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Abstract

This thesis will address the large computational costs of solving least-squares mi-

gration and full-waveform inversion problems. Least-squares seismic imaging and

full-waveform inversion are seismic inversion techniques that require iterative min-

imizations of large least-squares misfit functions. Each iteration requires an eval-

uation of the Jacobian operator and its adjoint, both of which require two wave-

equation solves for all sources, creating prohibitive computational costs. In order

to reduce costs, we utilize randomized dimensionality reduction techniques, reduc-

ing the number of sources used during inversion. The randomized dimensionality

reduction techniques create subsampling related artifacts, which we mitigate by

using curvelet-domain sparsity-promoting inversion techniques. Our method con-

ducts least-squares imaging at the approximate cost of one reverse-time migration

with all sources, and computes the Gauss-Newton full-waveform inversion update

at roughly the cost of one gradient update with all sources. Finally, during our re-

search of the full-waveform inversion problem, we discovered that we can utilize

our method as an alternative approach to add sparse constraints on the entire veloc-

ity model by imposing sparsity constraints on each model update separately, rather

than regularizing the total velocity model as typically practiced. We also observed

this alternative approach yields a faster decay of the residual and model error as a

function of iterations. We provided empirical arguments why and when imposing

sparsity on the updates can lead to improved full-waveform inversion results.
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Chapter 1

Introduction

1.1 Least-squares migration
Within the field of exploration seismology, it is important to capture a clear image

of the subsurface structure. Oil and gas industries rely on this information in order

to evaluate the location, size and profitability of a reservoir. In order to obtain an

image of the subsurface structure, seismic waves are sent from the surface of the

earth and the reflected and refracted waves are recorded. Many methods have been

developed to translate the recorded data into a final subsurface image.

Least-squares migration provides a number of distinct advantages over tradi-

tional imaging methods. In the oil and gas industry, seismic imaging techniques are

often conducted with the Kirchhoff migration and reverse-time migration (RTM);

however, these methods only use the adjoint of the linearized forward modeling

system to map the observed data to the image domain, and therefore, they do not

necessarily produce correct amplitude information on changes of the subsurface

velocity with respect to a known background-velocity model Guitton and Ver-

schuur (2004); Claerbout (1985); Gray (1997). Least-squares migration, in con-

trast, is able to produce the correct amplitude information by using optimization

techniques to minimize the difference between the observed data residual and the

modeling data. Additionally, researchers have reported that least-squares migra-

tion can noticeably mitigate the migration artifacts, because linearized data from

migration artifacts can not fit the observed data during the inversion process Lailly

1



(1983); Aoki and Schuster (2009); Nemeth et al. (1999); Kühl and Sacchi (2003).

Finally, the above two advantages, taken together, results in an image of higher

resolution.

Despite these advantages, the main obstacle of applying the least-squares mi-

gration method to industry size data is its prohibitively high computational cost.

The least-square migration usually requires us to minimize a least-squares objec-

tive function with respect to the velocity perturbation iteratively. Each iteration

requires evaluations of the migration operator and the linearized modeling opera-

tor (ie. the adjoint of migration operator). Each action requires solving two for-

ward modeling problems for all sources Nemeth et al. (1999); Plessix and Mulder

(2004). Therefore, the inversion cost grows linearly with the number of sources

multiplied by the number of iterations used in the inversion.

We have used the randomized dimensionality reduction technique in order to

reduce the high computational cost of least-squares migration Herrmann et al.

(2009b); Neelamani et al. (2010); Herrmann and Li (2012). This approach lim-

its the number of source experiments in the least-squares migration by replacing

all the sources with a subset of randomly selected sequential sources or a subset

of randomly combined simultaneous sources. In this way, we greatly improve the

computing efficiency because fewer modeling problems need to be solved with

subsampled sources.

Although the randomized dimensionality reduction technique lowers computa-

tional cost, there are noticeable problems with the approach. First, the randomized

dimensionality reduction technique introduces subsampling related artifacts. If we

use the randomly combined simultaneous sources, we introduce source cross talk;

if we use the randomly selected sequential sources, we introduce nonuniform illu-

mination Herrmann et al. (2009b); Tu et al. (2013). Second, using fewer sources

will make the least-squares problem more ”under-determined,” meaning fewer ob-

servations than unknowns, which leads to more possible solutions.

We borrow ideas from compressive sensing (CS) to address the subsampling

related problems. According to CS, a sparse signal can be recovered from far fewer

observations required by the Shannon-Nyquist sampling theorem by solving an

sparsity promoting problem Candès et al. (2006); Donoho (2006), and the quality

of the recovered signal depends on the sparsity level instead of the Nyquist sam-
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pling rate. The least-squares imaging result contains geological structures that are

sparse in the curvelet domain, while the subsampling related artifacts are not Ku-

mar (2009); Herrmann et al. (2008a). Therefore, compressive sensing, together

with randomized dimensionality reduction, can easily suppress subsampling re-

lated artifacts—as well as other noise that is not sparse in curvelet domain—by

promoting a sparsity constraint on the least-squares imaging result in the curvelet

domain.

This thesis, therefore, provides the two contributions discussed above. First,

it renders the least squares migration computationally efficient, using randomized

dimensionality reduction, reducing the number of required wave equation solves

that are related to the number of shots used in inversion. Second, it mitigates

subsampling artifacts by utilizing a curvelet domain sparsity promotion algorithm.

1.2 Full-waveform inversion
Successful application of the least-squares migration technique depends on the ac-

curacy of the background velocity model. If the kinetic characteristic of the veloc-

ity model is not accurate, linearized modeling will generate data at the wrong time,

which can not reflect the correct position of the velocity perturbation. Therefore,

least-squares migration will produce an incorrect imaging result by fitting the ob-

served data with the wrongly modeled data Herrmann et al. (2009a); Nemeth et al.

(1999); Kühl and Sacchi (2003).

In the last two decades, researchers have reported that the full-waveform inver-

sion (FWI) technique has the potential to build up an accurate velocity model Bunks

et al. (1995); Pratt et al. (1998a); Virieux and Operto (2009); Li et al. (2012);

Mtivier et al. (2013). Most commonly, FWI is formed into a nonlinear least-squares

optimization problem where the medium parameters are obtained by minimizing

the least-squares misfit between observed and synthetic data. There are many ways

to solve the FWI optimization problem, such as gradient descent Tarantola (1984a),

conjugate-gradient descent Gilbert and Nocedal (1992), Gauss-newton Pratt et al.

(1998a); Li et al. (2012) and quasi-Newton Liu and Nocedal. (1989). The schematic

workflow is shown in Figure 1.1.

In this thesis, we investigate the Gauss-Newton method for the following rea-
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Figure 1.1: schematic FWI workflow (image courtesy Tristan van Leeuwen)

sons. Firstly, the Gauss-Newton method is a second-order optimization method that

has the potential to achieve better convergence behavior compared to first-order

gradient-based methods Pratt et al. (1998a); Gratton et al. (2007); Mtivier et al.

(2013). Secondly, the Gauss-Newton method approximates the nonlinear least-

squares problem with a sequence of linearized least-squares subproblems which

require us to invert the Gauss-Newton Hessian (an approximation of the true Hes-

sian) Gratton et al. (2007). The Gauss-Newton Hessian is symmetric and (semi-

)positive definite, which can be inverted more easily than the true Hessian Hestenes

and Stiefel (1952).

Using Gauss-Newton method for FWI is expensive. The Gauss-Newton Hes-

sian of FWI objective function is formed by compounding the linearized modeling

operator and its adjoint (ie. the RTM operator). To invert the Gauss-Newton Hes-

sian, we have to evaluate the linearized modeling and the RTM operator several

times, requiring a large number of wave-equation (ie. partial differential equa-

tion) solves. This could be extremely computationally expensive for large scaled

datasets.

As discussed in the previous section, in order to reduce prohibitively high costs,

again we utilize randomized dimentionality reduction and the sparse promoting

inversion technique to mitigate subsampling related artificts created by this ap-

proach Li et al. (2012). In our study, we find that the modified Gauss-Newton

method generates better results by imposing sparsity to the updates. Upon this

discovery, we analyze why it is that the modified Gauss-Newton method yields

improved results and determine the situations under which it can work.

This thesis provides two main contributions. We develop a computationally ef-

ficient alogorithm which is a modification of the Gauss-Newton method, allowing
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us to solve the Gauss-Newton subproblem by reducing data volume at the cost of

roughly one gradient update for the fully sampled wavefield. Additionally, we an-

alyze our modified Gauss-Newton approach and understand its behavior by means

of carefully selected examples.

1.3 Thesis theme
This thesis will provide a practical and efficient approach to the seismic imaging

and waveform inversion problem by using the following key strategies:

• Randomized dimensionality-reduction Rather than using all the sources,

we use a randomly selected subset for least-square migration and the Gauss-

Newton FWI.

• Sparsity-promoting inversion We impose a sparsity constraint on the least-

square imaging result and the Gauss-Newton updates of FWI.

• Curvelet transform We use the curvelet to represent the least-square imag-

ing results and the Gauss-Newton updates, allowing us to efficiently repre-

sent geological structures and mitigate incoherent subsampling related arti-

facts in the inversion results Herrmann (2003).

1.4 Objectives
The main objectives of the this thesis are:

• To develop sparsity-promoting seismic imaging and FWI algorithms with

randomized dimensionality reduction techniques.

• To evaluate our sparsity promoting seismic inversion algorithms and under-

stand their performances.

• To test our algorithms on datasets that have typical seismic inversion dif-

ficulties, such as lack of refraction waves, poor signal-to-noise ratio, and

unmodeled shear waves.
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1.5 Thesis outline
In chapter 2, we first introduce the randomized dimensionality reduction and com-

pressive sensing techniques. Then, we explain how these techniques reduce the

computational burden of large-scale imaging problems. We conclude by apply-

ing the proposed method to a seismic imaging problem with well-log constrained

complexity.

Chapter 3 shows how we can lower computational costs by applying dimen-

sionality reduction and compressive sensing techniques to the FWI problem to for-

mulate the modified Gauss-Newton method. We test our approach with synthetic

data that has a lack of refracted waves from the deep part of the velocity model,

because of the low velocity structure in the middle of the model. Empirically, we

find that the modified Gauss-Newton method with sparsity constraints on the up-

dates provides better convergence behavior and resolution compared to the same

method, but without promoting sparsity.

