from the wavelet related imprints, and the amplitudes are distorted.

Least-squares reverse time migration is well-known for its capability of generating true-

amplitude subsurface images through fitting observed data in the least-squares sense. How-

ever, when applied to realistic problems, this approach is faced with issues related to over-

fitting and excessive computational costs induced by many wave-equation solves. The fact

that the source function is unknown complicates this situation further. Motivated by com-

pressive sensing, recently developed sparsity-promoting approaches are capable of substan-

tially reducing computational costs while avoiding imaging artifacts and restoring ampli-

tudes. Nevertheless, these approaches still raise issues of lack of convergence, algorithmic

complexity of the solver, and the need to do source estimation possibly on-the-fly. We
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address these problems by presenting an algorithm that allows us to work with randomly

drawn subsets of sources during each iteration. Moreover, we adapt this algorithm with an

on-the-fly source estimation through variable projection, which involves only inexpensive

penalized least-squares sub-problems instead of expensive PDE solvers. Applications of

our algorithms to the Marmousi model and the Sigsbee model illustrate that the proposed

method generates high-resolution images along with accurate estimates for the source sig-

nature using only one to two data passes with a computational cost that roughly equals

that of two conventional reverse-time migrations. Our numerical results also demonstrate

robustness of the proposed method against noise.

4.2 Introduction

Reverse-time migration (RTM) is a popular wave-equation-based seismic imaging method

where the inverse of the Born scattering operator is approximated by applying its adjoint

directly to the observed reflection data (Baysal, Kosloff, and Sherwood 1983; Whitmore

1983). Because the adjoint does not equal the pseudo inverse conventional RTM produces

images with incorrect amplitudes. Amongst the factors that contribute to low fidelity am-

plitudes, the imprint of the temporal bandwidth limitation of the typically unknown source

wavelet features prominently and so does the fact that the Born scattering operator is not

inverted. To overcome these issues, we formulate our imaging problem as a linear least-

squares inversion problem where the difference between observed and predicted data is

minimized in an `2-norm (Schuster 1993; Nemeth, Wu, and Schuster 1999; Dong, Cai,

Guo, Suh, Zhang, Wang, and Li 2012; Zeng, Dong, and Wang 2014). While least-squares

migration is a powerful technique, its successful application to industry-scale problems is

hampered by three key issues. First, iterative demigrations (= Born modeling) and mi-

gration become computationally prohibitively expensive when carried out over all shots.

Second, we run the risk of overfitting the data when minimizing the `2-norm of the data

residual. This overfitting may introduce noise-related artifacts in inverted images. Third,
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while the source location is generally well known, the temporal source function is often not

known accurately. Because imaging relies on knowing the source function, this may have

a detrimental effect on the image and makes it necessary to come up with source estima-

tion methodology. Since we carry out our imaging iteratively, we propose to estimate the

wavelet on-the-fly as we build up the image.

We address the issue of computational feasibility by combining techniques from stochas-

tic optimization (Leeuwen, Aravkin, and Herrmann 2011; Haber, Chung, and Herrmann

2012; Powell 2014), curvelet-domain sparsity-promotion herrmann2012efficient, and on-

line convex optimization (Lorenz, Schopfer, and Wenger 2014) with linearized Bregman.

Stochastic optimization allows us to work with small random subsets of shots, which lim-

its the number of passes through the data. Convergence is guaranteed (Herrmann, Tu, and

Esser 2015b; Yang, Witte, Fang, and Herrmann 2016; Witte, Louboutin, Luporini, Gorman,

and Herrmann 2019) by replacing the `1-norm, by an elastic net consisting of a strongly

convex combination of `1− and `2-norm objectives. Inclusion of the `2-norm result in a

greatly simplified algorithm involving linearized Bregman iterations, which corresponds to

gradient descent on the dual variable supplemented by a simple soft thresholding opera-

tion (Yin 2010; Cai, Osher, and Shen 2009) with a threshold that is fixed. We refer to this

method as sparsity-promoting least-squares reverse-time migration (SPLS-RTM).

In addition to the high computational cost, the lack of accurate knowledge on the un-

known temporal source signature may also adversely affect the performance of the inver-

sion. Errors in the source signature lead to erroneous residuals, which in turn result in inac-

curately imaged reflectors, which now may be positioned wrongly or may have the wrong

amplitude or phase. To mitigate these errors, we need an embedded procedure where the

source signature is updated along with the image during the inversion (Pratt 1999; Aravkin,

Leeuwen, and Tu 2013; Fang, Wang, and Herrmann 2018; Aravkin, Leeuwen, Calandra,

and Herrmann 2012) using a technique known as variable projection (Leeuwen, Aravkin,

Herrmann, Li, Rickett, and Abubakar 2014; Rickett 2013). For time-harmonic imaging,
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variable projection involves estimation of the source function by solving a least-squares

problems for each frequency separately. Since the unknown for each frequency is single

complex-valued variable this process is simple and has resulted in accurate estimation and

compensation for the source-time function (see e.g. Tu, Aravkin, Leeuwen, and Herrmann

2013 and Fang, Wang, and Herrmann 2018). Unfortunately, the situation is more compli-

cated during imaging in the time-domain where we have to estimate the complete source

signature during each iteration. For this purpose, we build on early work by Yang, Witte,

Fang, and Herrmann 2016 by making it suitable realistic imaging scenarios that may in-

clude salt and inverse-scattering introduced by Witte, Louboutin, Luporini, Gorman, and

Herrmann 2019 .

Our work is outlined as follows. First, we introduce the basic equations for time-domain

reverse time migration and least-squares reverse time migration. To overcome the compu-

tational cost associated with the latter, we introduce a stochastic optimization method with

sparsity promotion. This method is designed to provide an image at a fraction of the cost.

Next, we extend this approach so it includes on-the-fly source estimation. This allows us

to remove the requirement of the source function. We conclude by presenting a number of

synthetic case studies designed to demonstrate robustness with respect to noisy data and to

complex imaging scenarios that include salt.

4.3 From RTM to LS-RTM

Since our approach hinges on cost-effective least-squares imaging, we first introduce our

formulation of sparsity-promoting least-squares migration with stochastic optimization fol-

lowed by our approach to on-the-fly source estimation during the iterations.

Reverse time migration derives from a linearization (see e.g. Mulder and Plessix 2004

with respect to the squared background slowness. For the ith source this linearization reads

δdi = Fi(m0 + δm,q)− Fi(m0,q) ≈ ∇Fi(m0,q)δm, (4.1)
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where the vectors δm, q, and δd denote the model perturbation, the source-time func-

tion, and the corresponding perturbation in the data, respectively. We model the data for nt

time samples of a time period of T s. The number of receivers is nr so a single shot record

is of size nt × nr. The nonlinear forward modeling operator Fi(m,q) for the ith source

location involves the solution of the discretized acoustic wave equation

(
∆−m� ∂2

∂t2

)
ui = P>s,iq,

Pr,iui = di,

(4.2)

parameterized by the squared slowness collected in the vector m (for simplicity, we kept

the density constant and we used the symbol � to denote element wise multiplication.)

The symbol ∆ represents the discretized Laplacian and the linear operators Pr,i restrict

the wavefield for the ith source to the corresponding receiver locations, while the linear

operator P>s,i injects the source time function at the location of the ith source in the com-

putational grid. The Jacobian ∇Fi(m0,q) is known as the Born modeling operator and is

given by the derivative of Fi(m,q) at the point of m0. Applying the Jacobian∇Fi(m0,q)

to the model perturbation δm requires the solution of the following linearized equation::

(
m0 �

∂2

∂t2
−∆

)
δui = − ∂2

∂t2
(
δm� ui

)
,

Pr,iδui = δdi,

(4.3)

where the vector δui corresponds to the wavefield perturbation for the ith source.

The goal of seismic imaging is to estimate model perturbations from observed data. We

can expect this reconstruction process to be successful in situations where the above linear

approximation is accurate—i.e., the background velocity model needs to be sufficiently

accurate, which we assume it is. We also need accurate knowledge on the source function,

an important aspect we will address below.
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While the above linearization allows us to create a image via

δmRTM =
ns∑
i=1

∇F>i δdi, (4.4)

with ns the number of shots, the adjoint (denoted by the symbol >) of the Jacobian does

not correspond to its inverse and δmRTM will suffer from wavelet side lobes and inaccurate

and unbalanced amplitude mulder2004comparison, bednar2006two, hou2016accelerating.

Unlike RTM (Equation 4.4 ), LS-RTM (Aoki and Schuster 2009; Herrmann and Li 2012;

Tu and Herrmann 2015a) reconstructs the model perturbation by computing the pseudo-

inverse of the Born modeling operator, which can significantly mitigate these defects. LS-

RTM iteratively solves the following least squares data-fitting problem:

min
δm

1

2

ns∑
i=1

‖∇Fi(m0,q)δm− δdi‖2. (4.5)

Compared to Equation 4.4, the above minimization requires multiple evaluations of

the Jacobian and its adjoint, which becomes rapidly computationally prohibitive for large

2D, 3D imaging problems with the number of sources ns large. This in part explains the

relatively slow adaptation of least-squares reverse time migration (cf. Equation 4.5) by

industry. As we show below, we overcome this problem by combining ideas from stochastic

optimization and sparsity promotion (Herrmann, Tu, and Esser 2015b; Yang, Witte, Fang,

and Herrmann 2016; Witte, Louboutin, Luporini, Gorman, and Herrmann 2019), which

allow us to obtain artifact-free images at the cost of two to three passes through the data.

4.4 Stochastic optimization with sparsity promotion

As we mentioned above, minimization of Equation 4.5 over all ns shots is computation-

ally prohibitively expensive. In addition, the minimization is unconstrained and misses

regularization to battle the adverse effects of noise and the null space (missing frequen-

cies and finite apperture) associated with solving the least-squares imaging problems of
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the type listed in Equation 4.5. To address these two problems, we combine ideas from

stochastic optimization, during which we only work on randomized subsets of shots during

each iteration, and ideas from sparsity-promoting optimization designed to remove the im-

print of the null space and source subsampling related artifacts. As we have learned from

the field of Compressive Sensing (Candès 2006; Donoho 2006; Candès and Wakin 2008),

transform-domain sparsity promotion is a viable technique to remove subsample related

noise in imaging via

min
x

‖x‖1,

subject to
ns∑
i=1

‖∇Fi(m0,q)C>x− δdi‖2 ≤ σ.
(4.6)

In this formulation, known as the Basis Pursuit Denoise (BPDN, Chen, Donoho, and

Saunders 2001) problem, we included the sparsity-promoting `1-norm as the objective on

the curvelet coefficients x of the image. These coefficients are related to the linearized

data via the adjoint of the curvelet transform (C>) and the above program seeks to find the

sparsest curvelet coefficient vector that matches the data within the noise level σ. While

the above problem is known to produce high-fidelity results, its solution relies on iterations

that involves a loop over all ns shots.

