Economic time-lapse seismic acquisition and imaging - Reaping the benefits of randomized sampling with distributed compressive sensing

Felix Oghenekohwo

Ph.D. Final Oral Defense 10th August 2017

University of British Columbia

Outline

Introduction:

- basic concepts seismic, time-lapse etc.
- compressive sensing & impact
- motivation

Time-lapse seismic:

- current challenges & existing solutions
- overview of my contribution
- main message

Outline

Theory:

- compressive sensing in seismic
- randomized acquisition in marine
- time-lapse formulation
- DCS & joint recovery model

Applications:

- time-lapse marine acquisition Chapters 2, 3 & 4
- time-lapse seismic imaging Chapter 5

Conclusions

Marine seismic survey

Principle:

- Airgun fires shot
- Reflections from subsurface
- Recorded by receivers
- Generates data (shot records)
- Repeat after "t" seconds

Shot Gather (Raw)

Shot records:

- Non-overlapping
- Contain coherent events
- Reflections
- Function of time & offset
- Record many shots

Workflow:

- data acquisition
- preprocessing
 - sorting, noise removal etc.
 - multiple removal
 - velocity analysis
 - NMO correction
- postprocessing
 - stacking
 - noise suppression
 - migration (imaging)
 - other enhancements

Principle of time-lapse

http://www.geoexpro.com/articles/2009/05/4d-geophysical-data

Principle:

- ▶ 1st Baseline
- 2nd Monitor
- Difference = Baseline Monitor
- Quantify changes
- Fluid sat., temp., pressure etc.

Current acquisition paradigm:

- repeat expensive dense acquisitions & "independent" processing
- compute differences between baseline& monitor survey(s)
- hampered by practical challenges to ensure repetition

Compressive sensing

Consider the following (severely) underdetermined system of linear equations:

Is it possible to recover \mathbf{x}_0 accurately from \mathbf{b} ?

The field of Compressive Sensing attempts to answer this.

Compressive sensing

Signal model

$$\mathbf{b} = \mathbf{A}\mathbf{x}_0 \quad \text{where} \quad \mathbf{b} \in \mathbb{R}^n$$

and x₀ k-sparse

Sparse one-norm recovery

$$\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{arg\,min}} ||\mathbf{x}||_1 \stackrel{\text{def}}{=} \sum_{i=1}^N |x[i]|$$
 subject to $\mathbf{b} = \mathbf{A}\mathbf{x}$

with $n \ll N$ where N is the ambient dimension

THE LEADING EDGE

Table of Contents

634......Annual Meeting preview: Bigger in Texas

Special Section: Impact of compressive sensing on seismic data acquisition and processing

- 640......Introduction to this special section: Impact of compressive sensing on seismic data acquisition and processing, N. Allegar, F. J. Herrmann, and C. C. Mosher
- **642......Compressive sensing: A new approach to seismic data acquisition,** R. G. Baraniuk and P. Steeghs
- **646...... Sparsity in compressive sensing,** J. Ma and S. Yu
- **654 Sparse seismic wavefield sampling,** X. Campman, Z. Tang, H. Jamali-Rad, B. Kuvshinov, M. Danilouchkine, Y. Ji, W. Walk, and D. Smit
- 661...... Operational deployment of compressive sensing systems for seismic data acquisition, C. C. Mosher, C. Li, F. D. Janiszewski, L. S. Williams, T. C. Carey, and Y. Ji
- 670...... Application of compressive seismic imaging at Lookout Field, Alaska, L. Brown, C. C. Mosher,C. Li, R. Olson, J. Doherty, T. C. Carey, L. Williams, J. Chang, and E. Staples
- 677Highly repeatable 3D compressive full-azimuth towed-streamer time-lapse acquisition A numerical feasibility study at scale, R. Kumar, H. Wason, S. Sharan, and F. J. Herrmann
- 688....... Highly repeatable time-lapse seismic with distributed compressive sensing Mitigating effects of calibration errors, F. Oghenekohwo and F. J. Herrmann

696Geophysical Tutorial: Exploring nonlinear inversions: A 1D magnetotelluric example, S. Kang, L. J. Heagy, R. Cockett, and D. W. Oldenburg

Departments

626Editorial Calendar

628President's Page

630From the Other Side

632Foundation News

700SEG News

702State of the Net

703Reviews

704Membership

705Transitions

705Classifieds

706Meetings Calendar

708Interpreter Sam

Cover image: Houston, Texas, USA downtown city skyline at dusk by Sean Pavone/Shutterstock.