In chapter 4, we explain the modified Gauss-Newton algorithm for nonlin-

ear optimization problems and provide a detailed formulation. We give a brief

overview of stochastic optimization and CS techniques in this chapter. Finally, we

illustrate the performance of the modified Gauss-Newton algorithm with a syn-

thetic FWI problem, which is created with a realistic geological velocity model.

In chapter 5, we analyze the modified Gauss-Newton method to understand

why it generates a sparse final iterate of the initial model in the curvelet domain

without changing the original objective function. We demonstrate when to expect

the modified Gauss-Newton method to yield a solution with a overall sparse update

with respect to the starting model, and in what circumstances we should use it

in place of other algorithms (such as standard Gauss-Newton). We illustrate the

behavior of these methods by testing them on several different examples, such as

the phase retrieval problem, synthetic FWI and the Chevron Gulf of Mexico blind

FWI test.

In chapter 6, we summarize the arguments listed above, discussing recommen-

dations for future research.
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Chapter 2

Efficient least-squares imaging
with sparsity promotion and
compressive sensing

2.1 Introduction
Modern-day seismic imaging technology depends increasingly on computationally

and data-intensive “wave-equation” migration, which relies on full acquisition and

high-fidelity wavefield simulations (see e.g. Rickett, 2003; Plessix and Mulder,

2004). These challenges are compounded by a lack of available direct solvers for

the time-harmonic Helmholtz equation in 3D. This is problematic because each

source requires a separate partial-differential equation (PDE) solve for indirect

methods and this leads to simulation costs that increase linearly with the number of

source experiments. This explains current-day interest in dimensionality-reduction

techniques that aim to reduce exponentially growing data volumes acquired with

exceedingly many sources.

Motivated by early work of Morton and Ober (1998); Romero et al. (2000) and

more recently by Ayeni (2010); Fei et al. (2010), we address the challenge of the

A version of this chapter has been published. Felix J. Herrmann and Xiang Li. Efficient least-
squares imaging with sparsity promotion and compressive sensing. Geophysical Prospecting, 2012.
c© European Association of Geoscientists & Engineers.
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“curse of dimensionality” by decreasing the number of source experiments. As a

result, we lower the computational burden of imaging significantly. To accomplish

this goal, we extend the randomized dimensionality-reduction ideas presented by

Herrmann et al. (2009b); Neelamani et al. (2010) to the imaging problem.

Seismic imaging entails the inversion of an extremely large, but in the absence

of noise, consistent “overdetermined” systems of equations. Even though there

are generally more equations than unknowns, imaging is plagued by finite aper-

ture and shadow zones, which make this system ill conditioned (Symes, 2008b).

Ill conditioning, in conjunction with extreme high costs of applying imaging op-

erators, challenges iterative solution methods for least-squares imaging problems.

To address this issue, we combine ideas from stochastic optimization (Bertsekas

and Tsitsiklis, 1996; Shapiro et al., 2009; Nemirovski et al., 2009a; Haber et al.,

2010a) and compressive sensing (CS—in short throughout this chapter, Candès

et al., 2006; Donoho, 2006; Mallat, 2009), yielding a formulation where we invert

the large linearized system by solving a sequence of much smaller subproblems

that act on source-encoded “supershots” (Li and Herrmann, 2010a).

The presented approach differs from deterministic approaches, which include

preconditioning, based on approximations of the wave-equation Hessian; data-

dependent source syntheses, based on singular-value decompositions of the data

matrix (Habashy et al., 2010); or the replacement of the Frobenius-norm (`2) by

the matrix norm on the data residue (Symes, 2010). Instead, our method proposes

to reduce the problem size. But contrary to Sirgue and Pratt (2004); Mulder and

Plessix (2004), who select deterministic subsets of angular frequencies in their

imaging, we are motivated by recent ideas from Krebs et al. (2009a); Haber et al.

(2010a) who utilize source-encoding to reduce the dimensionality of full-waveform

inversion.

The outline of this chapter is as follows. First, we motivate how stochastic

optimization and compressive sensing are related to dimensionality reduction by

randomized phase encoding in seismic imaging. Next, we introduce mini batches

as collections of supershots, obtained by randomized sampling along the source

and frequency axes. Inspired by stochastic optimization, we propose a solution

to large-scale imaging problems via sequences of smaller dimensionality-reduced

least-squares subproblems with or without sparsity constraints. Next, we identify
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these constrained subproblems as relaxed sparsity-promoting problems employed

by large-scale one-norm solvers. We show that this leads to an efficient algorithm,

which we subsequently analyze by performing a series of controlled imaging ex-

periments. We conclude by applying the proposed method to a seismic imaging

problem with well-log constrained complexity.

2.2 Motivation
After discretization, seismic imaging involves inversion of the linearized (time-

harmonic) acoustic Born-scattering matrix linking data, collected in the vector b ∈
CN f NrNs with N f , Nr, and Ns the number of angular frequencies, receiver, and source

positions, to perturbations in the medium parameters, collected in the vector x ∈
RM, with M the number of gridpoints of the model. Without loss of generality, we

will keep the density of mass fixed.

Because angular frequencies and sequential sources can be treated indepen-

dently, the linearized inversion has the following separable form:

minimize
x

1
2K
‖b−Ax‖2

2 =
1

2K

K

∑
i=1
‖bi−Aix‖2

2, (2.1)

with K =N f Ns the batch size, given by the total number of monochromatic sources.

The vectors bi ∈ CNr represent the corresponding vectorized monochromatic pre-

processed (free of surface-multiples and direct waves) shot records. The matrix Ai

represents the linearized scattering matrix for a specific combination of frequency

and source.

Unfortunately, solving this problem is problematic because each iteration to

solve Equation 2.1 typically requires 4K PDE solves: two to compute the action

of Ai and two for the action of its adjoint AH
i in the realistic situation where the

wavefields are computed on the fly. Both actions involve solutions of the forward

source and reverse-time residual wavefields (Plessix and Mulder, 2004). Thus, the

inversion costs grow linearly with the number of monochromatic experiments, mul-

tiplied by the number of matrix-vector multiplies required by the solver. (Because

of the size of the problem, the matrices Ai, i = 1 · · ·K can not be formed explicitly

and we have to rely on iterative methods to solve equation 2.1.)
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While preconditioning techniques improve convergence of Lanczos methods

(Herrmann et al., 2009a), these iterative techniques require multiple evaluations of

the scattering operator and its adjoint. Unfortunately, these multiple passes through

the complete data are computationally intractable. To overcome this difficulty, we

use a dimensionality-reduction approach where sequential sources are replaced by

a reduced number of simultaneous sources made of randomized superpositions.

In this way, we not only exploit linearity of the wave equation with respect to

the sources but we also use the fact that randomized simultaneous sources, where

sources fire at each sequential source location with random amplitude encoding,

have a richer wavenumber content. This improves the image quality, albeit the

resulting image can be extremely noisy. Juxtapose Figure 2.1a, obtained with a

single sequential shot, with Figure 2.1b obtained from a single simultaneous shot.

The key contribution of this chapter is to mitigate this noisy source cross talk while

still benefiting from computational gains related to the reduction of the number

of required PDE solves. Before we outline the details of our randomized imag-

ing algorithm, let us first briefly discuss recent developments in optimization and

theoretical signal analysis that provide insights and justifications for our method.

2.2.1 Stochastic optimization

In machine learning, separable optimization problems (cf. Equation 2.1) can be

solved efficiently by either the stochastic-average approximation (SAA) or by the

stochastic approximation (SA, Bertsekas and Tsitsiklis, 1996; Nemirovski et al.,

2009a; Haber et al., 2010a). With SAA, Equation 2.1 is solved by approximating

the expectation of the ensemble average by the sample average, i.e.,

minimize
x

1
2K
‖b−Ax‖2

2 = Ew{‖bw−Awx‖2
2}

≈ 1
2K′

K′

∑
i=1
‖bi−Aix‖2

2.

The above expression holds when Ew{wwT} = I for the random vectors w that

determine the randomized shot experiments and forms the basis for stochastic-

average approximation where the expectation is approximated by selecting ran-
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(a)

(b)

Figure 2.1: Migration of a single spike positioned in the target zone of the
Marmousi model with a single sequential or simultaneous source. (a)
Migrated spike for one sequential shot. (b) The same but now one sin-
gle simultaneous shot. Notice the improved image of the randomized
simultaneous source due to the increased wavenumber diversity.

domized subsets of frequencies and shots (possibly simultaneous shots), yielding

K′= n f ns�K for the reduced batch size with n f �N f and ns�Ns. For our imag-

ing problem, this approach corresponds to carrying out least-squares migration

with a randomized subset of shots. As shown by van Leeuwen et al. (2011a), the

resulting error in the migrated image decay only slowly with increasing batchsize

K′. This can be understood because stochastic-average approximation is essentially

a Monte-Carlo sampling method, where errors decays only slowly (O(
√

K′)) with

increasing batch size. Despite this disadvantage, stochastic-average approximation

is popular because of its relative simplicity that offers flexibility with respect to the

choice of solvers for the separable optimization in Equation 2.1. This flexibility

allows us to use generic solvers such as LSQR (Paige and Saunders, 1982).
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To address the relative slow convergence of stochastic-average approximation,

stochastic approximation directly intervenes in first-order optimization by comput-

ing gradients on randomized subsets of data, i.e., we approximate the gradient at

the kth iteration of Equation (2.1) by

xk+1 = xk + γkAH
k

(
bk−Akxk

)
, (2.2)

with γk the step sizes. As before, bk and Ak are the data pertaining to a random-

ized source experiment and the corresponding modeling operator. However, unlike

before independent randomized experiments are selected after each gradient up-

date. This procedure turns deterministic gradient descent, which involves working

with all data, into stochastic-gradient descent (Bertsekas and Tsitsiklis, 1996; Ne-

mirovski et al., 2009a; Haber et al., 2010a), which in our problem corresponds

to randomly selecting a single different monochromatic source—e.g., a different

Ai with i ⊂ [1 · · ·K]—for each gradient update pertaining to Equation 2.1. For

linear problems, this approach is reminiscent of randomized “block Kaczmarz”

(Strohmer and Vershynin, 2009), which was used successfully in the deterministic

case by Natterer (2001) in tomography. Like stochastic-average approximation,

stochastic approximation extends to nonlinear inversion problems (see e.g., Ne-

mirovski et al., 2009a), and was recently introduced by Haber et al. (2010a) in the

context of parameter-estimation problems with PDE’s. Stochastic approximation

also justifies recent work by Krebs et al. (2009a) and provides a theoretical explana-

tion for observed lack of convergence— stochastic approximation only converges

with O(1/k) with k the number of iterations (Nemirovski et al., 2009a)—and in-

stabilities with respect to noise (van Leeuwen et al., 2011a).