Stochastic gradient descent (Haber, Chung, and Herrmann 2012) is a widely used tool

to make unconstrained optimization problems of the type included in Equation 4.5 com-

putationally feasible by computing the gradient over randomized subsets of shots with a

batch size (= number of shots ≥ 1) used for each gradient calculation of Equation 4.5 of

n′s � ns. This popular algorithm solves Equation 4.5 in a few epochs (= passes through

data consisting of ns shot records) as long as the step lengths adhere to certain conditions

to guarantee convergence. Unfortunately, this complicates the solution of BPDN. To avoid

this complication, we reformulate, following Cai, Osher, and Shen 2009, Equation 4.6 by
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replacing its convex `1-norm objective by the strictly convex objective involving

min
x

λ1‖x‖1 +
1

2
‖x‖22

subject to
ns∑
i=1

‖∇Fi(m0,q)C>x− δdi‖2 ≤ σ
(4.7)

with the estimate for the image given by δm̂ = C>x̂ where x̂ is the minimizer of the

above optimization problem. The mixed objective in this problem is known as an elastic

net in machine learning, which offers convergence guarantees (see Lorenz, Schopfer, and

Wenger 2014) in situations where during each iteration we work with different randomized

subsets of shots indexed by Ik ⊂ [1 · · ·ns] with cardinality |I| = n′s � ns. We chose this

subsets without replacement.

For λ → ∞, which in practice means λ large enough, iterative solutions of Equation

4.7 as summarized in Algorithm 7 converge to the solution of Equation 4.6 even in situa-

tions where we work with randomized subsets of shots. Compared to iterative solutions of

Equation 4.6, the iterations (lines 7–8 in Algorithm 7) correspond to iterative threshold-

ing with a fixed threshold λ on the dual variable (zk) with a dynamic step length given by

tk = ‖Akxk − bk‖22/‖A>k (Akxk − bk)‖22 (Lorenz, Schopfer, and Wenger 2014). During

each iteration, known as linerarized Bregman iterations, the residual is projected onto an

`2-norm ball of σ by Pσ. To avoid too many iterations, we set the threshold λ, related to the

the tradeoff between the `1 and `2-norm objectives in Equation 4.7, to a value that is not

too large—i.e., typically proportional to the maximum of |zk| at the first iteration (k = 1).

As reported by Yang, Witte, Fang, and Herrmann 2016; Witte, Louboutin, Luporini, Gor-

man, and Herrmann 2019, high quality images can be obtained running Algorithm 7 for

a few epochs as long as the source time function q and background velocity model are

sufficiently accurate. As we will show below, the background velocity model also needs to

be smooth so tomography-related imaging are avoided.
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Algorithm 7 Linearized Bregman for SPLS-RTM

1: Initialize x0 = 0, z0 = 0,q, λ1, batchsizen′s � ns

2: for k = 0, 1, · · · do

3: Randomly choose shot subsetsI ⊂ [1 · · ·ns], |I| = n′s

4: Ak = {∇Fi(m0,q)C>}i∈I

5: bk = {δdi}i∈I

6: tk = ‖Akxk − bk‖22/‖A>k (Akxk − bk)‖22

7: zk+1 = zk − tkA>k Pσ(Akxk − bk)

8: xk+1 = Sλ1(zk+1)

9: end for

10: Output: ˆδm = C>xk+1

11: note:Sλ1(zk+1) = sign(zk+1) max{0, ‖zk+1‖ − λ1}

12: Pσ(Akxk − bk) = max{0, 1− σ
‖Akxk−bk‖

} · (Akxk − bk)

4.5 On-the-fly source estimation

In practice, we unfortunately do not have access to the source time function q required by

Algorithm 7. Following our earlier work on source estimation in time-harmonic imaging

and full-waveform inversion (Tu and Herrmann 2015b; Leeuwen, Aravkin, and Herrmann

2011), we propose an approach during which we estimate the source-time signature after

each model update by solving a least-squares problem that matches predicted and observed

data via a time-domain filter.

To keep our time-domain wave-equation solvers with finite differences4 numerically

stable, we introduce an initial guess for the source time function q0 with a bandwidth

limited spectrum that is flat over the frequency range of interest. Under some assumptions

4In our implementation, we used Devito ([https://www.devitoproject.org](https://www.devitoproject.org))
for our time-domain finite difference simulations and gradient computations (Luporini, Lange,
Louboutin, Kukreja, Hückelheim, Yount, Witte, Kelly, Herrmann, and Gorman 2018), and JUDI
([https://github.com/slimgroup/JUDI.jl](https://github.com/slimgroup/JUDI.jl)) as an abstract linear algebra
interface to our Algorithms (Witte, Louboutin, Kukreja, Luporini, Lange, Gorman, and Herrmann 2019)
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on the source time function, we can write the true source time function as the convolution

between the initial guess and the unknown filter w—i.e., we have q = w ∗ q0 where the

symbol ∗ denotes temporal convolution. Because we assume one and the same source time

function for all shots, we can write

∇Fi(m0,w ∗ q0) = w ∗ ∇Fi(m0,q0) (4.8)

for all sources i = 1 · · ·ns. In this expression, we made use of linearity of the wave

equation with respect to its source. To simplify notation, we also overloaded the temporal

convolution (denoted by the symbol ∗) to apply to all data—i.e. all traces in the shot

records.

Based on the above relationship, we propose to solve for w after each linearized Breg-

man iteration (line 10 of Algorithm 8 via

min
w

∑
i∈Ik

‖w ∗ ∇Fi(m0,q0)C
Tx− δdi‖22 + ‖r� (w ∗ q0)‖22 (4.9)

To prevent overfitting while fitting the generated data b̃k at the kth iteration to the ob-

served data bk, we included penalties exponential weighting vector r given by discretizing

r(t) = ν + log(1 + eα(t−t0)). (4.10)

In this expression, the scalar α determines the rate of growth after t = t0. We chose

t0 such that oscillations related to overfitting are suppressed after this time. This prevents

overfitting and ensures the filters wk to be short such that the estimated source time function

q = wk ∗ q0 remains short as well. The weight parameter ν penalizes the energy of the

estimated source q, which also help to relief the ill-conditioness of this sub-problem.

We summarize the different steps of our approach in Algorithm 8 below. As earlier,

we solve the sparsity-promoting optimization problem via linearized Bregman iterations,

which now includes in line 8 a correlation (correlation denoted by the symbol ? is the
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adjoint of convolution) with the current estimate for source time correction (wk), which

we initialize with the discrete Delta distribution (w0 = δ). We refer to this method with

on-the-fly source estimation as sparsity-promoting LS-RTM with source estimation (SPLS-

RTM-SE).

Algorithm 8 LB for LS-RTM with source estimation
1: Initialize x0 = 0, z0 = 0,q0, λ1,w0 = δ, ν, batch size n′s � ns, r

2: for k = 0, 1, · · · do

3: Randomly choose shot subsets I ⊂ [1 · · ·ns], |I| = n′s

4: Ak = {∇Fi(m0,q0)C
>}i∈I

5: bk = {δdi}i∈I

6: b̃k = Akxk

7: tk = ‖b̃k − bk‖22/‖A>2 (b̃k − bk)‖22

8: zk+1 = zk − tkA>k
(
wk?Pσ(wk ∗ b̃k − bk)

)
9: xk+1 = Sλ1(zk+1)

10: wk+1 = arg minw ‖w ∗ d̃k − bk‖22 + ‖diag(r)(w ∗ q0)‖22

11: end for

12: Output: ˆq = wk+1 ∗ q0, and ˆδm = C>xk+1

In Algorithm 8, the symbol ? stands for the correlation, which is the adjoint operation

of the convolution. Since the initial guess of x is zero, we initialize the filter with one Dirac

function. The sub-problem in line 10 can be solved by formulating the optimal condition

and solving for wk+1 directly.

4.6 Numerical experiments

In this experiment section, we demonstrate the viability of our approach by means of care-

fully designed synthetic examples. First we demonstrate the effectiveness of LB over ran-

domized SPGL1 used in Herrmann and Li 2012 by conduct one stylized example that aims
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to recover one sparse vector by solving one overdetermined problem. Based on this test,

we continue to design the second example to show that linearized Bregman iterations with

on-the-fly source estimation is indeed able to jointly estimate the source and the sparse

vector. Next, we consider the imaging experiments on the Marmousi model emphasizing

the importance of including the source function and the influence of noise. We conclude by

introducing a practical workflow that is capable of handling salt-related imaging problem.

4.6.1 Stylized example 1

In the first example, we design a simplified experiment to show the advantages of LB

over SPGL1 when applying to randomized subsets of data. Considering the enormous

computational cost of the migration operator, we substitute it by a tall ill-conditioned matrix

A ∈ R20000×10000 with rank(A) = 500. The sparse vector x ∈ R10000×1 has only 20

random non-zero elements. In every iteration, a block of several rows Ak are redrawn

randomly. Both LB and randomize SPGL1 pass the full data set 5 times. Figure 4.1 shows

the comparison of the recovery results obtained by SPGL1 and LB with different block size.

Clearly, the split LB guarantees the convergence despite the block size. On the contrary,

randomized SPGL1 fails to recover the correct solution. As is shown in Figure 4.1(a), due

to the failure of the warming-up strategy between difference sub-problems, the recovery

quality of the randomized SPGL1 becomes worse along with the decrease of the block

size.

4.6.2 Stylized example 2

To verify the viability of the alternative sparsity-promoting approach in combination with

on-the-fly source estimation, we examine the performance of LB with source estimation on

a simplified stylized example. As we can see, Equation 4.8 implies a bilinear dependence

of the reflected data on both the filter w and the curvelet coefficient x. It is well known

that this sort of bilinear dependence can give rise to ambiguities even though the vector x
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(a) The solutions of randomized SPGL1 with different block
sizes

(b) The solutions of LB with different block sizes

Figure 4.1: Comparison between the solutions of randomized SPGL1 and LB with differ-
ent block sizes: figure (a) shows the results of SPGL1 with different block sizes. For small
block size, e.g. 20% or 10% of the whole size of A, randomized SPGL1 obtains results
with more noisy elements at wrong locations whereas less amplitudes at the correct loca-
tions, indicating the failture in recovering the accurate solutions; Figure (b) shows that LB
converges to the correct solution for all the selections of the block size.

is sparse.

We exemplify this seismic bilinear relationship be defining WAx = b. Now a block

of the tall matrix, Ai ∈ R500×10000, i ∈ [1 . . . 40] serves as a proxy for the LB modeling

operator Ji for the ith shot with only one single trace. We implement the trace-by-trace

convolution via a Toeplitz matrix defined in terms of the filter w ∈ R500×1 acting on each

Aix. The multiplication of matrix W ∈ R20000×20000 to Ax compactly represents the

repeated convolutions of the filter to all traces.

This example, designed to jointly invert x and w, aims to exhibit the capability of our

Algorithm 8 to carry out seismic imaging and on-the-fly source estimation. To demonstrate

the effect of the penalty term in line 10 of Algorithm 8, we compare sparsity-promoting

solutions for the fixed true wavelet to solutions with on-the-fly source estimation with and

without the additional penalty. During each iteration we randomly choose 10% blocks of

the tall matrix A, which means each Ak contains 4 unit block Ai, and we run five passes

through the data in total. After some parameter testing, we chose the following values for
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the penalty parameters, λ = 1, ν = 1, α = 8. We found that different choices for these/this

penalty parameter have little effect on our inversion results. Finally, the time parameter t0 is

set according to the approximate duration of w of the filter, which in this case corresponds

to Ricker wavelet since we chose q0 to be a delta Dirac. We also initialize the filter w with

a normalized Dirac. Because of the amplitude ambiguity well-known to challenge blind

deconvolution problems, we normalize the estimated source.