Impact:

- Industry uptake e.g.
 ConocoPhillips.
- Reported improvement in efficiency & economics - up to 10-fold improvements
- Planned time-lapse surveys

Sim. src (jittered) blended shots

- instance of compressive sensing

subsampled shots with overlap between shot records

source fires at jittered times and jittered positions

all shots without overlap between shot records

Context

Time-lapse surveys

- are expensive
- require strict *repeat* surveys
- repetition of surveys is *difficult*

Solution:

- cheap surveys based on CS
- less reliance on survey repetition

Objective

- Reduce cost of time-lapse surveys
- Improve quality of the prestack vintages
- Less reliance on high degrees of survey replicability

Method:

- design low-cost surveys based on CS
- leverage the shared information in time-lapse recordings

Thesis contributions

Time-lapse & CS:

- first attempt to investigate feasibility
- focus on impact of survey replication
- implications for repeatability
- impact of calibration errors

Main message:

- Do not attempt to *replicate* time-lapse surveys
- Recover surveys "jointly" w/ the proposed JRM

Asnaashari et al., 2012; Raknes et al., 2013; Shragge et al., 2013;

Maharramov et al., 2014; Yang et al., 2014.

Time-lapse: current practice/methods

Acquisition/Processing:

- effort to repeat expensive dense acquisitions & "independent" processing
- mostly static receivers to minimize differences
- "cross-equalization" to address some non-repeatability effects

Imaging/Inversion:

- different methods (data/image domain) depending on nonrepeatability effects
- Parallel WI, DDWI, SeqFWI, AltFWI, IDWT

CS formulation in time-lapse

Sampling

$$\mathbf{A}_1\mathbf{x}_1=\mathbf{b}_1$$
 subsampled baseline data $\mathbf{A}_2\mathbf{x}_2=\mathbf{b}_2$ subsampled monitor data

Sparsity-promoting recovery

$$\tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

recovered data:
$$\tilde{\mathbf{d}} = \mathbf{S}^H \mathbf{\tilde{x}}$$

Aim

- Reduce cost of time-lapse surveys
- Improve quality of the prestack vintages
- Avoid repetition

Method:

- economic randomized sampling based on CS
- sparsity-promoting data recovery
- leverage the shared information in time-lapse recordings

Distributed compressed sensing

- joint recovery model (JRM)

vintages

$$\mathbf{x}_1 = \mathbf{z}_0 + \mathbf{z}_1$$
 $\mathbf{x}_2 = \mathbf{z}_0 + \mathbf{z}_2$
 $\mathbf{x}_1 = \mathbf{z}_0 + \mathbf{z}_1$

$$\overbrace{ \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_1 & \mathbf{0} \\ \mathbf{A}_2 & \mathbf{0} & \mathbf{A}_2 \end{bmatrix} }^{\mathbf{Z}} \overbrace{ \begin{bmatrix} \mathbf{z}_0 \\ \mathbf{z}_1 \\ \mathbf{z}_2 \end{bmatrix} }^{\mathbf{b}} = \underbrace{ \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix} }^{\mathbf{b}} \mathbf{\textit{monitor}}$$

common component

Key idea:

- use the fact that different vintages share common information
- ▶ invert for *common* components & *differences* w.r.t. the *common* components with *sparse* recovery

Joint recovery model (JRM)

sparsity-promoting minimization:

$$ilde{f z}=egin{bmatrix} ilde{f z}_0 \ ilde{f z}_1 \ ilde{f z}_2 \end{bmatrix}$$
 time-lapse

Key idea:

- invert for common components & innovation w.r.t. common components with sparse recovery
- common component observed by all surveys

Seismic application

Method

- Velocity and density model provided by BG Group, taken as baseline
- ▶ High permeability zone identified at a depth
- Fluid substitution (gas/oil replaced with brine) simulated to derive monitor velocity model
- Wavefield simulation to generate synthetic
- scales to 11733300 x 114882048

