Sparsity-promoting Seismic Imaging and Fullwaveform Inversion Xiang Li

Exploration seismology

forward modeling $\mathbf{d}_i = \boldsymbol{\mathcal{F}}_i(\mathbf{m}) = \mathbf{P}_i \mathbf{A}^{-1}(\mathbf{m}) \mathbf{q}_i$

- \mathbf{d}_i : vectorized shot record
- \mathbf{P}_i : receiver restriction operator
- A : discretized wave equation stencil matrix
- **m** : model parameters
- \mathbf{q}_i : source term

8000

time domain: 2.4e+09 X 2.4e+09 frequency domain: 2.9e+05 X 2.9e+05

Exploration seismology

forward modeling

$\mathbf{d}_i = \mathcal{F}_i(\mathbf{m})$

consider the Taylor approximation

each evaluation of J_i requires two PDE solvers $\mathbf{J}_{i}\delta\mathbf{m} = \mathbf{vec} \left[-\mathbf{P}_{i}\mathbf{A}^{-1} \left[\operatorname{diag} \left[\frac{\partial \mathbf{A}}{\partial \mathbf{m}} (\mathbf{A}^{-1}\mathbf{q}_{i}) \right] (\mathbf{I}_{nt} \otimes \delta\mathbf{m}) \right] \right]$

5000

6000

 $\mathcal{F}_i(\mathbf{m}) = \mathcal{F}_i(\mathbf{m}_0) + \mathbf{J}_i(\mathbf{m}_0)\delta\mathbf{m} + \mathcal{O}(\|\delta\mathbf{m}\|_2^2)$

Purposes of thesis

Outline:

- linearized seismic imaging with given smooth background velocity model

Challenge:

Key idea:

- - ► # of PDE solves
 - artifacts
- use curvelets to promote sparsity

• computational cost associated w/ large number of wave-equation (PDE) solves

• combine randomized dimensionality reduction w/ sparse inversion to reduce

[H. Kuehl & M. Sacchi '03] [X. Li & FJH, '10]

[H. Kuehl & M. Sacchi '03] [X. Li & FJH, '10]

Seismic imaging – linearized inversion

$$\delta \mathbf{m} = \operatorname*{arg\,min}_{\delta \mathbf{m}} \| \mathbf{c}$$

- requires iterative solver
- of all sources

expensive!!!

$\delta \mathbf{d} - \mathbf{J}(\mathbf{m}_0) \delta \mathbf{m} \|_2^2$

• each iteration requires at least 2 evaluations of \mathbf{J} and \mathbf{J}^{T} • each evaluation of \mathbf{J} or \mathbf{J}^T requires 2 wave-equation (PDE) solves

[X. Li & FJH, '10] [N.Tu & FJH, '15] [R. N. Neelamani, etc, '10] [T. Nemeth, etc, '99]

Dimensionality reduction

Simultaneous shot

[X. Li & FJH, '10] [E. van den Berg and M. P. Friedlander. '06]

Sparsity-promoting linearized inversion

 $\min_{\delta \mathbf{x}} \|\delta \mathbf{x}\|_{1} \quad \text{subject to} \quad \|\delta \mathbf{d} - \mathbf{J}(\mathbf{m}_{0})\mathbf{C}^{T}\delta \mathbf{x}\|_{2}^{2} \leq \sigma$ $\delta \mathbf{m} = \mathbf{C}^T \delta \mathbf{x}$

> \mathbf{C}^T : inverse curvelet transform $\delta \mathbf{x}$: curvelet coefficients of imaging result

- (convex constraint in terms of the one-norm)
- slowly allowing components to enter into the solution

solving an intelligent series of relaxed LASSO subproblems for decreasing sparsity levels

[Demanet et. al., '06] [Hennenfent & FJH, '06]

Motivation

exploit multiscale and multi-angle structure of real seismic images SNR 6.0 dB SNR 2.1 dB

1 % of coefficients

nonlinear approximation w/ Fourier

nonlinear approximation w/ curvelets

BG model example

BG Compass model

- 2 x 7 km, 5m grid interval
- 350 shot positions, 700 fixed receivers
- 20-50Hz, 10 randomly frequency bands
- 10 iterations
- observed data is generated with the same modeling kernel

true model

background velocity model

Linearized inversion

with 17 simultaneous shots

Observations

- computational cost can be *reduced* significantly by using randomized dimensionality reduction
- related artifacts & noise

We still need an accurate velocity model !!!