Pairs of estimated sparse ”reflectivities” ( ˆδm) and source functions (q̂ = wk+1 ∗ q0)

after normalization are included in Figure 4.2 . We can draw the following conclusions

from these results. First, for the nosie-free data, the LB iterations are able to recover the

sparse reflectivity and source function well modulo a single amplitude factor, which we

corrected by normalizing its `2-norm. Second, the estimated source function and reflectiv-

ity become noisy (cf. the red line in Figure 4.2 a and the dash line in Figure 4.2 b ) when

we do not include a penalty enforcing the estimated filter to be short in time. Finally, the

method is robust with respect to noise as we can see from Figures 4.2 c and 4.2 d where

10% Gaussian noise was added. This result also stresses the importance of including the

penalty.

4.6.3 Experiments on the modified Marmousi model

To illustrate the performance and robustness with respect to noise of the proposed SPLS-

RTM-SE method for a model with complex layered stratigraphy. We derive this imaging

example from the well-known synthetic Marmousi brougois1990marmousi model, which

is 3.2 km deep and 8.0 km wide, with a grid size of 5 × 5 m. To avoid imaging artifacts,

we uses a background velocity that is sufficiently kinematically accurate. We simulate the

response to 320 equally spaced sources positioned at a depth of 25 m. We used a minimum

phase source time function with its significant spectrum ranging from 10 to 40 Hz as shown

in Figure 4.3. We used this type of source to generate linear data by applying the demigra-

tion operator (∇Fi(m0,q), i = 1 · · ·ns ) to a bandwidth limited medium perturbation δm
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(a) Solutions of LB with the true source and source estima-
tions with and without penalties for noise-free data

(b) The true source and estimated sources with and without
penalties for noise-free data

(c) Solutions of LB with the true source and source estima-
tions with and without penalties for noisy data

(d) The true source and estimated sources with and without
penalties for noisy data

Figure 4.2: Comparison of solutions obtained with the LB iterations (see Algorithm 8) for
a fixed true source (denoted by the blue line) and for on-the-fly source estimations with and
without penalties. We obtained results with five passes through the data. Our method is
well capable of estimating the ”reflectivity” (a) and ”source function” (b) after normalizing
the `2 norm. The proposed method is also robust with respect to additive noise as we can
see in (c) and (d). We added 10% Gaussian noise.
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given by the difference between two smoothings of the true medium huang2016flexibly.

We record data at 320 equally spaced co-located receivers. To assess the sensitivity to

noise, we created two additional data sets by adding zero-centered Gaussian noise with

energy ranging from 50% and 200% of the simulated linear data.

Contrary to source estimation in the frequency domain, we need an initial source func-

tion q0 for the source time function (see Figure 4.3a and 4.3b where the initial source

time function and its amplitude spectrum are depicted by the dashed black line). We need

this initial source function to make sure that the finite-difference propagators remain stable.

To make sure we do no exceed the valid frequency range of our simulations, we chose the

frequency band of the initial source time function broad. To circumvent bias, we initial-

ize the time function with a flat amplitude spectrum between 20 − 50 Hz. To allow for a

realistic scenario, we applied a phase shift to this initial guess making it mixed phase and

non-symmetric .

Before the inversion, we first investigate the importance of the source function to seis-

mic imaging by comparing the RTM images obtained with the true and initial wavelets

(Figure 4.4). For more accurate visualization, we apply a depth differentiate on both RTM

images fairly. As the phase of the true and initial wavelets differ, RTM with the initial guess

locates the reflectors in the wrong positions with apparent wrong phases. Furthermore, the

comparison indicates that the initial guess also introduces additional artificial interfaces

even though the initial guess sharpens the image resultsing from its broader spectrum. This

sharp image with artificial interfaces is deceptive and even disastrous. For example, oil and

gas companies would prefer the sharper image. As a result, the following geological inter-

pretation and financial decisions based on the pmprecise sharp image could have serious

repercussions.

To carry out the alternating inversion for the reflectivity and unknown filter w, we run

Algorithm 8 for 40 iterations with a batch size of 8— i.e., we use 8 randomly selected

sources per iteration without replacement. The total number of wave-equation solves is
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(a) Time signatures

(b) Frequency spectrum

Figure 4.3: Comparison true, initial, and estimated source time functions (q0, q̂ = wk+1 ∗
q0) and their associated amplitude spectra. (a) the time signatures and (b) the frequency
spectra. The estimated source time functions and spectra were obtained from noise-free
data and from data to which zero-centered Gaussian noise was added with energy ranging
from 50% and 200% of the simulated linear data.
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(a) RTM with true source

(b) RTM with the initial source

Figure 4.4: (a) and (b) are the RTM images of Marmousi with true source and initial guess
of source respectively.
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equivalent to touching each shot only once—i.e., we make one pass through the data. To

improve the convergence of the inversion, we employ preconditioners in both the data and

model domains [see Herrmann, Brown, Erlangga, and Moghaddam 2009 for detail]. To

remove the imprint of the sources/receivers on the image, we also included a top mute to

our operators. Similarly, we applied a mute to the data to suppress the dominating water

bottom reflection and long offsets. Finally, we choose the thresholding parameter λ to

be 10% of the maximum value of the first gradient to avoid unnecessary extra iterations

resulting from a threshold value that is too large or small.

The estimated source functions q̂ = ŵfinal ∗ q0 and their amplitude spectra are after

`2-norm scaling included in Figure 4.3 . Overall we can see that the source functions

are well recovered despite the presence of noise. For low noise, the estimated spectrum is

the same as the one obtained from the noise-free data while the source function obtained

from the high noise data is less smooth but closer to the true source function. Other than

that we are dealing with a nonlinear blind deconvolution, we do not have an explanation

for this behavior. While the noise dependence of the estimated source functions behaves

somewhat aberrant, the recovered reflectivities behave as expected (cf. Figures 4.5a and

4.5b for images images obtained with the true source and with the initial guess and images

4.6a – 4.6c obtained with on-the-fly source estimation for noise-free and noisy data. )

We can make the following observations from these experiments. First, it is important

to image with the correct source even when the data is noise-free. While our sparsity-

promoting scheme is able to recover a high-resolution image (see Figure 4.5a) when the

source function corresponds to the true source, the image quality deteriorates rapidly if

the amplitude and phase spectra of the wavelet are wrong (see Figure 4.5b). Energy is

no longer focused and the shape of locations of the imaged reflectors are off. However,

the results included in Figure 4.6 demonstrate that good results can be obtained when

estimating the source function on the fly. The estimated reflectivity depicted in Figure 4.6a

is close to the reflectivity obtained when we image with the true source function (cf. Figures
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4.5a and 4.6). Moreover, the estimated images are, as expected, relatively insensitive to

noise in the data albeit the imaged reflectivity for the high noise case deteriorated somewhat

(cf. Figures 4.6a – 4.6c). Contrary to the imaging result for the wrong initial source

function, the reflectors are positioned correctly and have the correct phase, shape, and

amplitude even in situations of substantial noise although at the expense some remaining

noise, low- and high-frequency artifacts. The latter are relates to the use of the curvelet

transform and are to be expected. Overall, these results confirm the robust of our imaging

in situation where there is significant noise.

To arrive at the estimated images in Figure 4.6, we set the penalty parameters ν = 1

and α = 8 in Algorithm 8. After the first source estimation in the second iteration, we

reset the coefficients z and x to zero to avoid spending too many iterations on correcting

wrongly located reflectors from the first iteration in which the initial guess of the source

wavelet is used. In addition to the visual quality of the estimated images, convergence plots

for the relative error for the data residual (the relative `2-norm error between the observed

data and the demigrated data for estimated reflectivity ˆδm convolved with the estimated

filter,‖wk∗b̃k−bk‖2
‖bk‖2

) and the relative model error (the `2-norm error between the true reflec-

tivity and the recovered reflectivity,‖
ˆδmk−δm‖2
‖δm‖2 ) confirm our observation that Algorithm 8

is capable of providing high quality images in the absence of precise knowledge on the

source function and in the presence of substantial noise. Our approach arrives at these

least-squares images at the cost of a single data pass. Understandably, the algorithm starts

off with a large relative residual and model error due to the wrong initial guess for the

source function. As Algorithm 8 progresses, these relative errors continue to decay and

are comparable to the convergence plots for the true source function. Because on-the-fly

source estimation improves our ability to adapt to the data, the relative data residual for the

noise-free case (dashed line) is even better then the relative error in case the source function

is known (solid line). While encouraging, these results are obtained for a relatively simple

imaging experiment and for data that is obtained with linearized modeling via demigration.
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(a) Inverted image with true source

(b) Inverted image with the initial guess

Figure 4.5: Inverted images with (a) the true source and (b) initial source, generated by the
Marmousi model.
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(a) Inverted image with source estimation for noise-free data

(b) Inverted image with source estimation for data with 50% noise
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(c) (c) Inverted image with source estimation for data with 200% noise

Figure 4.6: Inverted images with source estimation (Algorithm 8) for (a) noise-free data,
(b) data with 50% noise and (c) data with 200% noise, generated from the Marmousi model.

In other words, we commit an inversion crime. In the next section, we will show that the

proposed method also performs well in more complicated settings with nonlinear data.

4.6.4 Experiments on Sigsbee model

Sparsity-promoting imaging algorithms such as SPLS-RTM (Algorithm 8) are designed to

handle complex imaging scenarios with strong velocity contrasts and strong lateral velocity

variations. Examples of such scenarios are salt plays where reflections underneath the salt

are of interest. To demonstrate the viability of our imaging approach with on-the-fly source

estimation, in this scenario we consider the challenging Sigsbee2A model of size 24.4×9.2

km. This model contains a large salt body and a number of faults and diffractors. To

demonstrate the capability of our approach to handle this challenging situation, we simulate

nonlinear data for a marine acquisition without a free surface. We model 960 sources in

total recorded with an array with 320 receivers sampled at 25 m and with a maximum offset

of 8 km and towed at a depth of 15 m. We used a source wavelet with a peak at 15 Hz (see

Figure 4.8) and we record for 10 s.
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(a) Residual decay

(b) Model error decay

Figure 4.7: Convergence plots for the relative residual error (a)—i.e., the `2-norm error
between the observed data and the demigrated data for estimated reflectivity ˆδm and the
relative model error (b)—i.e., the `2-norm error between the true reflectivity and the recov-
ered reflectivity.
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As is customary during imaging under salt, we use a background velocity model that

features salt with relatively strong and therefore reflecting boundaries. We approximate lin-

ear data by using this background velocity model to generate data ,which we subtract from

the simulated data in the hard true Sigsbee2A model. Because the presence of salt in the

background model, the incident wavefield contains reflections that give rise to unwanted

low-frequency tomographic artifacts in the image. This problem is widely reported in the

literature (Root, Stolk, and Hoop 2010; Whitmore and Crawley 2012; Witte, Yang, and

Herrmann 2017). To remove these imaging artifacts, we replace the conventional imag-

ing condition for RTM by the inverse-scattering imaging condition (Root, Stolk, and Hoop

2010; Whitmore and Crawley 2012; Witte, Yang, and Herrmann 2017). While this con-

dition has proven capable of removing tomographic artifacts during RTM (Whitmore and

Crawley 2012; Witte, Yang, and Herrmann 2017) and sparsity-promoting least-squares

RTM (Witte, Yang, and Herrmann 2017) it changes the linearized forward operator (the Ja-

cobian ∇Fi), resulting in an inconsistent system. Contrary to RTM with the conventional

imaging condition, imaging with the inverse scattering imaging condition corresponds to

estimating perturbations in the impedance rather than in the velocity.

