Economic time-lapse seismic acquisition and imaging - Reaping the benefits of randomized sampling with distributed compressive sensing

Felix Oghenekohwo

Ph.D. Final Oral Defense
10th August 2017
Outline

Introduction:
- basic concepts - seismic, time-lapse etc.
- compressive sensing & impact
- motivation

Time-lapse seismic:
- current challenges & existing solutions
- overview of my contribution
- main message
Outline

Theory:
- compressive sensing in seismic
- randomized acquisition in marine
- time-lapse formulation
- DCS & joint recovery model

Applications:
- time-lapse marine acquisition - Chapters 2, 3 & 4
- time-lapse seismic imaging - Chapter 5

Conclusions
Marine seismic survey

Principle:
- Airgun fires shot
- Reflections from subsurface
- Recorded by receivers
- Generates data (shot records)
- Repeat after “t” seconds
Marine seismic data

Shot Gather (Raw)

Shot records:
- Non-overlapping
- Contain coherent events
- Reflections
- Function of time & offset
- Record many shots

FIG. 3.6-3. Selected common-shot gathers from an offshore survey just after demultiplexing. (Data courtesy Dovrol Babgray, Kongsberg Geophysical.)
Seismic method

Workflow:
- *data acquisition*
- preprocessing
 - sorting, noise removal etc.
 - multiple removal
 - velocity analysis
 - NMO correction
- *postprocessing*
 - stacking
 - noise suppression
 - migration (imaging)
 - other enhancements
Principle of time-lapse

Principle:
- 1st - Baseline
- 2nd - Monitor
- Difference = Baseline - Monitor
- Quantify changes
- Fluid sat., temp., pressure etc.

Current acquisition paradigm:
- *repeat expensive dense* acquisitions & “independent” processing
- compute *differences* between baseline & monitor survey(s)
- *hampered by practical* challenges to ensure repetition

http://www.geoexpro.com/articles/2009/05/4d-geophysical-data
Compressive sensing

Consider the following (severely) underdetermined system of linear equations:

$$\begin{align*}
\text{data} & \;\quad \rightarrow \quad \begin{bmatrix} b \\ A \end{bmatrix} \\
\text{(measurements/} & \quad \text{observations} \\
\text{/simulations)} & \\
\text{unknown} & \;\quad \uparrow \\
\text{is it possible to recover } \mathbf{x}_0 \text{ accurately from } \mathbf{b}? \\
\text{The field of Compressive Sensing attempts to answer this.}
\end{align*}$$
Compressive sensing

Signal model

\[b = Ax_0 \quad \text{where} \quad b \in \mathbb{R}^n \]

and \(x_0 \) \(k \)-sparse

Sparse one-norm recovery

\[
\tilde{x} = \arg \min_x ||x||_1 \overset{\text{def}}{=} \sum_{i=1}^{N} |x[i]| \quad \text{subject to} \quad b = Ax
\]

with \(n \ll N \) where \(N \) is the ambient dimension
Impact of CS

Table of Contents

634.......Annual Meeting preview: Bigger in Texas

Special Section: Impact of compressive sensing on seismic data acquisition and processing

640.......Introduction to this special section: Impact of compressive sensing on seismic data acquisition and processing, N. Allegar, F. J. Herrmann, and C. C. Mosher

642.......Compressive sensing: A new approach to seismic data acquisition, R. G. Baraniuk and P. Steeghs

646.......Sparsity in compressive sensing, J. Ma and S. Yu

661.......Operational deployment of compressive sensing systems for seismic data acquisition, C. C. Mosher, C. Li, F. D. Janiszewski, L. S. Williams, T. C. Carey, and Y. Ji

677.......Highly repeatable 3D compressive full-azimuth towed-streamer time-lapse acquisition — A numerical feasibility study at scale, R. Kumar, H. Wason, S. Sharan, and F. J. Herrmann

688.......Highly repeatable time-lapse seismic with distributed compressive sensing — Mitigating effects of calibration errors, F. Oghenekohwo and F. J. Herrmann

696.......Geophysical Tutorial: Exploring nonlinear inversions: A 1D magnetotelluric example, S. Kang, L. J. Heagy, R. Cockett, and D. W. Oldenburg

Impact:

- Industry uptake e.g. ConocoPhillips.
- Reported improvement in efficiency & economics - up to 10-fold improvements
- Planned time-lapse surveys
Sim. src (jittered) blended shots
– instance of compressive sensing

subsampling shots with overlap between shot records

source fires at jittered times and jittered positions

sum

all shots without overlap between shot records
Context

Time-lapse surveys

- are expensive
- require strict repeat surveys
- repetition of surveys is difficult

Solution:

- cheap surveys based on CS
- less reliance on survey repetition
Objective

- Reduce cost of time-lapse surveys
- Improve quality of the prestack vintages
- Less reliance on high degrees of survey replicability