Simulated time-lapse data

- time-domain finite differences

time samples: 512

receivers: 100

sources: 100

sampling

time: **4.0 ms**

receiver: 12.5 m

source: **12.5** m

Evaluation

Signal to noise ratio:

$$SNR(\mathbf{d}, \tilde{\mathbf{d}}) = -20 \log_{10} \frac{\|\mathbf{d} - \tilde{\mathbf{d}}\|_2}{\|\mathbf{d}\|_2}$$

Repeatability as NRMS (normalized root mean square): [Kragh and Christie (2002)]

$$NRMS(\tilde{\mathbf{d}_1}, \tilde{\mathbf{d}_2}) = \frac{200 \times RMS(\tilde{\mathbf{d}_1} - \tilde{\mathbf{d}_2})}{RMS(\tilde{\mathbf{d}_1}) + RMS(\tilde{\mathbf{d}_2})}$$
$$RMS(\mathbf{d}) = \sqrt{\frac{\sum_{t=t_1}^{t_2} (\mathbf{d}[t])^2}{N}}$$

N is the number of samples in the interval t_1 to t_2 $\mathbf{d}[t]$ is a sample recorded at time t

Conventional vs. time-jittered sources

- subsampling ratio = 2, 2 source arrays

conventional

"unblended" shot gathers number of shots = **100** (per array) shot record length: 10.0 s spatial sampling: 12.5 m vessel speed: 1.25 m/s recording time = $100 \times 10.0 = (1000.0 \text{ s})$

jittered acquisition 1 (baseline)

[BLENDING & SUBSAMPLING] spatial subsampling factor = 2 spatial sampling *increase* factor = 2

[DEBLENDING & INTERPOLATION]

jittered acquisition 2 (monitor)

"blended" shot gathers

number of shots = 100/2 = 50 (25 per array) spatial sampling: 50.0 m (jittered) vessel speed: 2.50 m/s

recording time $\approx 1000.0 \text{ s/2} = (500.0 \text{ s})$

Measurements

-subsampled and blended

CS formulation in time-lapse

Sampling

$$\mathbf{A}_1\mathbf{x}_1=\mathbf{b}_1$$
 subsampled baseline data $\mathbf{A}_2\mathbf{x}_2=\mathbf{b}_2$ subsampled monitor data

Sparsity-promoting recovery

$$\tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

recovered data:
$$\tilde{\mathbf{d}} = \mathbf{S}^H \mathbf{\tilde{x}}$$

Structure - curvelet representation

Recovery (jointly) via JRM

Monitor recovery

- Independent recovery

Monitor recovery

Joint recovery

[colormap scale: 10 X]

4-D recovery

- Independent recovery

[colormap scale: 10 X]

4-D recovery

Joint recovery

Observations

In the given context of randomized subsampling,

- Independent surveys bring extra information
- "Exactly" repeated surveys do not add any new information
- ► For different surveys, independent processing degrades recovery quality of vintages and time-lapse difference
- With joint recovery, we observe improvement in recovery quality of the vintages for completely independent surveys

Our joint recovery model exploits the shared information in time-lapse data, improving the **repeatability** of the vintages.

"Exact" replicability of the surveys seems essential for good recovery of the time-lapse signal

Summary

With decrease in survey replication i.e. overlap in shot positions,

- quality of recovered vintages improves significantly
- small variability in quality of the recovered time-lapse signal

Recovered prestack vintages can serve as input to poststack processes.

Results hold for processes with/without regularization (Chapter 2 & 3)

Focus on knowing the exact shot positions i.e. postplots, rather than striving to replicate the time-lapse surveys.

What is the impact of calibration errors?

$$(\mathbf{A}_1 \neq \mathbf{A}_2)$$

4-D time-jittered marine acquisition

Recovery & repeatability

Summary

- ► High-cost densely sampled surveys give best quality & repeatability in the absence of calibration errors
- Quality of dense surveys decay rapidly in presence of small errors
- ► Independently recovering the CS-based surveys leads to the worst recovery quality and repeatability
- Low-cost randomized surveys show modest decay in quality and repeatability when recovered with the joint recovery model

Recovery with the JRM is stable with respect to calibration errors.