Unfortunately, this difference in which quantity is being image is problematic for our

proposed on-the-fly source estimation, which tries to correct for inconsistencies between

”observed” data and predicted data. Contrary to the situations where we use the con-

ventional imaging condition, the data residual now contains contributions from the wrong

wavelet and the linearized imaging condition. and this leads to wrong estimates for the un-

known source function. We overcome this problem via a hybrid iterative algorithm where

we switch imaging conditions during the iterations outlined in Algorithm 8. To estimate

the source function, we first iterate with the conventional imaging condition. Since the

convergence to the source function is fast, we switch after five iterations to the scattering

imaging and keep the estimated source function fixed. Basically, we jump from Algorithm

8 to Algorithm 7.
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Results of this hybrid approach are summarized in Figures 4.8 – 4.10. As before, we

compare our results with on-the-fly source estimation to SPLS-RTM for the true source

function. The initial guess and estimated wavelets in Figure 4.8 again confirm the va-

lidity of our approach, yielding a reasonably accurate estimate for the source after only

five iterations and subsequent normalization of the `2-norm. Imaging results obtained after

twenty iterations with 10% of the shots, which amounts to two data passes in total, are

included in Figures 4.9 and 4.10. Unlike a typical RTM image (Figure 4.9a), images

yielded by SPLS-RTM are well resolves and true amplitude. This is because we invert the

linearized modeling operator, which compensates for the source, finite aperture, and prop-

agation effects. As before, we included preconditioners and mutes. Comparison of Figure

4.9b, obtained with Algoritm 7 with the true source function, and Figure 4.9c, which we

computed with our hybrid method switching from Algorithm 8 to Algorithm 7 after five

iterations, shows near identical results confirming the validity of the proposed approach.

These observations are confirmed by the trace-by-trace comparisons in Figure 4.10.

To trigger the inversion with source estimation, we follow the same strategy used in

the Marmousi experiments, which entailed a mixed-phase wavelet with a plateau between

15 − 25Hz in the spectrum, which is higher than the approximate peak frequency of the

true wavelet centered from 5Hz to 20Hz, indicated in Figure 4.8(b).

For both SPLS-RTM with true source and SPLS-RTM-SE, we conduct 20 iterations us-

ing the LB method with 10% sources per iteration, which corresponds to two passes through

the data. We implement the basic preconditioners, that is, the depth scaling preconditioner

and the data topmute, used in the Marmousi experiments. In SPLS-RTM, We also use

the linearized inverse scattering imaging condition (Whitmore and Crawley 2012; Witte,

Yang, and Herrmann 2017) instead of the traditional cross-correlation imaging condition

to deal with low-frequency artifacts in the gradients caused by significant backscattering of

the forward modeled wavefield from the strong salt body of the Sigsbee2A model. Both

imaging operator J> and modeling operator J must incorporate the modification of the
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(a) Time signatures

(b) Frequency spectrum

Figure 4.8: Comparison true, initial, and estimated source time functions (q0, q̂ = wk+1q0)
and their associated amplitude spectra. (a) the time signatures and (b) the frequency spec-
tra. The estimated source time functions and spectra were obtained during the first five
iterations with the conventional imaging condition.
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imaging condition to preserve their adjointness as one pair. In SPLS-RTM-SE, considering

that the Jacobian with cross-correlation imaging condition obeys Taylor extension and ap-

proximates the nonlinear data better, we use this Jacobian and estimate source in the first 5

iterations. Warmed with these iterations, we switch to the Jacobian with inverse scattering

imaging condition.

The strategy to choose the parameters λ, ν and α is same as in the Marmousi experi-

ments. Since in our test, the define of the shape of r is quiet stable, here we still use the

vector in Marmousi experiments.
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(a) RTM with the true source wavelet

(b) SPLS-RTM with the true source wavelet
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(c) SPLS-RTM with on-the-fly source estimation

Figure 4.9: Comparison between SPLS-RTM with the true source wavelet and SPLS-RTM
with on-the-fly source estimation. In both cases, we did total 20 iterations amounting to
two data passes.
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(a) Traces at x = 4.5km

(b) Traces at x = 11.3km

Figure 4.10: Trace by trace comparisons between the true model perturbation, the images
from SPLS-RTM with the true source and with on-the-fly source estimation. The traces in
(a) and (b) are extracted from lateral positions x = 4.5km and x = 11.3km, respectively
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4.7 Discussion

Many researchers have shown the capability of LS-RTM in producing high-resolution and

true amplitude subsurface images; the usage of this approach, unfortunately, incurs an

enormous computational cost. The balance between the computational cost and image

quality is a critical problem that must be solved for the successful applications of LS-RTM

to industrial-scale problems. This study proposed a time-domain sparsity-promoting LS-

RTM that incorporates the art-to-the-state technologies of stochastic optimization, curvelet-

based constraints, and the linearized Bregman method. Through random selection of shots

during each iteration, this method significantly reduces the computational cost. Meanwhile,

employing the curvelet-based constraint, the proposed approach suppresses noise-related

and sub-sampling-related artifacts. The LB approach also enables us to redraw a random

subset at each iteration and guarantees convergence. As a result, the proposed method

generates high-resolution subsurface images with a computational cost of two conventional

RTMs.

Another bottleneck for the successful application of LS-RTM is the absence of accurate

source signatures. To solve this problem, we embedded an on-the-fly source estimation step

into the basic LB workflow. The estimation step involves solving a linear sub-problem in

which a number of solutions are possible solutions due to the limited band of the source. To

mitigate the non-uniqueness, we introduced both event-based and energy-based penalties

to regularize the sub-problem. Several numerical cases illustrate that the usage of the two

penalties significantly mitigates the non-uniqueness of the sub-problem and enables us to

find the correct source functions.

The proposed time-domain SPLS-RTM-SE may have a strong potentiality for industrial-

scales applications for the following reasons. First, frequency-domain approaches are often

infeasible for 3D problems because of the complexity of solving the 3D Helmholtz equation

with high frequency. With the usage of art-to-the-state technologies including fast stencils
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and parallel computing, the computational cost of solving the time-domain wave equation

has been reduced to an acceptable level, which results in many 3D RTM practical applica-

tions (Baysal, Kosloff, and Sherwood 1983). Since the computational cost of the proposed

approach roughly equals to one or two conventional RTM, the proposed approach is com-

putationally feasible for 3D industrial applications. Moreover, since the proposed source

estimation technique does not require additional PDE solves, we can embed it into the

3D LS-RTM in a straightforward manner without any additional computational concerns.

Thus, in the future, we can expect a practical 3D application of the proposed SPLS-RTM-

SE.

However, all the feasible and possible works on the effective inversion we discussed

above is under the assumption that there is only primaries in the observed data, which is

hard to require in the real marine acquisition, where the free surface together with the ocean

bottom will generate strong multiples, i.e. higher order reflectivities, bouncing between

these two interfaces. If without proper pre-processes, e.g. demultiple (Weglein, Gasparotto,

Carvalho, and Stolt 1997; Biersteker 2001; Verschuur and Berkhout 2005; Hargreaves

2006; Brittan, Martin, Bekara, and Koch 2011; Lin and Herrmann 2016), the imaging

condition used to locate the reflectors will cross-correlate the multiples with the primaries to

form the mirrored artifacts in the images. In the next chapter we will discuss the extension

of the effective sparsity-promotion into the multiples imaging to solve the problem of cross

order imaging artifacts.

4.8 Conclusion

We proposed a scalable time-domain approach to sparsity-promoting least-squared reverse

time migration with on-the-fly source estimation in principle suitable for industrial 3D

imaging problems. The presented approach leverages recently developed techniques from

convex optimization and variable projection that greatly reduce costs and the necessity

to provide an estimate for the source function. As a result, our approach is capable of
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generating high-fidelity true-amplitude images including source estimates at the cost of

roughly one to two migrations involving all data.

By means of carefully designed experiments in 2D, we were able to demonstrate that

our method is capable of handling noisy data and complex imaging settings such as salt.

We were able to image under salt, which is often plagued by low-frequency tomographic

artifacts, by switching between applying the conventional imaging condition initially, fol-

lowed by iterations that apply the inverse-scattering condition. In this way, we estimated

the source function first while creating an artifact-free image with later iterations during

which the imaging condition was switched while keeping the source function fixed.

Because the presented method relies on time-domain propagators, we anticipate it will

be able to scale to large 3D industrial imaging problems. Because 3D imaging with full-

azimuthal sparse data typically provided good illumination of the reservoir, we expect the

proposed methodology to produce high fidelity results at a cost of roughly one to two

reverse time migrations involving all shots.
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CHAPTER 5

SPARSITY-PROMOTING LEAST-SQUARES REVERSE TIME MIGRATION

WITH MULTIPLES

5.1 Summary

In this chapter, we focus on the least-square reverse time migration for primaries and mul-

tiples together. Instead of predict the primaries by pre-processes of demultiples e.g. SRME

or EPSI, we use the total up-going data to invert the model perturbation based on the SPLS-

RTM framework we propose in chapter 4 by injecting the areal source of the total down-

going wavefield. With this methodology, we can remove most imaging artifacts related

to the presence of surface-related multiples, introduced by a shallow ocean bottom, which

are difficult to predict by traditional demultiples pre-process such as SRME due to the

energy leakage from adaptive subtraction. We test our method to one linear data set in

time-harmonic domain on part of the Sigsbee2A model, where the multiples are generated

by the Born modeling with respect to only the velocity perturbation. We also show the ex-

tra illumination by introducing the secondary source (areal source) into the inversion when

there is areas missing sources. Then we move to invert the nonlinear data set in the time

domain, where the data is generated by iWave with free surface and directive wave deleted,

following with up- and down-going wavefield decomposition and extrapolation. By inject-

ing the areal source in the inversion, most of the phantoms from the first order multiples for

the deeper part of the model are removed, but there are still some leftover artifacts in the

shallower part, and the inverted perturbations at the ocean bottom have some phase errors

because we are inverting with only Born with respect to the velocity. We also compare the

recovered multiples and primaries with the ideal data that generated with absorbing surface.

We conduct one data pass for the inversions in both scenarios, which cost roughly only one
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RTM. Our time-domain inversion based on Devito can be easily extend to the further 3D

scenarios.

5.2 Introduction

In the chapter 4, we focus on the least-square reverse time migration with only primaries.