• *curvelet-domain* sparsity promotion can suppress the subsampling

[R.G. Pratt, '98] [R.-E. Plessix, etc, '06] [X. Li & FJH, '12]

Full-waveform inversion

FWI objective $\Phi(\mathbf{m}) = \sum_{i=1}^{n_s} \frac{1}{2} \|\mathbf{d}_i - \mathcal{F}_i(\mathbf{m})\|_2^2$

Gauss-Newton update $\delta \mathbf{m} := \arg \min \|\delta \mathbf{d} - \mathbf{J} \delta \mathbf{m}\|_2^2$ $\delta \mathbf{m}$

the modified Gauss-Newton update $\delta \mathbf{m} := \mathbf{C}^T \arg \min \|\underline{\delta \mathbf{d}} - \underline{\mathbf{J}}\mathbf{C}^T \delta \mathbf{x}\|_2^2 \quad \text{s.t.} \quad \|\delta \mathbf{x}\|_1 \le \tau$ $\delta \mathbf{x}$

[X. Li & FJH, '12]

The modified Gauss-Newton algorithm

Algorithm 1: Modified Gauss-Newton with curvelet-domain sparsity promotion and randomization.

Output: Solution $\widetilde{\mathbf{m}}$ of the randomized modified Gauss-2. while $\|\delta \mathbf{d}_k\|_2 \geq \xi$ do 4. $\tau_k = \|\delta \mathbf{d}_k\|_2 / \|\mathbf{C}\mathbf{J}(\mathbf{m}_k)^T \delta \mathbf{d}_k\|_{\infty}$ 6. $\mathbf{m}_{k+1} = \mathbf{m}_k + \alpha \mathbf{C}^T \delta \mathbf{x}_k$ // update with linesearch 7. end

Newton problem for starting model \mathbf{m}_0 , tolerance ξ , and step length α . 1. $\widetilde{\mathbf{m}} \leftarrow \mathbf{m_0}$, and ξ // initial guess and expected residual

 $5.\delta \mathbf{m}_k = \mathbf{C}^T \arg\min_{\delta \mathbf{x}} \|\delta \mathbf{d}_k - \mathbf{J}(\mathbf{m}_k)\mathbf{C}^T \delta \mathbf{x}\|_2^2$ subject to $\|\delta \mathbf{x}\|_1 \leq \tau_k$.

BG model example

BG Compass model

- 2 x 7 km
- 350 shot positions, 700 fixed receivers
- 3-15Hz, 10 frequency bands
- 5 GN updates for each band
- observed data is from time domain finite difference

Inversion results

the modified Gauss-Newton method with L1 constraint

the modified Gauss-Newton method with L2 constraint

Observation & question

Modified Gauss-Newton:

- only promotes sparsity on individual updates
- does NOT change the FWI objective function

Why

- would the sum of all sparse updates still be sparse?

• is promoting sparsity on the Gauss-Newton updates a good idea?

Least-squares optimization problem

Unconstrained objective function:

$$\min_{\mathbf{m}} \Phi(\mathbf{m}) := \begin{cases} \frac{1}{2} \| \mathbf{d} \\ 2 \end{cases}$$

Gauss-Newton update:

 $\delta \mathbf{m} = \arg \min \|\delta \mathbf{d} - \mathbf{J}(\mathbf{m}_k) \delta \mathbf{m}\|_2$ $\delta \mathbf{m}$

Modified Gauss-Newton update:

$$\delta \mathbf{m} = \mathbf{C}^T \arg\min_{\delta \mathbf{x}} \|\delta \mathbf{d} - \mathbf{J}(\mathbf{m}_k)\mathbf{G}\|_{\delta \mathbf{x}}$$

$-\mathcal{F}(\mathbf{m})\|_{2}^{2}$

$\mathbf{C}^T \delta \mathbf{x} \|_2^2$ subject to $\|\delta \mathbf{x}\|_1 \leq \tau$

Least-squares optimization problem -w/sparse constraint

Objective function with sparse constraint:

$$\min_{\mathbf{x}} \Phi(\mathbf{x}) := \left\{ \frac{1}{2} \| \mathbf{d} - \mathcal{F}(\mathbf{C}^T \mathbf{x}) \right\}$$