Time-lapse seismic imaging

Challenges:

- non-repeatability effects e.g. via acquisition differences
- overburden complexity
- weak 4D signal in complex areas

Objectives:

- Investigate the role of DCS & the JRM
- compare data-domain versus image-domain
- migration & FWI

Assuming similar geometry, "good" starting model

Assuming similar geometry, "poor" starting model

Observations

A good initial model drives the inversion results for the vintages and time-lapse model

Sequential FWI is better than parallel FWI, however joint inversion with JRM is better than both approaches

Significant attenuation of the artifacts in the time-lapse model using JRM, which exploits the shared information in time-lapse

General conclusions

Time-lapse seismic acquisition:

- Randomize acquisition & do not bother with "exact" repetition
- Processing: recover high-quality vintages & time-lapse using the joint-recovery model (JRM)
- Advantageous to have precise information on acquisition specs.

Impact of calibration error in (time-lapse) CS:

- Robust recovery using the JRM
- Avoid independent processing & expensive conventional dense surveys
- Shot timing errors need to be minimized, less so for spatial errors.

General conclusions

Time-lapse seismic imaging with DCS:

- Independent time-lapse inversions do not exploit the common information in the vintages
- Model differences due to different inversions can mask true time-lapse changes
- Inversions leveraging the JRM yield images (or models) with better quality for both the vintages and time-lapse difference.
- Inversions with JRM attenuates artifacts observed with separate inversions, minimizing the risk of false time-lapse changes

Publications

- Felix Oghenekohwo and Felix J. Herrmann, "Improved time-lapse data repeatability with randomized sampling and distributed compressive sensing", in EAGE Annual Conference Proceedings, 2017.
- Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann, "Low-cost time-lapse seismic with distributed compressive sensing—Part 2: impact on repeatability", Geophysics, vol. 82, p. P15-P30, 2017.
- <u>Felix Oghenekohwo</u>, <u>Haneet Wason</u>, <u>Ernie Esser</u>, and <u>Felix J. Herrmann</u>, "<u>Low-cost time-lapse seismic with distributed compressive sensing—Part 1: exploiting common information among the vintages</u>", *Geophysics*, vol. 82, p. P1-P13, 2017.
- Felix Oghenekohwo and Felix J. Herrmann, "Highly repeatable time-lapse seismic with distributed Compressive Sensing—mitigating effects of calibration errors". 2017.
- Felix J. Herrmann, Rajiv Kumar, Felix Oghenekohwo, Shashin Sharan, and Haneet Wason, "Compressive time-lapse marine acquisition", in SEG Workshop on Low cost geophysics: How to be creative in a cost-challenged environment; Dallas, 2016.
- Felix Oghenekohwo, Rajiv Kumar, Ernie Esser, and Felix J. Herrmann, "Time-lapse FWI with distributed compressed sensing", in Inaugural Full-Waveform Inversion Workshop, 2015.
- Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann, "Compressed sensing in 4-D marine—recovery of dense time-lapse data from subsampled data without repetition", in EAGE Annual Conference Proceedings, 2015.
- Felix Oghenekohwo, Rajiv Kumar, Ernie Esser, and Felix J. Herrmann, "Using common information in compressive time-lapse full-waveform inversion", in EAGE Annual Conference Proceedings, 2015.
- Felix Oghenekohwo and Felix J. Herrmann, "Compressive time-lapse seismic data processing using shared information", in CSEG Annual Conference Proceedings, 2015.
- Felix Oghenekohwo and Felix J. Herrmann, "A new take on compressive time-lapse seismic acquisition, imaging and inversion", in PIMS Workshop on Advances in Seismic Imaging and Inversion, 2015.
- Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann, "Randomization and repeatability in time-lapse marine acquisition", in SEG Technical Program Expanded Abstracts, 2014, p. 46-51.
- Felix Oghenekohwo, Rajiv Kumar, and Felix J. Herrmann, "Randomized sampling without repetition in time-lapse surveys", in SEG Technical Program Expanded Abstracts, 2014, p. 4848-4852.
- Felix Oghenekohwo, Ernie Esser, and Felix J. Herrmann, "Time-lapse seismic without repetition: reaping the benefits from randomized sampling and joint recovery", in EAGE Annual Conference Proceedings, 2014.

Thank you!!!

To:

- my advisor
- committee
- sponsors of SLIM
- members of SLIM

To:

- family
- friends