2.2.2 Compressive sensing

Randomized-dimensionality reduction also underlies recent advances in sampling

theory for signals that exhibit structure, which translates into transform-domain

sparsity. To be more specific, compressive sensing determines conditions for which

we can recover sparse vectors x from measurements b = Ax, where b ∈ Rn and

A ∈ Rn×N with n� N. When x is k-sparse or can be approximated accurately by

its k-largest entries, stable recovery is possible for certain matrices A as long as
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n & k log(N/n). This results states that we can obtain an accurate estimate for x by

solving

minimize
x

‖x‖1 subject to Ax = b (2.3)

when we sample at a rate proportional to the sparsity k instead of the ambient

dimension N� k.

As opposed to stochastic optimization, where randomization is used to reduce

variance (see e.g., Hutchinson, 1990; Avron and Toledo, 2011), compressive sens-

ing uses randomization to turn coherent subsampling-related interferences—such

as aliasing and shot “cross talk”—into relatively “harmless” Gaussian noise. Ac-

cording to compressive sensing, the noise level depends on the degree of sub-

sampling and transform-domain sparsity. Consequently, sampling is no longer

fully determined by Nyquist, but by transform-domain sparsity (see e.g., Her-

rmann, 2010, for an overview of the application of CS in exploration seismol-

ogy). Neelamani et al. (2010) and Herrmann et al. (2009b) both took advantage of

this finding in wavefield simulations with time stepping or by inverting the time-

harmonic Helmholtz system. In both cases, fully-sampled wavefields are recovered

with curvelet-domain sparsity promotion from small subsets of (monochromatic)

simultaneous-source experiments. This procedure leads to efficient simulations

because the computational overhead of the recovery is small compared to compu-

tational gain from subsampling.

However, solving Equation 2.1 differs fundamentally from standard compres-

sive sensing because the system in Equation 2.1 is “overdetermined”; there are

more equations then unknowns. In addition, the scattering matrix is ill conditioned

due to limitations in aperture that may lead to shadow zones. However, for reflec-

tors that are in the range of the scattering operator the wave-equation Hessian AHA
is near unitary, and curvelets are nearly invariant under the action of the Hessian

(Herrmann et al., 2008b). This property—in conjunction with the optimality of

curvelets on images with reflectors that may include conflicting dips—motivates

us to use curvelet-domain sparse recovery to mitigate the source crosstalk caused

by the dimensionality reduction.
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2.3 Methodology
To solve Equation 2.1 efficiently, we combine recent ideas from stochastic opti-

mization and compressive sensing. For this purpose, let us first mathematically de-

fine seismic mini batches consisting of “supershots”. Next, we present a pragmatic

optimization strategy where we cast the original imaging problem into a series

of much smaller subproblems that work on different subsets of random source-

encoded supershots. For linearized inversion (Herrmann and Li, 2011b), this ap-

proach corresponds to drawing a collection of supershots, followed by imaging,

and using this image as a warm start for a new linearized inversion with a new in-

dependently drawn collection of supershots. We compare the performance of least-

squares on these subproblems with and without sparsity constraints. Depending on

these two choices, the formulation leads either to a Monte-Carlo type of algorithm,

which relies on averaging to reduce the subsampling errors, or to a compressive-

sensing type of algorithm, which relies on sparsity promotion to remove the source

cross talk. In both cases, the error depends on the subsampling ratio K/K′.

2.3.1 The seismic mini batch: a collection of supershots

We base our algorithm on forming compressive seismic experiments, or, to use

the language of machine learning, mini batches that consist of collections of small

numbers of supershots. These supershots are made of randomized superpositions

of sequential sources.

Mathematically, imaging experiments for mini batches with K′�K monochro-

matic supershots, require the solution of the reduced system

P`2(RM) : minimize
x

1
2
‖RM(b−Ax)‖2

2 =
1
2
‖b−Ax‖2

2, (2.4)

In this expression, we dimensionality reduced Equation 2.1 with the subsampling

matrix RM. This subsampling matrix reduces the tall expensive to compute sys-

tem A ∈ C(KNr)×M to A def
= RMA ∈ C(K′Nr)×M and the data to b def

= RMb. The

dimensionality-reduction matrix itself is factored into a restriction and mixing ma-

trix. The restriction matrix R is defined by the Kronecker product: R def
= RΣ⊗ I⊗

RΩ ∈ R(K′Nr)×(KNr) with RΣ ∈ Rn′s×ns selecting n′s � ns rows uniform randomly
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amongst [1 · · ·ns] and RΩ ∈Rn′f×n f selecting n′f � n f frequencies from the seismic

frequency band. The matrix I represents the identity matrix. The mixing matrix

M ∈ R(KNr)×(KNr) is given by the Kronecker product M def
= MΣ⊗ I⊗ I. As in Lin

and Herrmann (2007), we follow Romberg (2009) to phase encode sequential shots

via

MΣ def
= sign(η)�FH

Σ diag
(

e jθ
)

FΣ, (2.5)

with θ = Uniform([0,2π]) a random phase rotation, and FΣ the Fourier transform

along the source coordinate. The vector η ∈N(0,1) is used to define a random-sign

pattern by which the phase-encoded vector is premultiplied (the symbol � repre-

sents element-wise product). This definition for the matrix MΣ is fast (O(ns logns))

and mimics the action of a matrix with Gaussian i.i.d. entries.

Using linearity of randomized subsampling by RM, in combination with lin-

earity with respect to monochromatic sources and the separability of the imaging

problem (cf. Equation 2.1), it is easy to show that the number of PDE solves re-

quired for each iteration of the solution of Equation 2.4 is slimmed down by a

factor of K′/K (see also Herrmann et al., 2009b, for details). Essentially, the ac-

tion of RM “commutes”. Note that recent work by Haber et al. (2010a) uses the

same principle. Unfortunately, speed ups by randomized source supersposition and

subsampling go typically at the expense of leaking energy from imaged reflectors

to incoherent artifacts. Hence, the key question is to find a solver that mitigates

these artifacts and restores the amplitudes at an overhead small compared to the

speed up.

2.3.2 Stochastic-average approximations with warm starts

To address the slow decay of the error of stochastic-average approximation and

the delicacy of the stochastic approximation, we combine ideas underlining these

methods by casting the original imaging problem into a series of much smaller

subproblems that work on different independent subsets of random source-encoded

supershots (Herrmann and Li, 2011b). For linearized inversion, this approach cor-

responds to drawing a collection of supershots, followed by least-squares imaging,

and using these images as warm starts for a new linearized inversion with a new

independently drawn collection of supershots. This process is repeated until no
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further progress is made towards the solution. In Algorithm 1, we outline this

procedure for a generic subproblem solver P(RM;x0) that uses warm starts x0.

Two subproblem solvers

Because algorithm 1 gives us flexibility regarding the subproblem solver, we pro-

pose to compare two solvers, namely P`2(RM)—solved by a limited number of

iterations of LSQR (Paige and Saunders, 1982)—and

P`1(RM,τ) : minimize
x

1
2
‖b−Ax‖2

2 subject to ‖x‖1 ≤ τ. (2.6)

We solve the latter problem, known as the Least Absolute Shrinkage and Selec-

tion Operator (LASSO, Tibshirani, 1997) problem, by a spectral-projected gradient

method (see e.g., Berg and Friedlander, 2008, for details). Large-scale sparsity-

promoting solvers for Equation 2.3 often involve the solution of LASSO subprob-

lems.

With the LSQR solver, we regularize the inverse of the wave-equation Hessian

by limiting the number of iterations of LSQR (Hansen, 1997). This is necessary

because otherwise we may create imaging artifacts related to the null space of the

(dimensionality-reduced) Hessian. The total number of PDE solves required by

LSQR is proportional to N`2K′, with N`2 the number of iterations required by the

`2-norm solver. Conversely, we control the null space with LASSO by sparsity

promotion. To take full advantage of sparsity promotion as a regularization, we

include the curvelet synthesis matrix (Candès et al., 2006) in the definition of the

dimensionality-reduced Born scattering operator A. The migrated image is then

calculated by applying curvelet synthesis on the x that solves Equation 2.6. The

total number of PDE solves required by this algorithm is proportional to N`1K′ with

N`1 the number of iterations required by the `1-norm solver. In these computations,

the computational overhead of the curvelet transform and of the solver intelligence

are negligible compared to the cost of solving PDE’s and are therefore ignored.

Leveraging the Pareto curve

In the noise-free case, sparsity-promoting imaging involves the solution of Equa-

tion 2.3. Efficient `1 solvers for this problem are typically based on solutions of a
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series of relaxed subproblems, where components are allowed to enter into the so-

lutions controllably. It is widely known that these approaches lead to a reduction in

the number of iterations to reach the solution. The spectral projected-gradient algo-

rithm (SPG`1, Berg and Friedlander, 2008) uses this principle by solving a series

of LASSO problems where the τ’s are increased intelligently. In this method, the

Pareto boundary—the trade-off curve delineating feasible and infeasible solutions

as a function the `2-norm of the data misfit and the model’s `1-norm—is exploited

to compute the relaxations by root finding that uses convexity and smoothness of

the Pareto curve. See Figures 2.2a and 2.2b, which illustrate this principle, and the

corresponding solution path. As we can see this approach uses a limited number of

matrix-vector multiplies. Because the cost of the solver is determined by this num-

ber of multiplies, this approach is particularly suitable for large-scale geophysical

problems (Hennenfent et al., 2008a).

Unfortunately, the degree of randomized dimensionality reduction determines

the amount of cross-talk that results from the inversion, and hence we can not re-

duce the problem size too much. Therefore, we improve convergence by drawing

new mini batches whenever a LASSO subproblem is solved. Because the solution

is maximally sparse at that point, it is natural to select the new set of supershots

and continue with a warm start of the algorithm for the next subproblem. We cal-

culate the τ’s with SPG`1’s root finding. This principle is illustrated in Figure 2.2b

where the system of equations now changes after solving each subproblem. Of

course, this approach is only justified as long as K′ is not too small such that Pareto

curves remain similar for different realization of the RM’s. To verify the assump-

tion of similarity amongst different Pareto curves, we plotted four realizations of

these curves for K′ = 12 (four simultaneous shots and three frequencies) in Fig-

ure 2.2c. These curves clearly make the case that we should be able to continue

using SPG`1’s root finding.