Method:
- design low-cost surveys based on CS
- leverage the shared information in time-lapse recordings
Thesis contributions

Time-lapse & CS:
- *first* attempt to investigate feasibility
- focus on impact of survey *replication*
- implications for *repeatability*
- impact of *calibration errors*

Main message:
- Do not attempt to *replicate* time-lapse surveys
- Recover surveys “jointly” w/ the proposed JRM
Time-lapse: current practice/methods

Acquisition/Processing:
- *effort to repeat* **expensive dense** acquisitions & “*independent*” processing
- mostly static receivers to minimize differences
- “*cross-equalization*” to address some non-repeatability effects

Imaging/Inversion:
- different methods (data/image domain) depending on non-repeatability effects
- *Parallel WI, DDWI, SeqFWI, AltFWI, IDWT*

Watanabe et al., 2004; Denli and Huang, 2009; Zheng et al., 2011; Asnaashari et al., 2012; Raknes et al., 2013; Shragge et al., 2013; Maharramov et al., 2014; Yang et al., 2014.
CS formulation in time-lapse

Sampling

\[A_1 x_1 = b_1 \]
\[A_2 x_2 = b_2 \]

subsampling baseline data

subsampling monitor data

Sparsity-promoting recovery

\[\tilde{x} = \arg \min_x \|x\|_1 \quad \text{subject to} \quad A x = b \]

recovered data: \[\tilde{d} = S^H \tilde{x} \]
Aim

- *Reduce cost of time-lapse surveys*
- *Improve quality of the prestack vintages*
- *Avoid repetition*

Method:

- *economic randomized sampling based on CS*
- *sparsity-promoting data recovery*
- *leverage the shared information in time-lapse recordings*
Distributed compressed sensing
– joint recovery model (JRM)

\[\begin{align*}
\mathbf{x}_1 &= \mathbf{z}_0 + \mathbf{z}_1 \\
\mathbf{x}_2 &= \mathbf{z}_0 + \mathbf{z}_2 \\
\end{align*} \]

differences

\[\begin{bmatrix}
\mathbf{A}_1 & \mathbf{A}_1 & 0 \\
\mathbf{A}_2 & 0 & \mathbf{A}_2 \\
\end{bmatrix} \begin{bmatrix}
\mathbf{z}_0 \\
\mathbf{z}_1 \\
\mathbf{z}_2 \\
\end{bmatrix} = \begin{bmatrix}
\mathbf{b}_1 \\
\mathbf{b}_2 \\
\end{bmatrix} \]

baseline

monitor

Key idea:
- use the fact that different vintages share common information
- invert for common components & differences w.r.t. the common components with sparse recovery
Joint recovery model (JRM)

sparsity-promoting minimization:

\[\tilde{z} = \arg \min_{z} \|z\|_1 \quad \text{subject to} \quad Az = b \]

support detection \hspace{1cm} \text{data-consistent amplitude recovery}

\[\tilde{z} = \begin{bmatrix} \tilde{z}_0 \\ \tilde{z}_1 \\ \tilde{z}_2 \end{bmatrix} \]

Key idea:
- invert for common components & innovation w.r.t. common components with sparse recovery
- common component observed by all surveys
Seismic application
Method

- Velocity and density model provided by BG Group, taken as baseline
- High permeability zone identified at a depth of ~1300m
- Fluid substitution (gas/oil replaced with brine) simulated to derive monitor velocity model
- Wavefield simulation to generate synthetic time-lapse data
- Scales to 11733300 x 114882048
Simulated time-lapse data – time-domain finite differences

- **Baseline**
- **Monitor**
- **4-D signal**

- time samples: 512
- receivers: 100
- sources: 100
- sampling time: 4.0 ms
- receiver: 12.5 m
- source: 12.5 m
Evaluation

Signal to noise ratio:

$$\text{SNR}(d, \tilde{d}) = -20 \log_{10} \frac{\|d - \tilde{d}\|_2}{\|d\|_2}$$

Repeatability as NRMS (normalized root mean square): [Kragh and Christie (2002)]

$$\text{NRMS}(\tilde{d}_1, \tilde{d}_2) = \frac{200 \times \text{RMS}(\tilde{d}_1 - \tilde{d}_2)}{\text{RMS}(\tilde{d}_1) + \text{RMS}(\tilde{d}_2)}$$

$$\text{RMS}(d) = \sqrt{\frac{\sum_{t=t_1}^{t_2} (d[t])^2}{N}}$$

N is the number of samples in the interval t_1 to t_2

$d[t]$ is a sample recorded at time t
Conventional vs. *time-jittered* sources
– subsampling ratio = 2, 2 source arrays

“unblended” shot gathers
- number of shots = 100 (per array)
- shot record length: 10.0 s
- spatial sampling: 12.5 m
- vessel speed: 1.25 m/s
- recording time = 100 x 10.0 = 1000.0 s