By fitting the modeled primaries to observed primaries in the least-squares sense, least-

squares reverse-time migration (LS-RTM, (Guitton, Kaelin, and Biondi 2006)) can remove

the imprint of the source wavelet, limited aperture, and other amplitude effects on mi-

grated images. Since minimizing the `2-norm on the data residual attempts to invert a

highly overdetermined but inconsistent system, resulting images often suffer from over-

fitting. One possible way to remove these artifacts is to impose some sort of regulariza-

tion onto the original LS-RTM formulation. Aside from imaging artifacts associated with

possible overfitting, LS-RTM is also computationally prohibitively expensive withstand-

ing its widespread adaptation. Motivated by ideas from Compressive Sensing (Donoho

2006), Herrmann and Li 2012 proposed to solve the expensive overdetermined and incon-

sistent system of LS-RTM by solving a series of much smaller and therefore much cheaper

randomized subproblems. Thanks to this randomized subsampling, we are able to carry

out sparsity-promoting LS-RTM at the cost of roughly one-to-three passes through the

data. However, the resulting images remained somewhat noisy, a well-known by product

of stochastic optimization methods where different subsets of shots are used during each

iteration. By replacing the `1-norm objective by an elastic net, as proposed by Lorenz,

Schopfer, and Wenger 2014 in the field of online Compressive Sensing, these remaining

noisy artifacts can be removed as shown by Herrmann, Tu, and Esser 2015a. Following this

work, we (Yang, Witte, Fang, and Herrmann 2016) implemented this linearized Bregman

method in the time domain with on-the-fly source estimation by variable projection.

So far, this work mostly involved imaging of primaries only. For (shallow) Marine

data, this assumption requires separation of primaries from the total down-going wavefield,
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which includes surface-related multiples. One way to separate the primaries is to con-

sider the surface-related multiples elimination (SRME) relation (Verschuur, Berkhout, and

Wapenaar 1992), which models multiples as a multi-dimensional convolution between the

vertical derivative of the surface-free Green’s function and the total down-going wavefield.

While this relation has resulted in technologies such as SRME and Estimation of Primaries

by Sparse Inversion (EPSI), (Lin and Herrmann 2013) that mitigate the adverse effects of

surface-related multiples successfully, it is computationally very expensive because it in-

volves multi-dimensional convolutions that correspond to dense matrix-matrix multiplies.

Also, SRME requires the sources to be co-located with the receivers, which can be ex-

pensive as well. Besides the computational cost, SRME struggles to estimate the source

wavelet and therefore the shape of the recovered primaries may get distorted, especially in

shallow water acquisitions. EPSI on the other hand, maps the multiples to primaries, which

offers the potential usage of these multiples to help with illumination of the subsurface. Lu,

Whitmore, Valenciano, and Chemingui 2015 and also Tu and Herrmann 2015a used the fact

that the bounce points of surface-related multiples can be considered as secondary sources

to improve migrated images. Lu, Whitmore, Valenciano, and Chemingui 2015 carried out

these secondary sources into imaging by replacing RTM’s cross-correlation-based imaging

condition with a deconvolution. Although the later approach has provides results (Lecerf,

Hodges, Lu, Valenciano, Chemingui, Johann, and Thedy 2015) spectacular in improving

the illumination, the deconvolution image conditions it used can lead to unwanted crosstalk

caused by the interference between different orders of multiples.

By integrating the SRME relationship into sparsity-promoting LS-RTM, Tu and Her-

rmann 2015a was able to properly model surface-related multiples resulting in an inver-

sion procedure where surface-related multiples are mapped to imaged reflectors. His main

contribution was that integrating the SRME relation into LS-RTM simply corresponds to

adding the down-going wavefield as an areal source. As such Tu and Herrmann 2015a ar-

rived at a result where the multi-dimensional convolutions of EPSI are carried out by the
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wave-equation solver while this formulation also no longer requires co-location of sources

and receivers during acquisition. While this work (Tu and Herrmann 2015a) has resulted

in high-quality multiple-free images for the designed linear data, it relied on an unnatu-

ral strong perturbation in the velocity to generate realistic surface-related multiples in the

water column. We remove this problem by including density variations at the ocean bot-

tom into our time-domain formulation (Yang, Witte, Fang, and Herrmann 2016). Because

our time-stepping formulation is based on Devito (Lange, Kukreja, Louboutin, Luporini,

Vieira, Pandolfo, Velesko, Kazakas, and Gorman 2016) — a just in time compiler for

stencil-based finite-difference codes — we envision that the proposed approach can readily

be extended to 3D seismic.

This chapter is organized as follows. First, we describe multiples prediction with the

SRME and formulate the areal source injection into our linearized Born modelling oper-

ator mapping velocity and density perturbations to linearized data. Next, we derive an

optimization scheme for LS-RTM using a mixed `1-`2-norm objective function with areal

source included. We solve this problem with linearized Bregman. The experiments are set

up with part of the synthetic Sigsbee2A model (Paffenholz, Stefani, McLain, and Bishop

2002). We first show some early inverted images that we obtained in time-harmonic domain

for linear designed data with density involved in the modeling kernel. Then we implement

in time domain based on Devito and compare the inversion results of total down-going

wavefield with and without areal source injection for nonlinear data.

5.3 SRME and areal source

All the successful inversion-based imaging methods mentioned in chapter 4 are designed

for primary order reflections (primaries) only. However, in the marine surveys, the reflec-

tions bounce strongly between the ocean bottom and the free water surface, shown in Fig-

ure 5.1, generating strong higher order reflections that declared as multiples (Figure 5.2).

Due to the presence of the surface-related multiples (mentioned as multiples for short
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Figure 5.1: The generation of different ordered reflections. The star and the triangles float-
ing in the water volume stand for the source and receivers respectively. From left to right,
the lines with arrowhead in different colors indicate the reflected paths of primaries and
multiples with higher and higher order.

Figure 5.2: One shot gather that contains multiples, obtained by the marine survey shown
in Figure 5.1. From top to bottom, different colored arrows mark out the reflection events
of different orders.
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Figure 5.3: Imaging workflow with SRME demultiples. The primaries P0, as the input in
the looping migration-demigration sub-workflow, are predicted by SRME

in the following chapters) that generated by the reflections bouncing between the ocean

bottom and the free surface in the marine survey, the traditional imaging workflow needs

to involve special demultiple pre-processes to predict the primaries. Figure 5.3 displays

schematically the imaging workflow combined with SRME (Verschuur, Berkhout, and

Wapenaar 1992), the outstanding demultiple processing. There the SRME relation de-

scribes the mechanism of multiples generation with a loop (shown in Figure 5.3) by relating

the vertical derivative of the surface-free Green’s function and the down-going wavefield

to the total up-going wavefield. The total up-going wavefield is obtained by receiver-side

deghosted and extrapolated to the surface (Wapenaar 1998) on the marine data.

We express the SRME relation (Verschuur, Berkhout, and Wapenaar 1992) as below:

Pi = Gi(Qi +RiPi), (5.1)

where the subscript i = 1 . . . nf , with nf the total number of discretized frequencies.

The monochromatic matrix Pi stands for the total up-going wavefield at the surface with ns

common-shot gathers in its columns and nr common-receiver gathers in its rows. Note that

this data matrix Pi does not include direct waves. The matrix Gi denotes the surface-free

dipole Green’s function organized in a similar fashion. The matrixQi represents the down-

going point source wavefield, Ri is the reflectivity at surface, and normally is considered
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to be −1. The whole term RiPi acts as an areal source wavefield, which when multiplied

by Gi produces the total up-going wavefield including surface-related multiples.

In SRME’s workflow, the predicted primaries are updated iteratively by P0j = P −

RQ−1j P0jP , derived from equation 5.1, where the subscript j indicates the iteration index,

and the discritized frequency index i is dropped for simplicity. In the first iteration, P01

is initialized by P . The unknown source term Qj is obtained through solving one least-

square problem to minimize the previous primaries’ energy |P − RQ−1j P0j−1P|22. This

adaptive subtraction introduces energy leakage by involving the implicit assumption of

lowest energy for primaries, while the fact is the ideal primaries contain the fewest events.

Especially in shallow water case where the multiples arrive early and interrupt the group of

primary events, this energy leakage could be a serious problem. Figure 5.4 gives an failed

example for SRME in shallow water case. Here the total up-going data (Figure 5.4(a))

is obtained by summing the primaries in Figure 5.4(b) and the designed one-order higher

multiples together. Given by the exact multiples, the predicted primaries by SRME contains

residual events leaked from multiples, therefore the true primaries (marked by arrows) are

distorted to minimize the total energy. Further distortions and artifacts in the following

imaging or inversion workflows are expected.

5.3.1 EPSI

To break the drawback of minimized energy assumption in SRME, EPSI tries to invert

for the sparse Green’s function (sketched by the green lines in Figure 5.5) and predict the

primaries. Here the sparsity assumption in Green’s function physically aims to restrict the

primary events as less as possible. However, the computational cost will increase because

EPSI is based on the sparsity recovery methods which call for amount of iterations, during

each, lots of fast Fourier transform (FFT) and IFFT, and matrix-by-matrix multiplications

for the convolution between areal source and Green’s function are required.
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Total up-going data The true primaries

The estimated primaries by SRME

Figure 5.4: Example for SRME’s failure in shallow water. (a) The designed total up-going
data that generated by summing the designed primaries in (b) with its one-order higher data.
(c) The predicted primaries by applying the ideal multiples to the adaptive subtraction.
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Figure 5.5: Primaries and the Green’s function sketched by the green lines

5.3.2 Areal source and its adaption into linearized modeling

The above data-driven methods, i.e. SRME and EPSI that predict primaries with the least

energy or sparsest Green’s function, both need matrix-by-matrix multiplications to imple-

ment the multi-dimensional convolution between the areal source and Green’s function. Tu

and Herrmann 2015a proposed that the SRME relation can be introduced as the areal source

into the linearized Born modelling, which physically carries out the multi-dimensional con-

volutions avoid these expensive multiplications.

Pi ≈ ∇Fi[m0, δm; I](Qi − Pi)

= ∇Fi[m0, δm;Qi − Pi]

= ∇Fi[m0;Qi − Pi]δm.

(5.2)

In this expression, ∇Fi represents the vertical derivative of linearized Born modelling,

which is linear with the model perturbation δm and the impulsive source array I. When the

background model m0 is kinetically correct, ∇Fi is a good approximation of the Green’s
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function Gi. By using fundamental properties of Green’s function the third expression in

Equation 5.2 replaces the expensive convolutions in the first expression by including the

down-going wavefield as an areal source.

In the time domain, the relationship 5.2 can be formulated directly as

P ≈ ∇F[m0; Q−P]δm, (5.3)

where P, Q, ∇F denote the corresponding operators in the time domain.

To generate realistic surface-related multiples in the water column, we introduce density

variations ρ at the ocean bottom. Equation 5.3 now becomes

P ≈ ∇Fm,ρ[m0,ρ0; Q−P]

δm
δρ


≈ ∇Fm[m0,ρ0; Q−P](δm + δm′).

(5.4)

In this expression, ∇Fm,ρ[m0,ρ0; Q − P] corresponds to linearized Born modelling

with respect to perturbations in the velocity and density, respectively. The operator∇Fm[m0,ρ0; Q−

P] corresponds to linearized Born modelling with respect to velocity changes only. Here

δm′ is the density-induced ”velocity” perturbation at the Ocean bottom. By including this

additional term, we are able to model realistic surface-related multiples in the water col-

umn without relying on unrealistic and numerical problems inducing velocity perturbations.