2.4 Empirical performance study
To compare the proposed algorithm, we conduct a series of synthetic imaging

experiments using the Marmousi model (Bourgeois et al., 1991). We use the

smoothed model, plotted in Figure 2.3a, as the background velocity model for the
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Projected gradient. Our application of the SPG algorithm to solve (LSτ ) follows
Birgin, Mart́ınez, and Raydan [5] closely for the minimization of general nonlinear
functions over arbitrary convex sets. The method they propose combines projected-
gradient search directions with the spectral step length that was introduced by Barzilai
and Borwein [1]. A nonmonotone line search is used to accept or reject steps. The
key ingredient of Birgin, Mart́ınez, and Raydan’s algorithm is the projection of the
gradient direction onto a convex set, which in our case is defined by the constraint
in (LSτ ). In their recent report, Figueiredo, Nowak, and Wright [27] describe the
remarkable efficiency of an SPG method specialized to (QPλ). Their approach builds
on the earlier report by Dai and Fletcher [18] on the efficiency of a specialized SPG
method for general bound-constrained quadratic programs (QPs).

2. The Pareto curve. The function φ defined by (1.1) yields the optimal value
of the constrained problem (LSτ ) for each value of the regularization parameter τ .
Its graph traces the optimal trade-off between the one-norm of the solution x and
the two-norm of the residual r, which defines the Pareto curve. Figure 2.1 shows the
graph of φ for a typical problem.

The Newton-based root-finding procedure that we propose for locating specific
points on the Pareto curve—e.g., finding roots of (1.2)—relies on several important
properties of the function φ. As we show in this section, φ is a convex and differentiable
function of τ . The differentiability of φ is perhaps unintuitive, given that the one-
norm constraint in (LSτ ) is not differentiable. To deal with the nonsmoothness of
the one-norm constraint, we appeal to Lagrange duality theory. This approach yields
significant insight into the properties of the trade-off curve. We discuss the most
important properties below.

2.1. The dual subproblem. The dual of the Lasso problem (LSτ ) plays a
prominent role in understanding the Pareto curve. In order to derive the dual of
(LSτ ), we first recast (LSτ ) as the equivalent problem

(2.1) minimize
r,x

‖r‖2 subject to Ax + r = b, ‖x‖1 ≤ τ.
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

min
x
�A1x− b1�2 s.t �x�1 ≤ τ1

min
x
�A2x− b2�2 s.t �x�1 ≤ τ2

min
x
�A3x− b3�2 s.t �x�1 ≤ τ3
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Figure 2.2: SPG`1 and batching. (a) Newton root finding using the convexity
and smoothness of the Pareto curve, which traces the two-norm of the
residue r as a function of the one-norm of the solution τ . (adapted from
Berg and Friedlander (2008)). (b) Series of LASSO subproblems with
renewals for the collections of supershots (adapted from Berg and Fried-
lander (2008)). (c) Pareto curves for different independent realizations
of the dimensionality-reduction (K′ = 12) operator RM.

migration operator. This model yields the true medium perturbation included in

Figure 2.3b. With this smoothed model, we generate time-harmonic data by calcu-

lating the difference between the solution of the Helmholtz equation at the receivers

for the true and smoothed velocity models. This choice of using the residue, which

mimics real data after processing, is realistic because it does not rely on the lin-

earized Born approximation. Of course, when the smoothed model is close to the

actual model, these two definitions become similar. We use a nine-point stencil (Jo
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et al., 1996a) and absorbing boundary conditions on a 143× 384 grid with a grid

size of 24m. To mimic real applications, we solve the Helmholtz systems on the

fly during the inversion. The length of the time record is 2.4s and we use 192 shot

locations, with a shot spacing of 48m, and 384 receiver positions sampled with a

receiver spacing of 24m.

To establish baselines for comparison, we compute a migrated image from only

eight simultaneous shots and three random frequencies selected from the ampli-

tude spectrum of a 12Hz Ricker wavelet (Figure 2.4a), a migrated imaged from

all 192 sequential shots and 10 randomly selected frequencies (Figure 2.4b), and

a least-squares image with the same data but obtained by solving Equation 2.1

with 10 iterations of LSQR (Figure 2.4c). For these reference images, the num-

ber of PDE solves increases from 2× 8× 3 = 48 to 2× 192× 10 = 3840 and

4×192×10×10 = 76800. While there is a clear improvement in image quality,

the computational costs increase sixteen-hundred fold, which illustrates the need

of dimensionality reduction.

To improve the image quality of the dimensionality-reduced image (Figure 2.4a),

we solve a series of dimensionality reduced subproblems with eight supershots and

three frequencies (K′ = 24) for 10 subproblems with LSQR (P`2(RM)) and SPG`1

(P`1(RM)) each with and without independent renewals of RM. The results of

these experiments are summarized in Figures 2.5 and 2.6. From these experi-

ments, we can make the following observations. First, redrawing the supershots

after solving each subproblem improves the performance of both solvers. This can

be understood because these renewals remove possible correlations between RM
and the current estimate for the (curvelet-domain) velocity perturbation. Second,

the images obtained by sparsity promotion (Figure 2.6) are clearly superior in qual-

ity compared to the least-squares results (Figure 2.5) even though the number of

PDE solves is roughly the same. This can be explained by compressive sensing.

Third, the sparsifying result with renewals, albeit noisy, compares favorably to the

baseline image in certain areas; e.g. it has higher resolution and better resolved

amplitudes at depth. We attribute this observation to the regularization by curvelet-

sparsity promotion, which we were able to carry out by virtue of the dimensionality

reduction. We argue that this improvement offsets the price we pay of the remnant

random interferences. For example, these interferences average out if we use this
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(a)

(b)

Figure 2.3: The Marmousi model. (a) Smoothed background-velocity model.
(b) Velocity perturbation, defined by the difference between the true and
smoothed background-velocity models.

procedure as part of full-waveform inversion on which we reported elsewhere (Li

and Herrmann, 2010a; Herrmann et al., 2011a). In summary, we obtained a re-

markably good result with a significantly reduced computational cost. We attribute

this performance to curvelet-domain compressibility, which serves as a strong prior

that mitigates source crosstalk and regularizes the inversion.

2.4.1 Convergence as a function of the number of PDE solves

The possible gains in computation speed of our solvers hinges on the interplay

between the mini batch size and the number of matrix-vector multiplies required

by the solver to bring down both the data residue and to recover the artifact-free
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(a)

(b)

(c)

Figure 2.4: Baseline images. (a) migrated image with eight simultaneous
shots and three randomly selected frequencies, (b) migrated image cal-
culated with all data (192 sequential sources and 10 frequencies), and
(c) least-squares migrated image from the same data with 10 iterations
of LSQR.
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(a)

(b)

Figure 2.5: Stochastic-average approximation with LSQR. (a) Image ob-
tained by Algorithm 1 with P`2(RM) with 10 independent redraws for
RM. (b) The same but without redrawing RM.

image. The product of these two factors determines the number of PDE solves.

To measure the performance of the proposed curvelet-based stochastic-average ap-

proximation with warm starts, we plot this number versus the model-error energy

for a fixed ratio of K/K′ = 80 and n′s/n′f = 8/3. The results of this exercise with

and without redraws are plotted in Figure 2.7. This plot clearly demonstrates a

more rapid decay for the model-space error (difference between true and estimated

model) in case of independent redraws of the RM’s. Compared to the least-squares

baseline problem with “all” data, we obtain approximately a fourfold speedup if

we factor in the number of iterations required by the solver. On first glance, this

speedup may not be significant. However, we expect a larger uplift in 3D where
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(a)

(b)

Figure 2.6: Stochastic-average approximation with SPG`1. (a) Image ob-
tained by Algorithm 1 with P`1(RM) for approximately the same num-
ber of PDE solves.(b) The same but without redrawing RM.

there are many more sources. In addition, with our dimensionality reduction we

are able to approximately solve the BP problem (cf. Equation 2.3). Without the

dimensionality reduction this would not have been possible because of the num-

ber of iterations required by one-norm solvers. Finally, since we are working on

very small subproblems we may have the option to keep the wavefields in mem-

ory instead of computing them on the fly. We expect this to lead to a significant

additional speedup.
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Figure 2.7: Two-norm error between the true and recovered medium pertur-
bation as a function of the number of PDE solves (for P`1(RM)). Con-
vergence is clearly improved by drawing new randomized collections of
supershots after each subproblem is solved.

2.4.2 Recovery quality as a function of batchsize

As we have seen from the previous example, computational gains can be made us-

ing the proposed stochastic-average approximation with relaxed LASSO’s. To get

a better understanding of the relationship between the recovery error and minibatch

size, we also conduct a series of experiments where we vary the subsampling ratio’s

and the ratio supershots-over-frequencies while approximately fixing the number

of PDE solves. The results of this exercise are summarized in Table 2.1. As ex-

pected, the numbers in Table 2.1 generally confirm increasing recovery errors for
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decreasing subsampling ratios albeit there is not a very strong relationship between

the recovery quality and the subsampling ratio compared to results presented in the

literature (Li and Herrmann, 2010a). The fact that our results were generated with

renewals offers an explanation for the weaker dependence on the subsampling ra-

tios. Finally, we like to add that the speed improvements due to the dimensionality

reduction are partly offset by the iterations required by the solver. However, with-

out the dimensionality reduction the computational cost for the sparsity-promoting

solution would have been prohibitive.

2.5 Case study: the BG Compass model
To test our imaging algorithm in a more realistic setting, we consider a synthetic

velocity model with a large degree of well-constrained variability. To build the

background-velocity model, we employ our modified Gauss-Newton method with

sparse updates in 10 overlapping frequency bands on the interval 2.9− 22.5Hz

and with initial model plotted in Figure 2.8a. (Note that this approach reported in

Herrmann et al. (2011a) is based on a similar dimensionality reduction technique

as presented in this chapter.) The output of this procedure is plotted in Figure 2.8b

and is used as the background-velocity model for our imaging algorithm.