“blended” shot gathers
- number of shots = 100/2 = 50 (25 per array)
- spatial sampling: 50.0 m (jittered)
- vessel speed: 2.50 m/s
- recording time ≈ 1000.0 s/2 = 500.0 s

[BLENDING & SUBSAMPLING]
- spatial subsampling factor = 2
- spatial sampling *increase* factor = 2

[DEBLENDING & INTERPOLATION]
Measurements
– subsampled and blended

Baseline

Monitor

Recording time (s)

Receiver position (m)
CS formulation in time-lapse

Sampling

\[A_1 x_1 = b_1 \]
\[A_2 x_2 = b_2 \]

Sparsity-promoting recovery

\[\tilde{x} = \arg \min_x \|x\|_1 \quad \text{subject to} \quad A x = b \]

recovered data: \[\tilde{d} = S^H \tilde{x} \]
Recovery (independently)

25% overlap [10.3 dB]
Structure - curvelet representation
Recovery (jointly) via JRM

Monitor

25% overlap
[18.6 dB]

Residual
Monitor recovery

- Independent recovery

100% overlap
[11.6 dB]

50% overlap
[11.0 dB]

25% overlap
[10.3 dB]
Monitor recovery

- Joint recovery

100% overlap
[11.6 dB]

50% overlap
[15.7 dB]

25% overlap
[18.6 dB]
4-D recovery
- Independent recovery

100% overlap [10.2 dB]
50% overlap [-16.0 dB]
25% overlap [-18.5 dB]
4-D recovery

- Joint recovery

100% overlap
[12.8 dB]

50% overlap
[4.0 dB]

25% overlap
[-1.9 dB]
Observations

In the given context of randomized subsampling,

- Independent surveys bring extra information
- “Exactly” repeated surveys do not add any new information
- For different surveys, independent processing degrades recovery quality of vintages and time-lapse difference
- With joint recovery, we observe improvement in recovery quality of the vintages for completely independent surveys

Our joint recovery model exploits the shared information in time-lapse data, improving the repeatability of the vintages.

“Exact” replicability of the surveys seems essential for good recovery of the time-lapse signal
Summary

With decrease in survey replication i.e. overlap in shot positions,

- quality of recovered vintages improves significantly
- small variability in quality of the recovered time-lapse signal

Recovered prestack vintages can serve as input to poststack processes.

Results hold for processes with/without regularization (Chapter 2 & 3)

Focus on knowing the exact shot positions i.e. postplots, rather than striving to replicate the time-lapse surveys.
What is the impact of calibration errors?

\[(A_1 \neq A_2)\]
4-D time-jittered marine acquisition

Baseline

Monitor

periodic-dense-no overlap

separation + regularization
+ interpolation

True ★ Baseline post-plot ★ Monitor post-plot ★
Recovery & repeatability
Summary

- High-cost densely sampled surveys give best quality & repeatability in the absence of calibration errors.
- Quality of dense surveys decay rapidly in presence of small errors.
- Independently recovering the CS-based surveys leads to the worst recovery quality and repeatability.
- Low-cost randomized surveys show modest decay in quality and repeatability when recovered with the joint recovery model.

Recovery with the JRM is stable with respect to calibration errors.
Time-lapse seismic imaging

Challenges:
- non-repeatability effects e.g. via acquisition differences
- overburden complexity
- weak 4D signal in complex areas

Objectives:
- investigate the role of DCS & the JRM
- compare data-domain versus image-domain
- migration & FWI
Assuming similar geometry, “good” starting model
Assuming similar geometry, “poor” starting model

Parallel w/ initial model

SNR: -3.32

Joint w/ initial model

SNR: 2.61

Sequential w/ inverted base

SNR: -2.01

Joint w/ inverted base

SNR: 5.80
Observations

A good initial model drives the inversion results for the vintages and time-lapse model

Sequential FWI is better than **parallel** FWI, however **joint** inversion with JRM is better than both approaches

Significant attenuation of the artifacts in the time-lapse model using JRM, which exploits the shared information in time-lapse
General conclusions

Time-lapse seismic acquisition:
- Randomize acquisition & do not bother with “exact” repetition
- Processing: recover high-quality vintages & time-lapse using the joint-recovery model (JRM)
- Advantageous to have precise information on acquisition specs.

Impact of calibration error in (time-lapse) CS:
- Robust recovery using the JRM
- Avoid independent processing & expensive conventional dense surveys
- Shot timing errors need to be minimized, less so for spatial errors.
General conclusions

Time-lapse seismic imaging with DCS:

- Independent time-lapse inversions do not exploit the common information in the vintages
- Model differences due to different inversions can mask true time-lapse changes
- Inversions leveraging the JRM yield images (or models) with better quality for both the vintages and time-lapse difference.
- Inversions with JRM attenuates artifacts observed with separate inversions, minimizing the risk of false time-lapse changes

Thank you!!!

To:
- my advisor
- committee
- sponsors of SLIM
- members of SLIM

To:
- family
- friends