Note, that we assume the density to be constant throughout the remainder of the model so

the migrated amplitudes should be interpreted as impedance perturbations in cased where

there are strong variations of the density in the subsurface.

5.4 Joint inversion of multiples and primaries based on LB

Tu 2015 demonstrated that sparsity-promoting LS-RTM leads to artifact-free high-resolution

images. When using the linearized Bregman method with source subsampling, we obtain
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these images by solving

min
x

λ‖x‖1 +
1

2
‖x‖22

subject to
∑
j

‖∇Fj(m0, ρ0,Qj −Pj)C
Tx−Pj‖2 ≤ σ,

(5.5)

where x represents the curvelet coefficient vectors for the velocity perturbation δm +

δm′. ‖ · ‖1 and ‖ · ‖2 stand for `1 and `2-norms, respectively. The sum runs over all shots,

σ is the two-norm of the noise. We modify the Algorithm 7 that designed for inversion

with only primaries into the Algorithm 9 to invert the curvelet coefficients with the total

up-going data by injecting the areal source into line 4. The parameter’s setting is following

the same strategy discussed in chapter 4.

Algorithm 9 Linearized Bregman for SPLS-RTM with multiples

1: Initialize x0 = 0, z0 = 0,q, λ1, batchsizen′s � ns

2: for k = 0, 1, · · · do

3: Randomly choose shot subsetsI ⊂ [1 · · ·ns], |I| = n′s

4: Ak = {∇Fj(m0, ρ0,Qj −Pj)C
T}j∈I

5: bk = {Pj}j∈I

6: tk = ‖Akxk − bk‖22/‖A>k (Akxk − bk)‖22

7: zk+1 = zk − tkAT
kPσ(Akxk − bk)

8: xk+1 = Sλ1(zk+1)

9: end for

10: note:Sλ1(zk+1) = sign(zk+1) max{0, ‖zk+1‖ − λ1}

11: Pσ(Akxk − bk) = max{0, 1− σ
‖Akxk−bk‖

} · (Akxk − bk)

5.5 Numerical experiments

To test the performance of this method, we conduct the experiments based on a shallow

water model modified from Sigsbee2A model shown in Figure 5.10, which is discretized
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with grid size of 5 m, totally 4.15 km deep and 4.48 km wide. The water layer is roughly

100 m deep. The background velocity m0 is smoothed from the true model and is kine-

matically correct. The density model is converted from velocity background model by the

Gardner relation in the sedimental layers, and the value for water layer is constant 1k/ml.

So in the true density model there is only sharp perturbation near the ocean bottom. We

use a Ricker wavelet centered at 15 Hz as source wavelet and record the data for 4 s. The

261 shots and receivers are spread over the top of the model with 15 m interval at the depth

of 20 m. In the early state, We first test the performance of jointly inversion with areal

source injection to a designed linearized data set via our time-harmonic domain modeling

kernel. Then we move to the time domain, and test the performance for a nonlinear data

set via Devito. For both data sets we totally conduct one data pass in inversion. For the

time-domain inversion, we also use the preconditioners mentioned in chapter 4 to acceler-

ate the inversion. The sparsity-promoting inversion framework with areal source injection

helps to clean up these cross-ordered artifacts as indicated by the comparison between the

SPLS-RTM image for only primaries and the SPLS-RTM image for the total deghosted

up-going wavefield with areal source.

5.5.1 Test on linear data set in time-harmonic domain

During the test in time-harmonic domain, the multiples in the linear data set is generated

by injecting the up-going wavefield of the synthetic primaries into the linearized Born

modeling respective to only velocity perturbation with dipole source setting. And the to-

tal up-going data is the summation of the synthetic primaries and multiples. Due to the

cross-correlation between the events in different orders, the RTM for the total deghosted

up-going wavefield with areal source involves more artificial reflectors indicated by yel-

low arrows in Figure 5.6b compared to the RTM for only primaries in Figure 5.6a. The

sparsity-promoting inversion framework with areal source injection helps to clean up these

cross-ordered phantoms as indicated by the comparison between the SPLS-RTM for only
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primaries (Figure 5.7a) and the SPLS-RTM (Figure 5.7b) for the total deghosted up-going

wavefield. Also areal source injected in the inversion helps to increase the illumination as

the secondary sources, i.e. the area where with less illumination (Figure 5.9a) due to the

lack of source (Figure 5.7) will have better image with areal source injection (Figure 5.9b).

5.5.2 Test on nonlinear data set in the time domain

To test the performance of this proposed framework with filed data in time domain, we

generate the nonlinear data with iWave (Symes 2013) by subtracting the data that gener-

ated by free-surface with the background models (density model and velocity model as in

Figure 5.10) from the data that generated by free-surface with the true models. Then the

nonlinear data is decomposed and extrapolated wapenaar1998reciprocity into the up- and

down-going wavefields at the surface (one shot gather is shown in Figure 5.11). In SPLS-

RTM here, we re-randomize roughly 5% shots of the whole data set during each iteration,

and totally conduct one data pass.

The image we get by inverting the total up-going data directly with absorbing surface

and dipole sources has interference from the phantoms generated by the cross-correlation

between reflections in different orders. Here the phantoms from the cross-correlation be-

tween different ordered multiples of the shallowest layer interface are even stronger than

those from the primaries of deeper layer interface and the responding first order multiples.

The latter ones are recognized as the duplicated phantoms just below the correct reflectors

as in Figure 5.12a. And the removed artifacts by injecting the areal sources in the inversion

(Figure 5.12c) are mainly the latter phantoms. The former ones are very strong and some

of them are still there as in Figure 5.12b around the first interfaces—i.e. the ocean bottom.

And the remaining phantoms near the ocean bottom are due to the fact that we invert the

density perturbation into a velocity perturbation, which need to be improved in the future.

The improvements by areal source injection into the inversion framework are obvious in

Figure 5.12c.
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(a) RTM for primaries

(b) RTM for the total deghosted up-going wavefield data

Figure 5.6: RTM images for linear data sets. (a) The RTM image for only primaries; (b)
The RTM image for the total deghosted up-going wavefield with areal source.
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(a) LS-RTM for primaries

(b) SPLS-RTM for the total deghosted up-going wavefield data with areal source

Figure 5.7: SPLS-RTM images for linear data sets. (a) is the SPLS-RTM image for only
primaries; (b) is the SPLS-RTM image for the total deghosted up-going wavefield with
areal source.
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(a) Mask applied on acquisition geometry

(b) One common-receiver gather with mask

Figure 5.8: The mask applied on the acquisition geometry and the masked data.
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(a) LS-RTM for the masked primaries

(b) SPLS-RTM for the masked total deghosted up-going wavefield data with areal source

Figure 5.9: SPLS-RTM images for the masked linear data sets. (a) is the SPLS-RTM image
for the masked primaries; (b) is the SPLS-RTM image for the masked total deghosted up-
going wavefield with areal source.
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Figure 5.10: Slowness square background model modified from Sigsbee2A.

Figure 5.11: One shot record of areal source.
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subfigure0

(a) Inverted image with total up-going data without areal source injection

(b) Inverted image with total up-going data with areal source injection
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(c) Difference between (a) and (b)

Figure 5.12: (a) and (b) Images by the total up-going data without and with areal source
injection, respectivley. (c) Differences between (a) and (b).

By comparing the synthetic primaries generated by Born modeling with dipole source

and the recovered model perturbationsδm with the ideal primaries generated by the true

δm, it is clear that most of the first order multiples from the deeper part of the model

are removed or alleviated, but there are still leftover residuals from multiples recovered

primaries. These differences can also be observed between the recovered multiples and the

ideal multiples. Most of the leftover energies are from the higher order multiples of the

primaries of the ocean bottom.
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(a) Deghosted total up-going data (b) Synthetic primaries

(c) Recovered primaries (d) Difference between the Synthetic and
recovered primaries
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(e) Ideal multiples (f) Recovered multiples

Figure 5.13: Comparison between shot gathers. (a) The deghosted total up-going data, (b)
the ideal primaries with absorbing surface and dipole sources mirrored about the surface.
(c) The recovered primaries by the inverted δm with absorbing surface and dipole sources
mirrored about the surface. (d) The differences between (b) and (c). The red and block
arrows indicate that the reflections in the recovered primaries are weaker or stronger than
those in the ideal primaries, respectively. (e) The ideal multiples that got by subtracting
the synthetic primaries with dipole sources from the deghosted total up-going data. (f) The
recovered multiples that generated by areal source.
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5.6 Discussion

In this chapter we extend our sparsity-promoting LS-RTM framework in chapter 4 to the

jointly inversion of primaries and multiples for shallow water scenario. When the ocean

bottom is shallow, the strong surface-related multiples would interrupt the primaries, which

will fail the traditional SRME due to the energy leakage in adaptive subtraction, resulting

in the distortion in the predicted primaries, so the later imaging. We jointly inverse pri-

maries and multiples by injecting the areal source into the Born modeling. In order to get

relief from the strong velocity perturbation at the ocean bottom to generate the strong mul-

tiples, we introduce density which is converted from the velocity for the sedimental layer

by Gardener relation. In the early test with the designed linear data set based on part of

the Sigsbee2A model in time-harmonic domain, the image we invert for the total up-going

data with areal source injection has the phantoms cleaned. In the test on the nonlinear data

set in the time domain, most of the phantoms from the cross-correlation between different

orders of reflections are cleaned. Since the primaries of the ocean bottom is generated by

the strong density perturbation but we are inverting via only Born modeling with respect

to velocity, there is some phase errors in the estimated perturbation at the ocean bottom,

and this will accumulate for the inverted reflectors from higher order multiples. We need

to deal with this problem further in the future, either by developing Born modeling with

respect to density term or taking advantage of other optimization methods which avoid the

overfitting of the total up-going data to the velocity perturbation.
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CHAPTER 6

REMOVING DENSITY EFFECTS IN LEAST SQUARE REVERSE TIME

MIGRATION WITH A LOW-RANK MATCHED FILTER

6.1 Summary

Least-squares reverse-time migration faces difficulties when it inverts the data containing

strong components related to density variation with velocity-only Born modeling opera-

tor. The strong density perturbation will be inverted as strong dummy velocity perturba-

tions, which influence the amplitudes and phase of the velocity perturbations in the inverted

model. The traditional method is to invert the additional density variations by developing

Born operator with respect to both density and velocity or modify the image condition.

In this work, we develop a matched-filter based LS-RTM for velocity-only Born modeling

operator, which removes the artifacts in the imaging created by the strong density variation.

This method doesn’t call for extra work of finite difference stencil and is more general. In

the experiment part, we use a complex discontinuous layered medium with strong density

variations at the ocean bottom, and show the efficacy of the propose formulation.