We parametrize the velocity perturbation on a 409×1401 grid with a gridsize

of 5m. Again, we use the Helmholtz solver to generate data from 350 source po-

sitions sampled at an interval of 20m and 701 receivers sampled with an interval

of 10m. We use 10 random frequencies in our simulations selected from the inter-

val 20− 50Hz and scaled by the spectrum of a 30Hz Ricker wavelet. The input

data is given by the difference between simulations with the true and initial veloc-

ity models (Figure 2.8b). As before, we solve 10 subproblems P`1(RM) with and

without independent redraws of RM. The result of this exercise is summarized in

Figure 2.9 and clearly show significant improvements from the redraws. Not only

is the crosstalk removed more efficiently but the reflectors are also better imaged

in particular at the deeper parts of the model where recovery without redraws is not

able to image the events.
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(a)

(b)

Figure 2.8: Full-waveform inversion result. (a) Initial model. (b) Inverted
result starting from 2.9Hz with 7 simultaneous shots and 10 frequencies
in each of the 10 frequency bands.

2.6 Discussion
Efforts to speed up the computation of linearized imaging roughly fall into two cat-

egories. First, there are methods that aim to “nearly diagonalize” Green’s functions

(Douma and de Hoop, 2007) or wave-equation Hessians (Herrmann et al., 2008b)

using transform-domain techniques such as curvelets. These methods exploit the

property that curvelets remain near invariant under wave propagation, which in

principle, leads to fast algorithms. Unfortunately, the engineering of concrete and

explicit implementations of these approximations is involved, and may carry a sig-

nificant overhead (Andersson et al., 2008). Conversely, randomized dimensionality

reduction is simpler because it utilizes the notion of curvelet-invariance implic-
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(a)

(b)

(c)

Figure 2.9: Dimensionality-reduced sparsity-promoting imaging from ran-
dom subsets of 17 simultaneous shots and 10 frequencies. We used
the background velocity-model plotted in Figure 2.8b (a) True pertur-
bation given by the difference between the true velocity model and the
FWI result plotted in Figure 2.8b. (b) Imaging result with redraws for
the supershots. (c) The same but without redrawing RM. Notice the
significant improvement in image quality when renewing collection of
supershots after solving each LASSO subproblem.
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itly via transform-domain sparsity. (Propagated wavefields remain compressible

in curvelet frames. See Smith, 1998; Demanet and Peyré, 2011, who rigorously

prove this property.) This feature explains the success of our proposed method,

which benefits from the availability of wave simulators and the ability of curvelets

to sparsely represent seismic images. By promoting sparsity, we are able to exploit

continuity along the reflectors without requiring a data-adaptive step that requires

prior information on the dip field of the reflectors (Guitton et al., 2010).

By considering dimensionality-reduced subproblems as compressive sensing-

like sparse recovery problems—where the originally “overdetermined” system is

turned deliberately into an underdetermined system—we remove the crosstalk ar-

tifacts and restore the amplitudes by iterating on highly dimensionality reduced

subproblems. Not withstanding an ill-conditioned Hessian, spectral-projected gra-

dients makes good progress towards the solution in relatively few matrix-vector

multiplies. A possible explanation for this phenomenon and the benefit from re-

draws is that compressive sampling the sources does not make the dimensionality-

reduced Hessian significantly more ill conditioned. This is after all the premise

of compressive sensing where the condition number of sampling matrices is being

controlled by design. In addition, recent work by Montanari (2010) has shown that

redraws help to remove possible correlations between the solution vector and the

source encoding and this increases the convergence of solutions based on iterative

soft thresholding. We can argue that we are observing this effect empirically. Fi-

nally, our approach is also reminiscent of randomized “block Kaczmarz” (Strohmer

and Vershynin, 2009) and to recent work by Friedlander and Schmidt (2011); van

Leeuwen et al. (2011b) who also propose sampling strategies.

Because our formulation includes contributions from the wave-equation Hes-

sian more theoretical work will be necessary to (i) compensate for the “coloring”

by this operator, e.g. by solving weighted `1-norm problems and (ii) analyze the co-

herence and restricted-isometry properties of the dimensionality reduced Hessian,

using practical techniques recently developed by Mansour et al. (2011). These

latter results are particularly exciting because they allow for

• an efficient imaging technology with a controllable error. As in compressive

sensing, this error depends on the subsampling ratio and on the compress-
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ibility of the model in the sparsifying domain. This means that our sparse re-

covery algorithm returns images that can be considered as images we would

have obtained by keeping only a small fraction of the largest transform-

domain (curvelet) coefficients. The larger the batch size, the larger this

fraction, and the better the recovery by virtue of the transform-domain com-

pressibility. Clearly, this property differs fundamentally from Monte-Carlo

techniques where the error decays slowly with the batch size.

• an integration of dimensionality reduction with acquisition. For instance, we

could envisage “online” acquisition during which simultaneously acquired

data is continuously inverted with a procedure reminiscent of the approach

outlined in this chapter.

Finally, we would like to mention that our method relies on fixed-spread data,

which makes the application of this dimensionality-reduction methodology chal-

lenging for marine data. We are working on solutions to this challenge (see e.g.,

van Leeuwen et al., 2011b) on which we plan to report elsewhere.

2.7 Conclusions
We introduced an efficient algorithm to solve the linearized imaging problem. Our

method combines recent findings from the fields of stochastic optimization and

compressive sensing and turns the originally “overdetermined” seismic imaging

problem into a series of underdetermined dimensionality-reduced subproblems. By

considering these subproblems as sparse-recovery problems, we were able to cre-

ate high-fidelity images at a fraction of the computational cost. Our final image

can be considered as a result of curvelet-domain sparsity-promoting migration be-

cause large-scale one-norm optimization relies on solving a very similar, series of

subproblems.

Randomized dimensionality reduction, curvelet-domain sparsity promotion,

and stochastic optimization all played essential roles in making the computations

tractable, controlling the nullspace of the Hessian, removing the crosstalk, and

breaking possible correlations that may develop between the current model and

the randomization. The observed differences in image quality between the uncon-
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strained and sparsity-constrained formulations are consistent with the predictions

of compressive sensing.

In summary, our approach can be seen as an instance of a new randomized

dimensionality-reduction paradigm where the costs of computations are no longer

dominated by the discretization but by transform domain sparsity of the model. In

this new paradigm of randomized inversion, dimensionality reductions allow us to

solve (linearized) inversion problems in ways, which previously, would have been

computationally infeasible. The examples presented in this chapter support this

observation and show highly competitive results on synthetic model with realistic

complexity.
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Result: Estimate for the model x̃
x0 ←− 0 ; // initial model

k←− 0 ; // initial counter

while ‖x0− x̃‖2 ≥ ε do
k←− k+1; // increase counter

x̃←− x0; // update warm start

RM←− Draw(RM); // draw new subsampler

x0←− Solve(P(RM); x̃); // solve the subproblem

end
Algorithm 1: Stochastic-average approximation with warm restarts

Subsample ratio 0.0006 0.0013 0.0026 0.0033

n′f /n
′
s Signal-noise ratio (dB)

2 1.60 1.63 1.86 1.95
1 1.62 1.75 1.87 1.99
0.5 1.63 1.77 1.98 2.06

Speed up (×) 1536 768 384 307

Table 2.1: Signal-to-noise ratios, SNR = −20log10(
‖x−x0‖2
‖x‖2

) for sparse
curvelet-based recovery for different subsample and frequency-to-shot
ratios. The vector x is the inverted perturbation and x0 is the true pertur-
bation given by the difference between the true and smooth background
model.
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Chapter 3

Fast randomized full-waveform
inversion with compressive
sensing

3.1 Motivation
Full-waveform inversion (FWI) can be formulated as the separable parameter-

estimation problem

minimize
m

Φ(m) :=

{
1

2K

K

∑
i=1
‖di−Fi[m,qi]‖2

2 =
1
2
‖D−F [m]Q‖2

F

}
, (3.1)

with di monochromatic shot records of the Earth response to monochromatic sources

qi, Fi[m,qi], i = 1 · · ·K monochromatic nonlinear forward operators, and K =

N f ·Ns, with N f ,Ns the number of frequencies and sources. In the acoustic constant-

density case, this operator is parameterized by the unknown velocity model m and

involves the inversion of a large system of linear equations.

Solving for the velocity model is challenging for several reasons. First, the

A version of this chapter has been published. Xiang Li and Aleksandr Y. Aravkin and Tristan
van Leeuwen and Felix J. Herrmann. Fast randomized full-waveform inversion with compressive
sensing. Geophysics, 2012.
c© Society of Exploration Geophysicists.
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solution is non-unique due to “cycle skipping”. This phenomenon gives rise to

local minima in the objective function. Second, The data are incomplete because

low frequencies and certain offsets are missing. Third, iterative methods for Equa-

tion 3.1 are prohibitively expensive, since they require too many PDE solves in

3D.

To address these issues, we use the following properties of FWI (cf. Equa-

tion 3.1):

• linearity with respect to the sources that gives Equation 3.1 its separable

structure.

• transform-domain sparsity on the updates. This allows us to “fill in” the

null space of the Hessian and to remove the source crosstalk and restore the

amplitudes;

• convex composite structure of Φ(m)—it is a composition of the convex `2-

norm with the smooth F , and thus admits the standard Gauss-Newton (GN)

algorithm as well as sparsity-promoting variants.

Our main contribution is to combine these properties with existing multiscale con-

tinuation methods (Bunks et al., 1995) that are widely employed to solve Equa-

tion 3.1. The outcome is a formulation that allows us to reduce the number of PDE

solves, to mitigate the effects of source crosstalk, to “fill in” the nullspace of the

wave equation Hessian, and to speed up progress of the algorithm by using ideas

from stochastic optimization (Haber et al., 2010a; van Leeuwen et al., 2011a).