Gauss-Newton update:

$$\delta \mathbf{m} = \mathbf{C}^T \arg\min_{\delta \mathbf{x}} \|\delta \mathbf{d} - \mathbf{J}(\mathbf{m}_k)\mathbf{C}^T \delta \mathbf{x}\|_2^2$$

$\mathbf{x} \|_{2}^{2}$ subject to $\|\mathbf{x} - \mathbf{x}_{0}\|_{1} \leq \tau$

subject to $\|\delta \mathbf{x} + \mathbf{x}_k - \mathbf{x}_0\|_1 \le \tau$ (3)

Convex problem w/unique solution

$$\Phi(\mathbf{m}) := \left\{ \frac{1}{2} \| \mathbf{d} - \mathbf{A}\mathbf{m} \|_2^2 \right\}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 4 \\ 6 & -3 \end{bmatrix}$$

 $\mathbf{d} = \begin{bmatrix} -6\\ -3 \end{bmatrix}$

$$\mathbf{m} = \begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$$

 m_2 o

GN with unconstrained objective

with wrong constraint

[J. Burke, '92]

with ℓ_1 constraint

with ℓ_2 constraint

Linear example w/multiple solutions

$$\Phi(\mathbf{m}) := \left\{ \frac{1}{2} \| \mathbf{d} - \mathbf{A}\mathbf{m} \|_2^2 \right\}$$

$\mathbf{A} = \begin{bmatrix} 2 & 4 \end{bmatrix}$

 m_2 o

 $\mathbf{d} = -4$

$$\mathbf{m} = \begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$$

GN with unconstrained objective

$\begin{aligned} \mathbf{GN} &- \mathbf{w} / \text{ sparse constrained objective function} \\ \min_{\mathbf{x}} \Phi(\mathbf{x}) &:= \left\{ \frac{1}{2} \| \mathbf{d} - \mathcal{F}(\mathbf{S}^{H}\mathbf{x}) \|_{2}^{2} \right\} & \text{subject to} & \| \mathbf{x} - \mathbf{x}_{0} \|_{1} \leq \tau \end{aligned}$

 $au < au_{true}$

 $au > au_{true}$

 $au = au_{true}$

with ℓ_2 constraint

Phase retrieval problem **Objective function:** $\Phi(\mathbf{x}) := \left\{ \frac{1}{2} \| \mathbf{d} - \operatorname{diag}(\mathbf{A}\mathbf{x})(\mathbf{A}\mathbf{x}) \|_2^2 \right\}$ $\mathbf{d} = \operatorname{diag}(\mathbf{A}\mathbf{x}_{true})(\mathbf{A}\mathbf{x}_{true})$

- $:400 \times 512$ matrix Α
- $:400 \times 1$ vector d
- $: 512 \times 1$ unknown vector \mathbf{X}

Convergence

Modified Gauss-Newton updates

red is the position of sparse support

Observations

Modified Gauss-Newton:

- can find the solution as other methods with unconstrained objective for convex problems with unique solution
- support.

• can find a solution with sparse perturbation of the initial guess for problems with multiple solutions, if updates share the same

Chevron 2012-2013 benchmark (blind test)

- 3201 shots with interval 25 m
- 801 receivers with interval 25 m, yielding 20km offset
- record time 14s, sample rate 4ms
- free surface
- isotropic elastic

Inversion setting

- 7 frequency bands (2-5Hz)
- 6 GN iterations per frequency band, with 600 randomly selected shots

Initial model ray base tomography

Andrew J. Calvert

Modified Gauss-Newton inversion result

Gauss-Newton inversion result

Future work

multi-parameter inversion with joint-sparsity

velocity

• time domain approach

Conclusions

- Geological structures are sparse in the curvelet domain
- reduction
- cumulative updates w.r.t. starting model
- updates share the same sparsity support

• Computational cost can be reduced significantly by using randomized dimensionality

• Sparsity constraints on the objective do not necessarily generate solutions with sparse

• Modified Gauss-Newton method yields solutions with sparse cumulative, if most

Acknowledgements

Thank you for your attention !

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, DownUnder Geosolutions, Hess, Petrobras, PGS, Sub Salt Solutions, WesternGeco, and Woodside.

https://www.slim.eos.ubc.ca/