6.2 Introduction

Least-squares reverse-time migration (LS-RTM, (Guitton, Kaelin, and Biondi 2006; Dai,

Fowler, and Schuster 2012; Plessix and Mulder 2002)) tries to fit observed reflection data

in a least-squares sense to overcome RTM’s shortcomings in producing high resolution and

high-fidelity amplitudes. In other words, LS-RTM attempts to invert the linearized Born

modeling operator iteratively whereas RTM directly treats the adjoint of that operator as its

inverse. So far, LS-RTM has demonstrated an ability to produce high-resolution images in

combination with an efficient computational framework (Herrmann, Tu, and Esser 2015a;
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Yang, Witte, Fang, and Herrmann 2016), overcoming drawbacks of overfitting artifacts

(Herrmann and Li 2012) caused by minimizing the `2-norm.

In addition to the developments listed above, people working on LS-RTM made lots of

progress on incorporating multi-parameters (elastic parameters (Duan, Sava, and Guitton

2016), visco-acoustic parameters (Dutta and Schuster 2014) and so on) for complex geo-

logical structures. The corresponding Born modeling operators are linearized with respect

to these elastic parameters, which allow us to mimic the elastic wave-propagation effects

during the inversion. While important progress has been made handling elastic effects—

e.g. by grouping subsets of elastic parameters that give rise to different radiation patterns

(Operto, Gholami, Prieux, Ribodetti, Brossier, Metivier, and Virieux 2013)— working with

multiple elastic parameters remains challenging.

Among the different parameters that rule the leading order behaviour of wave propa-

gation, we count velocity and density as the most important pair (Beylkin and Burridge

1987). The products of these two, i.e., the seismic impedance, determines the amplitudes

of the seismic waves to leading order. Perturbations in density generate reflection events

even for a constant velocity model. This means that if we invert data generated by strong

density perturbations with a Born modeling that accounts for velocity changes only we can

expect strong artifacts degrading the quality of migrated images (Przebindowska, Kurz-

mann, Köhn, and Bohlen 2012; Plessix, Milcik, Rynja, Stopin, Matson, and Abri 2013).

There are two main reasons for these artifacts: *(i)* the wavefields scattered by the veloc-

ity and density parameters exhibit similar behaviours for some scattering angles (Operto,

Gholami, Prieux, Ribodetti, Brossier, Metivier, and Virieux 2013), and *(ii)* if we only in-

vert for velocity perturbations without incorporating the true density perturbations in Born

modeling operator then LS-RTM will try to fit the amplitudes and phase of the observed

seismic data in terms of velocities only (Bai and Yingst 2014). This can lead to dummy

reflection events in the LS-RTM along with incorrect amplitudes and phase distortions of

the true reflectivity yielded by the velocity perturbations.
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In this work, we propose to use a matched-filter approach to remove artifacts caused

by strong unmodeled density perturbations in the context of imaging with surface-related

multiples. Specifically, we are interested in imaging based on linearized inversions that

derive from velocity-only acoustic Born modeling that handles strong water-bottom multi-

ples generated by strong density changes at the ocean bottom. We find that the proposed

matched-filter, when organized as a matrix, exhibits low-rank structure. This is due to the

fact that the matched-filter tries to approximate the difference between radiation patterns of

velocity and a (strong ocean bottom) density contrast, which varies smoothly with offset.

Inspired by this observation, we propose to simultaneously estimate velocity perturbations

and a low-rank matched-filter, which maps nonlinear (observed) data that contains com-

ponents related to both density and velocity perturbations into ”linearized” data close to

data generated by Born modeling for perturbations in velocity only. The proposed method

does not require the explicit Born operator for density but does need terms that depend on

a smoothly varying background density.

The chapter is organized as follows. First, we form the objective function for our ex-

tended LS-RTM with a low-rank matrix constraint on the matched filter and conclude by

describing a computationally efficient algorithm. Next, we evaluate the performance of the

proposed approach on a quasi-layered model with faults where the density varies strongly

at the ocean bottom. Finally, we show the benefits of inverting for the matched filter to

correctly image both the amplitude and phase of the reflectivity for imaging problems that

contain a strong density contrast at the ocean bottom.

6.3 Methodology

We start with a brief overview of LS-RTM, and then propose a matched-filter based for-

mulation to handle strong density-related effects in imaging. As we mentioned before,

LS-RTM attempts to minimize the `2 norm of the data residual between the observed and
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synthetic data by solving the following (unconstrained) optimization problem:

min
x
f(x) =

nf∑
i=1

‖Bi −∇Fi(m0)(x)‖F , (6.1)

where ∇Fi(m0) represents the monochromatic Jacobian with respect to velocity for

all shots and followed by a matrication putting monochromatic shots in its columns. The

vector x stands for the unknown velocity perturbations. Finally, the matrix Bi is the ith

frequency slice of the observed (nonlinear) data in the S-R domain (source-receiver do-

main). In this work, we think of non-linear data as the difference between the response

of the ”true earth”—i.e., a ”hard” model for velocities and densities and the response of a

”smoothed background earth” where both velocity and density vary smoothly. The symbol

‖ · ‖F denotes the Frobenius norm. The above equation entails a ”velocity only” lineariza-

tion, which is accurate in the absence of strong density variations and a good background

velocity model with respect to which the linearization is carried out. Under those condi-

tions, equation 6.1 can produce good quality migrated images, which can then be used to

perform reservoir characterization.

However, if the observed seismic data contains strong density effects generated by a

strong ocean bottom, then the linearization undergriding Equation 6.1 is no longer valid

and as a consequence this may lead to a degradation in quality of migrated images (Prze-

bindowska, Kurzmann, Köhn, and Bohlen 2012; Plessix, Milcik, Rynja, Stopin, Matson,

and Abri 2013). One way to address this issue is to include density into Equation 6.1 and

re-linearize the Born modeling operator with respect to both velocity and density. While

this approach is certainly a viable option, it is challenging and perhaps excessive to form

a Born modeling operator that includes density, especially because it is well known that

simultaneously inverting for both velocity and density is difficult because the two parame-

ters have similar radiation patterns for certain scattering angles (Operto, Gholami, Prieux,

Ribodetti, Brossier, Metivier, and Virieux 2013). As a result, LS-RTM runs the risk to map

the perturbations in density to the velocity, which results in cross-talk in the imaging (Bai
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and Yingst 2014).

To address these issues, we propose to include a matched filter, which allows us to

compensate for certain leading order density effects while inverting for the velocity pertur-

bations only. Under the assumption that we can find such a matched filter M, we modify

Equation 6.1 as follows:

min
x,Mi

f(x,Mi) =

nf∑
i=1

‖BiMi −∇Fi(m0)x‖F , (6.2)

where Mi is the matched filter matrix for ith frequency. As in our earlier work involving

on-the-fly source estimation (Tu, Aravkin, Leeuwen, and Herrmann 2013; Yang, Witte,

Fang, and Herrmann 2016), we use variable projections to solve for Mi while minimizing

the above objective with respect to the velocity perturbations collected in the vector x.

However, contrary to finding a single time signature for the wavelet, the above matched

filter involves for each frequency a full wavefield opening the risk of overfitting. To counter

this problem, we control the rank ki for each frequency. We motivate this choice by the fact

that the difference in radiation patterns of velocity and the strong density contrasts at the

ocean bottom vary smoothly over offset and we use this to stabilize the inversion. We now

solve

min
x,Mi

f(x,Mi) =

nf∑
i=1

‖BiMi −∇Fi(m0)x‖F ,

s.t. rank(Mi) = ki,

(6.3)

For simplicity, we will now focus on solving the above problem for one single frequency

and drop the subscript i accordingly and implicitly sum over frequencies, i.e.,
∑nf

i=1 for

the remainder of this section. Since rank-minimization problems are NP hard, we use its

convex relaxation instead, i.e., we replace the rank constraint by a nuclear-norm constraint

(Recht, Fazel, and Parrilo 2010; Aravkin, Kumar, Mansour, Recht, and Herrmann 2014).

Then we reformulate the optimization problem into the following format by introducing
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one parameter τ to balance the Frobenius norm and the nuclear norm

min
x,Mi

f(x,Mi) =

nf∑
i=1

‖BiMi −∇Fi(m0)x‖F + τ‖Mi‖∗ (6.4)

As we mentioned before, we solve the above problem 6.4 with variable projections

(Golub and Pereyra 2003; Tu, Aravkin, Leeuwen, Lin, and Herrmann 2016; Yang, Witte,

Fang, and Herrmann 2016). This involves computing gradient steps with respect to x that

minimize the ‖ · ‖F norm —i.e,

xk+1 = xk + s∇xf(x,M)|x=xk,M=Mk
, (6.5)

where s is the step size. As prescribed by variable projection, we solve for M by mini-

mizing 6.4 for xk fixed. The workflow for solving this optimization problem is summarized

in Algorithm 10
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Algorithm 10 Workflow for match-filtered LS-RTM
1: Initialize x0 = 0, τ

2: for k = 1 · · ·N

3: for i = 1 · · ·nf

4: Dki = ∇Fi(m0)xk

5: Initialize Y0 = 0,Mki,0

6: for j = 1 · · · J

7: Yj = Yj−1 + δj(Dki −BiMki,j−1)

8: Mki,j = Dτ (B>i Yj)

9: end

10: end

11: gk =
∑nf

i=1∇F>i Vec(BiMki,J −Dki)

12: xk = xk−1 + skgk

13: end

14: note:Dτ is the singular value shrinkage operator, δj and sk are step sizes needed in update

6.4 Numerical experiments

To test the performance of the proposed method, we conduct experiments on a quasi layered

model with strong density contrast at the ocean bottom (Figure 6.1e. Both velocity and

density models are 1km deep and 2km wide and the underlying grid is discretized to 10m.

The background velocity model m0 and background density model ρ0 are smooth version

of the true velocity and density models respectively and kinematically correct, as shown

in Figure 6.1. We use a Ricker wavelet centered at 10Hz as source wavelet and record

the data for 4 seconds. The 100 shots and 100 receivers are spread over the model with

10m spacing. We conduct 20 iterations for the LS-RTM with ideal linearized data with

respect to only velocity perturbation and 100 iterations to solve the optimization problem

we proposed with the nonlinear data, and during each iteration we run 200 iterations to
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(a) Velocity background (b) Velocity perturbation

(c) True velocity (d) Density background

(e) Density perturbation (f) True density

Figure 6.1: Quasi layered model with faults. (a, b, c) background velocity, the correspond-
ing perturbation and the true velocity. (c, d, e) Same for density model.

solve the matched filter.

Given the true velocity and density models and their backgrounds, we generate ”ob-

served” nonlinear data (Figure 6.2a,b,c) by subtracting the response of the background

models for varying velocity and density from the response yielded by the true velocity and

density models. We compare this response with linear data (Figure 6.2d,e,f) obtained by

applying the Born modeling operator with respect to only velocity. The monochromatic fre-

quency slices of the data predicted by the recovered low-rank filters M in Figure 6.3a,b,c

are shown in Figure 6.2g,h,i. It is clear from the figures that the estimated matched-filter
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varies smoothly across sources, thus, exhibits low-rank structure. These results also val-

idate our belief that the difference between radiation patterns of velocity and the strong

density contrast exhibits smooth structure over offset.

We can observe from Figure 6.4 that in the last iteration of the out-loop of Algorithm

10, the ranks of the inverted matched-filters increase along iterations, leaving the Frobenius

norm of the objective function decreasing (as shown in Figure 6.5), and finally arrive stable

rank levels which are still very low compared to the full-rank 100.