Our paper is organized as follows. First, we discuss dimensionality reduc-

tion techniques that allow algorithms to work with only a portion of the data at

each iteration. We then exploit the convex-composite structure of Equation 3.1 to

design a GN subproblem that is conducive to randomized-dimensionality reduc-

tion. Next, we modify this reduced subproblem using ideas from Compressive

Sensing (CS)(Candès et al., 2006; Donoho, 2006; Mallat, 2009), i.e. we remove

source crosstalk by curvelet-domain sparsity promotion. Finally, we speed up the

progress of the algorithm by drawing new encodings after solving each modified

GN subproblem. We evaluate the performance of this algorithm on a realistic 2-D

synthetic.
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3.2 Methodology
An important class of algorithms used to solve the FWI problem are the GN meth-

ods that involve the pseudo-inverse of the reduced Hessian given by the com-

bined action of the Jacobian operator ∇F [mk;Q] and its adjoint. Even though

this method does not require explicit computation of the Hessian, each iteration for

the GN subproblem requires the solution of 4K PDE’s.

3.2.1 Dimensionality reduction by randomized source superposition

To reduce the number of required PDE solves, we combine the sources and data

into a smaller volume with K′� K simultaneous experiments by replacing Equa-

tion 3.1 with

minimize
m

Φ(m) :=

{
1

2K′
K′

∑
i=1
‖Dwi−Fi[m,qiwi]‖2

2 =
1
2
‖D−F [m,Q]‖2

F

}
,

(3.2)

where {D, Q} def
= {DW, QW} (Moghaddam and Herrmann, 2010a; Haber et al.,

2010a; van Leeuwen et al., 2011a). If we choose the random weights w= [w1, · · · ,wNs ]
T

in W = [w1, · · · ,wK′ ] such that the expectation E{wwT} equals the identity matrix,

we have E{Φ(m)}= Φ(m). Because Equation 3.2 can be interpreted as a sample-

average, it represents an approximation of this expectation with an error that de-

pends on K′. This error, which results in energy leaking towards source crosstalk,

decreases for larger K′ and this property underlies the method of the stochastic-

average approximation (SAA, Bertsekas and Tsitsiklis, 1996; Nemirovski et al.,

2009a).

Unfortunately the randomization in Equation 3.2 defeats the purpose of mak-

ing FWI faster because the error of SAA is known to decay slowly as a function of

increasing K′. To overcome this issue, Krebs et al. (2009a) proposed an approach

reminiscent of the stochastic approximation where different weights are drawn for

each gradient update. This method of stochastic-gradient descent is relatively well

understood, and available convergence theories rely on specialized step lengths

and averaging over previous model iterates (Bertsekas and Tsitsiklis, 1996; Haber

et al., 2010a; van Leeuwen et al., 2011a). Unfortunately, this averaging over pre-

vious iterates significantly slows down the progress of the algorithm. Therefore,
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we propose a solution method that relies on transform-domain sparsity promotion

instead of averaging to reduce the error induced by the source crosstalk.

3.2.2 Exploiting the convex-composite structure

The standard GN method exploits the convex-composite structure of Equation 3.2

by linearizing the function inside the convex `2-norm. We modify the standard GN

subproblem by adding transform-domain sparsity promotion, and instead recover

the updates by solving the following constrained (convex) optimization problem:

minimize
x

1
2
‖δD−∇F [m;Q]SHx‖2

F subject to ‖x‖1 ≤ τ, (3.3)

where δD = D−F [m]Q, SH is the inverse of the sparsifying transform determin-

ing the model update δm = SHx, and x is a vector of transform coefficients. The

constraint enforces the `1-norm of x to be smaller than or equal to constant τ .

3.2.3 Dimensionality-reduction and compressive sensing

As long as signals exhibit structure—e.g., transform-domain compressibility where

the signal’s energy is concentrated in a few large coefficients—CS theory tells us

that we can recover these signals from severe undersampling by solving a sparsity-

promoting program.

Unfortunately, this recovery does not hold for arbitrary subsamplings. Instead,

CS prescribes sampling matrices that roughly behave like matrices with Gaussian

entries. In that case, subsampling artifacts are shaped into white Gaussian “noise”

and the sparsity-promoting recovery separates the signal from these “noisy” inter-

ferences.

The dimensionality reduction outlined in the previous section follows these

guidelines because we typically draw the random weights from a Gaussian distri-

bution. Because our definition of the “CS sampling matrix” includes the wave-

equation Jacobian there is an important difference between CS and our setting

where we need to invert a tall system of equations to obtain the GN updates. So,

for CS-type of arguments to hold, we need ∇F H [Q]∇F [Q] to be near unitary with

incoherent off-diagonals. Since this property is already true for WWH , it would
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then hold for ∇F H [QW]∇F [QW].

For “high” frequencies, this argument holds because the wave-equation Hes-

sian is “near unitary” as long as we are in the range of the Jacobian (Herrmann

et al., 2008b). This means that the dimensionality reduction keeps the problem in

the regime where the insights from CS are applicable (Herrmann and Li, 2011b,a).

Consequently, it is useful to modify dimensionality-reduced GN subproblems to

incorporate sparsity-promotion.

3.3 Modified Gauss-Newton
To arrive at a practical and fast GN formulation, we need to address the following

issues: (i) convergence guarantees, (ii) selection of the proper sparsifying trans-

form, (iii) selection of the one-norm solver and sparsity levels, and (iv) data-volume

reduction to decrease the number of PDE solves. We discuss each of these issues

by considering the pseudo code of Algorithm 2 in detail.

Proof of convergence [lines 2–9, Algorithm 2]: The convergence algorithm for

the standard GN method is well known (Burke, 1990), and can be shown to apply

to our modified algorithm as long as the values of the series of increasing sparsity

levels τk remain bounded and the weights W remain the same for each iteration—

i.e., Wk = W for all k (Herrmann et al., 2011a).

Sparsifying transform [lines 6–7, Algorithm 2]: Selection of the appropriate spar-

sifying transform for the updates is important for two reasons. First, transform-

domain sparsity leads to a concentration of the update’s energy into a few large

transform-domain coefficients. Second, the wave-equation reduced Hessian—also

known as the demigration-migration operator—has a null space and requires reg-

ularization to stabilize its inversion. Here, transform-domain sparsity-promotion

serves as a prior that fills in the nullspace (see e.g., Daubechies et al. (2005) or

chapter 11, Mallat (2009)).

To guarantee a fast decay for the magnitude-sorted transform coefficients on

the updates, we require the transform to detect “wavefronts”, possibly with con-

flicting dips, and to be nearly “invariant” under wave propagation. This allows

36



us to sparsely represent both the medium perturbations and the updates even in

situations where the current model iterate is far from the true model. Finally, to

avoid non-physical artifacts at the boundaries of the model, we use a mirror ex-

tended discrete curvelet transform (Candès et al., 2006; Demanet and Ying, 2007),

which decomposes the updates with respect to a collection of multiscale and mul-

tidirectional “localized plane waves”. We denote the 2D mirror extended curvelet

transform by the symbol C2.

One-norm solver and relaxation [lines 5-6, Algorithm 2] An essential component

of our algorithm requires solution of sparsity-inducing GN subproblems (cf. Equa-

tion 3.3). We solve these subproblems with a spectral-gradient method (SPG, see

e.g. Berg and Friedlander, 2008). We choose this first-order method because of its

algorithmic simplicity and the fact that the Hessian is near unitary.

Because solutions of the GN subproblems depend on the sparsity level τ—i.e.,

small τ’s lead to sparse solutions with a large residue—we need to carefully select

the τk for each GN subproblem. For this purpose, we follow Berg and Friedlander

(2008); Hennenfent et al. (2008a) and introduce the function v(τ), which is the `2-

norm of the residue in Equation 3.3 as a function of the sparsity level τ . For each

GN subproblem, this curve is decreasing, convex, and smooth (Berg and Friedlan-

der, 2008), which allows us to obtain reasonable values of τk for each subproblem.

The energy of the residual depends on the the current iterate mk and on the solution

of the GN subproblem, which is unknown (Doel and Ascher, 2011). However, be-

cause δmk is a descent direction this residual will go down with each GN solve. It

is therefore reasonable to assume that the value function decreases by some fraction

0 < α < 1 such that we have vk(τk) = αvk(0) for the kth GN subproblem. We can

calculate the τk using the linearization τk ≈ (α − 1)vk(0)/v′k(0) with v′ given by

(Berg and Friedlander, 2008, Theorem 2.1): v′k(0) = −‖C2∇F H [mk;Q]δDk‖∞,

which yields a closed-form solution τk = (1−α)‖δDk‖2

‖C2∇F H [mk;Q]δDk‖∞

.

Algorithm speed-up using stochastic optimization [lines 3 and 7, Algorithm 2]

While the proposed dimensionality reduction technique allows us to solve the GN

subproblems with a reasonable computational effort, the overall costs of the inver-
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sion remains prohibitively expensive. Therefore, we rely on insights from Stochas-

tic Optimization (Haber et al., 2010a; van Leeuwen et al., 2011a) by drawing in-

dependent W’s for each GN subproblem. This extends our work on the linear

case of least-squares migration where these renewals led to a significant improve-

ment in the convergence (Herrmann and Li, 2011b,a). In this case it is not clear

how to select the steplength γk when sampling Wk at every iteration. Motivated

by stochastic-gradient descent (Bertsekas and Tsitsiklis, 1996), we use a fixed se-

quence of steplengths (γk = 1), which works well in practice.

3.4 The BG compass model
To test our inversion algorithm in a realistic setting, we consider a synthetic ve-

locity model with a large degree of variability constrained by well data. We use

this model to generate data with a 12Hz Ricker wavelet. We use a smooth starting

model without lateral information (Fig. 3.1b) and we start the inversion at 2.9Hz.

All simulations are carried out with 350 shot and 701 receiver positions sam-

pled at 20m and 10m intervals, respectively, yielding a maximum offset of 7km. To

avoid local minima and to improve convergence, the inversions are carried out se-

quentially in 10 overlapping frequency bands on the interval 2.9−22.5Hz (Bunks

et al., 1995), each using 7 different randomly selected simultaneous shots and 10

selected frequencies. For each subproblem, we use roughly 20 iterations of SPG`1.

Because we want to reduce the residue as much as possible, we set α = 0. This

requires roughly 4% of the cost of solving FWI with all data, using ten iterations of

LSQR per GN iteration (Paige and Saunders, 1982). Since the costs to carry out this

inversion for all data are prohibitive, we rely on a limited-memory quasi-Newton

method (l-BFGS, Nocedal and Wright, 2006b) instead, which uses approximately

twice the number of PDE solves compared to the new algorithm. The results for

l-BFGS and our algorithm with and without independent redraws for the W’s are

included in Figure 3.2. We can make the following observations from these results.