Figure 6.6a shows the idealized LS-RTM results using the linearized data. We can see

that for the ideal scenario, the layer interfaces are sharp and amplitudes are in the correct

range. Also it is clear that the velocity perturbations at shallower interfaces especially at

the ocean bottom are much weaker than those at the deeper interfaces. Next, we invert the

nonlinear data without any matched-filter approach using the velocity-only Born model-

ing operator. It is evident from the inverted image (Figure 6.6b that the LS-RTM maps

the strong density perturbations to the velocity perturbations, thus, creating the dummy

strong reflectors at the ocean bottom. Moreover, the amplitudes and phase of the subse-

quent deeper reflectors are wrong. Finally, we use the proposed matched-filter approach to

perform the LS-RTM (Figure 6.6c. Using the propose method, we are able to remove the

effects of the strong density perturbations at both the shallow and deeper sections. Thus,

the estimated matched-filter can handle the strong density perturbation related effects while

inverting only the velocity perturbation, and can successfully remove the cross-talk created

by density perturbations.
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(a) Nonlinear data at 5hz (b) Nonlinear data at 10hz (c) Nonlinear data at 15hz

(d) Linear data at 5hz (e) Linear data at 10hz (f) Linear data at 15hz

(g) Data predicted by inverted filter at
5hz

(h) Data predicted by inverted filter at
10hz

(i) Data predicted by inverted filter at
15hz

Figure 6.2: Data comparison. (a),(b) and (c) are the nonlinear data slices at 5, 12, 25Hz,
respectively. (d),(e) and (f) are the synthetic linear data slices at 5, 12, 25Hz, respectively.
(g),(h) and (i) are the predicted linear data slices with the inverted filters at 5, 12, 25Hz
respectively.
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(a) Inverted filter at 5hz (c) Inverted filter at 15hz

(c) Inverted filter at 10hz

Figure 6.3: Inverted filters at 5, 12, 25Hz.

Figure 6.4: In the last iteration of out-loop, ranks of the matched-filters along the inner
iterations at 5, 12, 25Hz.
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Figure 6.5: In the later iteration of out-loop, the Frobenius residuals of the objective func-
tion along inner iterations at 5, 12, 25Hz.

142



(a) Image inverted from linear data

(b) Image inverted from nonlinear data

(c) Image inverted from nonlinear data using matched-filter ap-
proach

Figure 6.6: LS-RTM results using velocity-only Born modeling operator. (a) Idealized
linearized data, nonlinear data (b) without, and (c) with matched-filter approach.
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6.5 Conclusion

In this chapter, we propose a matched-filter based least-squares reverse time migration for-

mulation to remove the strong density variation related components in the observed data.

In contrast to other methods which invert density as one additional output or reform im-

age condition, our method doesn’t require the work related to finite difference. Our mod-

ified formulation inverts for the matched-filter and velocity perturbation simultaneously

that matching the nonlinear observed data to the linear data with respect to velocity-only.

In the experiment part, we used a discontinuous layered model with strong density varia-

tions at the ocean bottom to test our method. We showed that the proposed matched-filter

approach can remove the artifacts from density perturbation and get artifacts-free inverted

velocity perturbations. During each iteration of estimating the matched filter, SVD is in-

volved, which would be expensive when there are amount of sources and receivers. We

would consider to develop and compare other optimization method to improve the com-

putational efficiency of our method. The further work is to incorporate the surface related

multiples into the formulation since strong density variation can leads to strong surface

related multiples, which can further enhance the resolution of the inverted images.
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CHAPTER 7

CONCLUSION

In summary, this thesis has contributed a computationally efficient method for recovering

the low-rank representations of the full subsurface extended image volumes. The method

is based on a fast time-stepping propagator and provides a SVD-free approach to mapping

the low-rank factors to other factors for velocity variation scenarios. This work has also

addressed the topic of source estimation for time-domain sparsity-promoting least-squares

reverse-time migration. In a discussion of the influence of converted artifacts from den-

sity variations at the ocean bottom, the thesis has extended the work of efficient sparsity-

promoting inversion for only primaries to joint inversion of both primaries and multiples.

Another contribution is the design of a low-rank filter that matches the density effect from

the strong density variations at the ocean bottom in least-squares reverse time migration

without using Born modeling with respect to density.

7.1 Low-rank recovery of subsurface extended image volumes based on power-schemed

rSVD and mapping via the invariance relationship

In the first part of this thesis (Chapter 2 and 3), in order to get salable access to each

element of the full subsurface image volumes (EIV), we proposed a feasible approach to

recovering their low-rank representations via a randomized SVD method based on the prob-

ing technique in the time domain. To ensure that the randomized probing is feasible and

numerically stable in the time domain, we combined the source term in the formulation of

EIV with Gaussian random probing vectors to form a bandwidth limited source wavefield.

By the utilization of randomness, we limited the wave-equation solves from 2ns to 4np,

where np � ns. In addition, the rSVD method with probing ingeniously reformulates the

original costly multi-dimensional convolutions in EIV between the forward and backward

145



wavefields into relatively cheaper multi-dimensional convolutions between the data record

whose size is much smaller than the wavefield and the other gathers in size of ns×np×nt,

which is also much smaller than all ns wavefields.

To promote our low-rank recovery method to a realistic problem in which the rank of

monochromatic EIV increases along frequency, we combined the power iterations with

the basic rSVD method to accelerate the decay of the singular values of EIVs by narrow-

ing down the gap between the neighboring singular values. We compared different power

schemes and the basic rSVD with different probing sizes and powers by checking the er-

rors of the recovered singular values and the RTM (i.e., the diagonal elements extracted

from the recovered factors of EIV) and concluded that for our seismic problem,the opti-

mal choice was block Krylov iterations with a power of 1. Power iterations improve the

recovered accuracy without increasing the probing size; unfortunately, they increase the

cost, particularly in wave-equation solves proportional to a power of q. We also proposed

several ways of extracting various gathers from the low-rank factors of EIV, including re-

verse time migration (RTM), common image point gathers (CIPs), common image gathers

(CIGs), and geological dip-corrected CIGs without any extra wave-equations solves, and

we conducted seismic numerical experiments to compare the recovered image gathers with

the traditional gathers that were costly to obtain.

We also proposed factorization-free mapping from one pair of low-rank factors to an-

other pairs via invariance relationship for velocity variation scenarios. Combined with

the power scheme-based rSVD, which we used in the initial background model, when the

background model was updated, the cost of wave-equations in the mapping process was

proportional only to the probing size, namely 4np. In the seismic numerical experiment,

we demonstrated the effectiveness of mapping by comparing the image gathers extracted

from the updated low-rank factors to those from the factors obtained with kinematically

correct model with power iterations.
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7.2 Time-domain sparsity promoting least-squares reverse time migration with source

estimation

In the second part of this thesis (Chapter 4),we proposed a scalable time-domain approach

to sparsity-promoting least-squares reverse time migration with on-the-fly source estima-

tion suitable for industrial 3D imaging problems in principle. The approach leverages re-

cently developed techniques from convex optimization and variable projection that signifi-

cantly reduce costs and the need to provide an estimate for the source function. As a result,

our approach is capable of generating high-fidelity true-amplitude images, including source

estimates at a cost of roughly one to two migrations involving all data.

By means of carefully designed experiments in 2D, we were able to demonstrate that

our method is capable of handling noisy data and complex imaging settings such as salt.

We were able to image under salt, which is often plagued by low-frequency tomographic

artifacts, by switching between initially applying the conventional imaging condition and

then performing iterations that apply the inverse-scattering condition. In this way, we es-

timated the source function first while creating an artifact-free image with later iterations,

when the imaging condition was switched while keeping the source function fixed.

7.3 Sparsity-promoting least-squares reverse time migration with multiples and re-

moving density effects with a low-rank matched filter

In the third part of this thesis (Chapter 5), we extended our sparsity-promoting LS-RTM

framework to the joint inversion of primaries and multiples in a shallow water scenario,

where the SRME failed due to the energy leakage in the adaptive subtraction of the pri-

maries prediction. Without any matrix-matrix multiplies, we introduced the multiples by

injecting the areal source into the Born modeling, and cleaned the cross-talks between dif-

ferent orders of reflections by our sparsity-promoting inversion framework. In our test on

a nonlinear dataset in the time domain, the primaries of the ocean bottom were generated
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by the strong density perturbation but inverted via Born modeling only with respect to ve-

locity. Hence, several phase errors in the estimated perturbations were introduced, which

accumulated for the inverted reflectors from higher order multiples.

To deal with the converted velocity perturbations from the density variations, we pro-

posed a matched filter-based least-squares reverse time migration formulation instead of

inverting the density perturbation as one additional output. Our modified formulation in-

verts simultaneously for the velocity perturbation and the low-rank filter that matches the

nonlinear observed data to the linear data component with respect to velocity only. We

conducted preliminary tests based on a discontinuous layered model and demonstrated the

capability of removing the artifacts from density perturbation and obtained the artifacts-free

migrated image related to only velocity perturbation.

7.4 Current limitations and future work

Several limitations of the work presented in this thesis should be considered in the fu-

ture and could be addressed by the following research topics. For one, in the low-rank

recovery of EIV, we implemented and adapted the randomized probing technology with

time-stepping propagator. With regard to the numerical stability, we combined the random

probing vectors with the source term into one band-limited source. This reformulation

assumed that all the shooting sources have the same wavelet signature and requires modi-

fication before it can be applied to real data in the future.

In the work of recovering EIV, we applied fast Fourier transform and its inverse to con-

vert between time-domain tensors to their corresponding monochromatic matrices, which

might involve large memory when extended to three dimensions. This limitation could be

alleviated if we applied on-the-fly Fourier transform with time stepping (Witte, Louboutin,

Luporini, Gorman, and Herrmann 2019), in which each time-stepping propagation involved

only one frequency component in the source term, used less memory, but required more

forward modeling to cover all the discretized frequencies. The usage of on-the-fly Fourier
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transform with time-stepping operators will also allow us apply less probing vectors for

lower frequencies, which can save wave-equation solves to some degree.

When the EIV is ill-conditioned, for example, when its singular values are dominated

by some specific values derived from the components of the salt body, we could cre-

ate clearer images by mitigating the ill-conditioning of the EIV. Some recent peer work

shows the improvement of spacial differentiation-related preconditioners on removing low-

wave number artifacts for only specific image gathers, e.g., CIGs. Since we can access

any specific elements from the low-rank factors without any investment in wave-equation

solves, we can easily design some preconditioners after the low-rank recovery to get better

CIGs. Also we can design some preconditioners applied during the recovery. With the

ill-conditioning alleviated, we could expect that with the energy on the tail of the singular

values raised and the gap between neighboring singular values enlarged by the precondi-

tioners, the power scheme we proposed would have more obvious improvement than basic

rSVD in increasing the recovery accuracy.

In the work of removing the density effect by a matched low-rank filter, we applied

least-squares reverse time migration with only primaries. However the SVD investigated in

each iteration of estimating the matched low-rank filter could be potentially expensive with

large numbers of source and receiver. We will consider about other optimization method

to avoid this factorization in the future. We would also introduce the low-rank filter to

the joint inversion of primaries and multiples to remove the ocean bottom related artifacts

converted from density variations.
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