First, the results from the modified GN have higher resolution and recover the dif-

ferent layers more accurately. This is remarkable, and demonstrates the ability of

curvelet sparsity promotion on the updates to “fill in” the null space of the reduced

Hessian. Second, the renewals remove visual artifacts in the estimated velocities
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(juxtapose Figure 3.2b and 3.2c).

Even though the above example shows that excellent inversion results are at-

tainable working with randomized superpositions, our dimensionality reduction

relies on fixed-spread acquisition where each source sees the same receivers. Un-

fortunately, our reliance on this type of reduction technique limits the applicability

of our approach to marine data where the sources and receivers both move and

where near and far offsets are missing. This dependence can be avoided if we re-

place the Gaussian i.i.d. columns of the W’s by randomly selected columns of the

Dirac basis. This choice, which corresponds to selecting random subsets of sequen-

tial shots, opens the possibility to work with marine data. To test the performance

of this type of dimensionality reduction for a marine acquisition with near offsets

(up to 100m and far offsets (from 3000−7000m) missing, we rerun the above GN

examples with and without renewals for this type of dimensionality reduction. The

results are included in Figure 3.3 and clearly illustrate the importance of changing

the random subsets of shots for the different GN updates. From the perspective of

compressive sensing, we can also explain the slight loss in resolution and quality of

the recovered discontinuities. According to this theory, the Gaussian matrix yields

better recovery and comparing Figures 3.2b and 3.3a confirms this prediction.

3.5 Discussion
Efforts to control source artifacts related to fast inversions that act on subsets of

the data rely mostly on averaging In contrast, we employ sparsity-promotion on

the model updates to remove the interferences related to the dimensionality reduc-

tion. In that sense, our method is somewhat reminiscent of “gradient precondi-

tioning” (see e.g. Fichtner, 2011) via smoothing but it differs because we leverage

curvelet-domain sparsity promotion, which preserves wavefront-like features, re-

moves source crosstalk, and does not need model-specific information such as local

dips (Guitton et al., 2010). Our approach has the additional advantage that it, like

hybrid (van Leeuwen et al., 2011b; van Leeuwen and Herrmann, 2011) and robust

methods (Aravkin et al., 2011), also works with marine data, without relying on

correlation/phase-based misfit functionals (Routh et al., 2011).
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(a)

(b)

Figure 3.1: BG Compass model. (a) original model (m), (b) initial model
(m0) used to start FWI.

3.6 Conclusions
We introduced an efficient algorithm to solve the full-waveform inversion (FWI)

problem by incorporating insights from convex optimization, stochastic optimiza-

tion, and compressive sensing. By exploiting the convex-composite, multiscale,

and separable structure of FWI, we modified the Gauss-Newton (GN) method to

produce a new algorithm that permits us to consider GN subproblems as compressive-

sensing experiments with dramatically reduced numbers of sources. This reduc-

tion, which can be achieved both for time- and frequency-domain formulations of

FWI, leads to corresponding speed improvements for the evaluation of the data

misfit functional, the Jacobian, and its adjoint. For fixed randomized subsets of

data, we were able to establish convergence of our method, which promotes curvelet-

domain sparsity on the model updates. We also demonstrated a significant speed-up
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(a)

(b)

(c)

Figure 3.2: Full-waveform inversion results starting from 2.9Hz over 10 fre-
quency bands. (a) Inverted result for all data using l-BFGS. (b) Inverted
result with the modified GN method using 7 simultaneous shots and 10
frequencies. (c) the same as (b) but without renewals.
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(a)

(b)

Figure 3.3: Full-waveform inversion results starting from 2.9Hz over 10 fre-
quency bands. (a) Inverted result with the modified GN method using 7
randomly selected sequential shots and 10 frequencies. (b) the same as
(a) but without renewals.

attained by selecting independent randomized subsets of the data for each GN up-

date. While we argue that these renewals remove possible correlations between the

subsampling and model iterates, a formal convergence proof of the optimization

algorithm still needs to be established.

Application of our algorithm to a complex synthetic data set leads us to the

following conclusions. First, dimensionality reduced GN with curvelet-domain

sparsity promotion yields higher quality inversion results than do quasi-Newton

methods. Second, sparse recovery in combination with randomized dimensionality

reduction allows us to speed FWI significantly by iterating on small subsets of the

data only. Third, we were able to obtain inversion results from reduced experi-
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ments based on either randomized simultaneous sources or on randomized subsets

of sequential sources. The latter has the advantage of being suitable for marine

acquisition at the cost of a moderately inferior inversion result relative to fixed-

spread acquisition. Finally, we find that renewals make a significant difference, in

particular for dimensionality reduction based random subsets of sequential shots.
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Result: Output estimate for the model m
k←− 0; mk ←−m0 ; // initial model1

while not converged do2

{Dk,Qk}←− {DWk,QWk} with Wk ∈ N(0,1) ; // indep. draw.3

δDk←− Dk−F [mk;Qk]; // residual4

τk←− (1−α)‖δDk‖F /‖C2∇F ∗[mk;Qk]δDk‖∞; // one-norm5

LASSO

δx←−
{

argminδx
1
2‖δDk−∇F [mk;Qk]CH

2 δx‖2
F

subject to ‖δx‖1 ≤ τk6

mk+1←−mk + γkCH
2 δx ; // update with line search7

k←− k+1;8

end9
Algorithm 2: Dimensionality-reduced Gauss Newton with sparsity
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Chapter 4

A modified, sparsity promoting,
Gauss-Newton algorithm for
seismic waveform inversion

4.1 Introduction
Seismic data can be used to image structures inside the earth on various scales,

similar to how a CT scan reveals images of the human body. Earthquake data are

used to study the structure of the earth’s crust and the core-mantle-boundary. Ac-

tive seismic experiments, conducted mainly by oil and gas companies, can be used

to infer structural information up to about 10 km deep with a typical resolution

of 50 − 100 meters. In such experiments, sources and receivers are placed on the

surface or towed through the water. The response of the sequentially detonated

explosive sources is measured by as many as 106 channels covering areas of 100s

of km2. These experiments produce enormous amounts of data which then have to

processed. Most of the data consists of reflected energy with a frequency content

of roughly [5−100]Hz. Current acquisition practice is moving towards recording

A version of this chapter has been published. Felix J. Herrmann, Xiang Li, Aleksandr Y. Ar-
avkin, and Tristan van Leeuwen. A modified, sparsity promoting, Gauss-Newton algorithm for seis-
mic waveform inversion. Proc. SPIE, 2011.
c© SPIE Digital Library.
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lower frequencies and using larger apertures to capture refracted (transmitted) en-

ergy. When the underlying geological structure is simple, the reflection data may

be interpreted directly. However, with the ever increasing need for fossil fuels, the

industry is moving into geologically more complex areas. The data cannot be in-

terpreted directly and have to be imaged using specialized algorithms. “Migration”

is an example of such basic imaging that is widely used in the geophysical com-

munity. The basic idea is to correct for the wavepaths along which the reflected

data traveled. Most industry practice is still based on a geometric optics approxi-

mation of wave propagation. Such algorithms need a smooth “velocity model” that

describes the propagation speed of the waves in the subsurface. In general, little is

known about the velocity variations on this scale (as opposed to the global scale,

where good models exist) and this has to be determined from the data as well.

In contrast to the geometric optics approach, Full-waveform inversion (FWI) re-

lies on modeling the data by solving the wave equation (with finite-differences, for

example), and adapting the model parameters (i.e., the coefficients of the PDE) to

minimize the least-squares data misfit. This method, first proposed in the early

’80sTarantola (1984b), tries to infer a gridded model from the data directly, with-

out making the distinction between the (smooth) velocity model and the image.

It quickly became apparent that this approach needs a very good initial guess of

the velocity structure to circumvent local minima in the misfit functional that are

related to “loop skipping” Tarantola (1984b). The basic idea is that we have to

provide information on the low wavenumbers that are missing from the data. With

better data (lower frequencies, larger aperture) we need a less detailed initial model.

Now that such data is becoming available, waveform inversion may become a vi-

able alternative to more traditional imaging procedures. In order to make waveform

inversion feasible for industrial-scale applications, inversion formulations and al-

gorithms must take advantage of dimensionality reduction techniques for working

with exceedingly large data volumes. In this paper, we design a modified Gauss-

Newton method for FWI that uses dimensionality reduction techniques and ideas

from stochastic optimization. The modification we propose promotes transform-

domain sparsity on the model updates. Consequently, we are able to incorporate

curvelet frames Candes and Demanet (2004); Candès et al. (2006); Hennenfent and

Herrmann (2006a) into our framework that offer a compressible representation for
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wavefields, which improves FWI.

4.1.1 Full-waveform inversion

Full-waveform inversion is a data fitting procedure that relies on the collection of

seismic data volumes and sophisticated computing to create high-resolution mod-

els. The corresponding nonlinear least-squares (NLLS) optimization problem is as

follows:

minimize
m

φ(m) :=
1
2

K

∑
i=1
‖di−F [m;qi]‖2

2 , (4.1)

where K is the batch size (number of sources), di represents the data corresponding

to the ith (known) source qi, both organized as vectors, and F [m;qi] is the forward

operator for the ith source. The vector of unknown medium parameters is denoted

by m. The forward operator F acts linearly on the sources qi; that is

F [m;aqi +bq j] = aF [m;qi]+bF [m;q j] . (4.2)

Formulation (4.1) assumes a fixed receiver array.

If we organize the sources and the data as matrices: D = (d1,d2, . . . ,dK) and Q =

(q1,q2, . . . ,qK), we may write the objective in (4.1) as

φ(m) =
1
2
‖D−F [m;Q]‖2

F , (4.3)

where ‖ · ‖F is the Frobenius norm.

We will pause to make several important observations about (4.3). First, the for-

ward operator F involves the solution of a PDE with multiple right-hand-sides, so

the work load is directly proportional to K. Since the sources and receivers may

number in the millions, dimensionality reduction techniques become essential for

making any headway on the problem. Second, the objective in (4.3) is nonlinear

and non-convex. It is, however, convex-composite, meaning that we can write

φ(m) = ρ(G (m)), (4.4)

with ρ convex, and G smooth (differentiable). Here, ρ(X) = 1
2‖X‖F , and G (m) =

D−F [m;Q] . This structure allows for natural design and analysis of algorithms
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to solve (4.3). The natural approach to FWI motivated by this structure is the

Gauss-Newton method, which involves iterative linearization of G (m) and solution

of least-squares problems of the form

minimize
δm

‖δD−∇F [m,Q]δm‖2
F , (4.5)

where δD = D−F [m,Q] and ∇F is the “Jacobian tensor” of F , which acts

linearly on δm and produces a matrix as output. This matrix has shot records, i.e,

the single-source experiments, organized in its columns. Throughout this paper we

refer to the above optimization problem as the Gauss-Newton (GN) subproblem.

4.1.2 Main contribution and relation to existing work

In earlier developments in seismic acquisition and imaging, several authors have

proposed reducing the computational cost of FWI by randomly combining sources

Krebs et al. (2009b); Moghaddam and Herrmann (2010b); Boonyasiriwat and Schus-

ter (2010); Li and Herrmann (2010b); Haber et al. (2010b). We follow the same

approach, but focus the exposition on the Gauss-Newton subproblem, setting the

stage for further modifications. We replace (4.5) by

minimize
δm

‖δDW −∇F [m,QW ]δm‖2
F , (4.6)

where W is a matrix with i.i.d. random entries with K̃ � K columns. The main

computational cost lies in solving a wave-equation for each column of Q, and this

strategy aims to significantly reduce this number, replacing Q by QW . We may

link this directly to ideas from stochastic optimization by recognizing this modified

subproblem as being the GN subproblem of a modified misfit, given by:

φ̃(m;W ) =
1
2
‖DW −F [m;QW ]‖2

F . (4.7)

If we choose W with unit covariance (i.e., E{WW H}= I) we find that

E{φ̃(m;W )}= φ(m). (4.8)
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Specialized algorithms to deal with such problems go back to the ’50s and a de-

tailed overview is given in a later section. The main idea of these algorithms is

to make some progress using random realizations of the gradient, relying on using

sufficiently many realizations to eventually converge.

We may also view the reduced GN subproblems from the vantage point of com-

pressed sensing, which studies theory and algorithms for the recovery of sparse

vectors from severely undersampled systems. Herrmann et. al. Herrmann and Li

(2011b) successfully used this approach to make sparsity-promoting seismic imag-

ing more efficient.

Under certain assumptions on the matrix we can recover a sparse vector from

such a system by solving a sparsity promoting problem. This is promising, since

we need not rely on a Monte-Carlo type sampling strategy common to stochastic

methods to recover the solution. It does require, however, that we find a repre-

sentation in which the solution is sparse (or at least compressible) Donoho (2006).

Fortunately, the curvelet frame offers a very efficient (sparse) representation for

waveields Candes and Demanet (2004); Candès et al. (2006); Hennenfent and Her-

rmann (2006a). Curvelets can be thought of as a higher dimensional generalization

of wavelets, which capture local information at different directions and scales. Mo-

tivated by the optimally sparse representation of wavefields in the curvelet frame

Candes and Demanet (2004), we regularize the reduced GN subproblem with an `1

constraint:

minimize
δx

‖δDW −∇F [m,QW ]CH
δx‖2

F s.t. ‖δx‖1 ≤ τ, (4.9)

where C represents the curvelet transform. The key point here is that the solu-

tion δm to the Gauss-Newton subproblem may be interpreted as a wavefield, as

we demonstrate in section 4. The formulation (4.9) is a way to regularize the

GN-subproblem to take advantage of wavefield sparsity. Because of the convex

composite structure of (4.7), the solution to (4.9) is still a descent direction for φ̃ .

The final algorithm, then, combines ideas from both stochastic optimization and

compressed sensing and is shown to be highly effective for our particular applica-

tion.
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4.1.3 Outline of the chapter

The main contribution of the paper is the development of a novel modified Gauss-

Newton method for FWI that combines ideas from stochastic optimization and

compressed sensing (CS). We therefore first give a brief overview of stochastic

optimization and CS techniques in sections 4.2 and 4.3. In section 4.4, we formu-

late a modified GN method for a particular realization of φ̃(m,W ) and present a

convergence proof for it. The practical implementation of both the the modified

GN method and the modeling operator is discussed in section 4.5. In the practi-

cal version of the method we resample the matrix W (encoding the simultaneous

shots) at each realization, which significantly improves the quality of the recovery,

but precludes a rigorous convergence theory. Numerical results obtained using the

new method are presented in section 4.6, and conclusions follow in section 4.8.

4.2 Stochastic Optimization
Stochastic optimization deals with optimization problems of the form

minimize
m

{
φ(m) = E{φ̃(m;W )}

}
. (4.10)

This approach does not require access to the full misfit and gradient, φ and ∇φ .

Instead, we have access to ‘noisy’ realizations φ̃ and ∇φ̃ , which are correct on

average. In this section we briefly outline two main approaches to essentially get

rid of the “noise” in the approach, called Stochastic Average (SA) and Sample

Average Approximation (SAA).

4.2.1 Sample Average Approximation (SAA)

A natural approach to pick a “large enough” batchsize K̃ (i.e., such that WW H ≈ I),

effectively replacing the expectation by a sample average. This is often referred to

in the literature as the Sample Average Approximation (SAA)Nemirovski et al.

(2009b). Once drawn, the batch W is fixed; the idea is simply replace the full

objective φ(m) by the subsampled variant φ̃(m;W ). When some additional as-

sumptions are satisfied, the optimal value of φ̃ converges to the optimal value of φ

with probability 1 ( see Shapiro (2003); Shapiro and Nemirovsky (2005)) . From

50



a practical point of view, the SAA approach is appealing because it allows flexi-

bility in the choice of algorithm for the solution of the subsampled problem. In

particular, we may directly use the GN method to minimize the reduced misfit.

4.2.2 Stochastic Approximation

A second alternative is to apply specialized stochastic optimization methods to

problem (4.10) directly. This is often referred to as the Stochastic Approximation

(SA). The main idea of such algorithms is to pick a new random realization W k for

each iteration k. Notably, some methods include averaging over past iterations to

suppress the noise introduced by the randomized source encoding. This approach

yields an iterative algorithm of the form

mk+1 = mk− γk∇sk ,

where the search direction is typically given by a realization of the gradient: sk =

∇φ̃(mk;W k) The batch size is typically very small (K = O(1)), and {γk} represent

step sizes taken by the algorithm, which are picked ahead of time.

(Betrsekas and Tsitsiklis, 2000, propopsition 3) provides a convergence theory for a

class of SA algorithms for directions sk+ωk, as long as several technical conditions

hold:

1. φ is differentiable with ∇φ Lipshitz continuous.

2. E[ω] = 0.

3. The expected value of the search directions are descent directions for φ , i.e.

∇φ(mk)
H
E[sk]< 0.

4. There exist positive constants c1, c2 and c3 so that

(a) c1‖∇φ‖2 ≤−∇φ(mk)T ∇(sk +ωk),

(b) ‖sk +ωk‖ ≤ c2(1+‖∇φ‖), and

(c) E[‖ω‖2]≤ c3(1+‖∇φ‖2).

5. ∑
∞
ν=0 γν = ∞ , ∑

∞
ν=0 γ2

ν < ∞. A common example is γν ∝
1
ν

.
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Even though the modified GN algorithm in section 4 has a convergence theory for

a particular random realization W (i.e. for solving the SAA problem φ̃(m,W )),

the SA theory presented here does not apply to the practical algorithm where the

W ’s are redrawn (presented in Section 6). In particular we cannot guarantee that

condition 3 above is satisfied by the model update δm derived from the modified

Gauss-Newton subproblem. However, redrawing W ’s substantially improves our

recovery, as shown in section 6.

4.3 Sparsity Regularization and Compressive Sensing
Compressed or Compressive Sensing (CS) provides theory centered around re-

coverability of sparse signals using linear measurements Candes (2006); Donoho

(2006). The basic problem is to solve an underdetermined linear system RMf = b,

where RM is a flat matrix consisting of the measurement matrix M and the restric-

tion matrix R, and f is known to be sparse in some basis. This latter fact can be

written as f = SHx, where S is the basis (or frame) , and x is sparse or compress-

ible. Denoting A = RMSH , we now want to find the sparsest solution of the system

Ax = b, or

minimize
x

‖x‖0 s.t. Ax = b, (4.11)

where ‖ · ‖0 denotes the `0 “norm” given by the number of nonzero elements of

a vector. Unfortunately, solutions of this type of non-convex optimization prob-

lems are nearly impossible to compute for large problems because they require a

combinatorial search over all possible subsets of columns of A to find the solution

with the fewest nonzero elements. One of the major findings of CS is that under

some conditions on A and x, the solution can be recovered by solving the convex

optimization problem

minimize
x

‖x‖1 s.t. Ax = b . (4.12)

Whether solving this problem, known as Basis Pursuit (BP), recovers the correct

sparse signal depends on the sparsity level of x, the number of measurements, and

the Restricted Isometry Property (RIP) constant of the matrix A. Roughly speaking,

the RIP constant measures how far the matrix A is from a unitary matrix when
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acting on sparse vectors. Again, checking this condition for arbitrary matrices

requires a combinatorial search over subsets of columns of A. To overcome this

difficulty, the mutual coherence, which is the maximum (normalized) inner product

between any two columns of A (i.e., the maximum off-diagonal entry of AHA), is an

often-used heuristic. Low mutual coherence is necessary for recovery guarantees

of a sparse signal by solving a sparsity promoting program.

When noise is present in the data we may instead solve the Basis Pursuit Denoise

(BPDN) problem

minimize
x

‖x‖1 s.t. ‖Ax−b‖2 ≤ σ , (4.13)

where σ is the expected noise level in the data van den Berg and Friedlander

(2008a). This problem is hard to solve, but turns out to be equivalent to two related

formulations

minimize
x

‖Ax−b‖2
2 +λ‖x‖1 (4.14)

and

minimize
x

‖Ax−b‖2
2 s.t. ‖x‖1 ≤ τ (4.15)

known as the QP and LASSO problems, respectively. The equivalence is true in

the sense that for each σ , there are unique values for λ and τ so that the solutions

of (4.13, 4.14, 4.15) all coincide. However, the values of these parameters are not

known ahead of time. Therefore, most algorithms that solve (4.13) do some sort

of continuation either in λ (see Kim et al. (2007)) or in τ (see van den Berg and

Friedlander (2008a)). In both cases, the iterates start sparse and additional com-

ponents are allowed to enter the solution to bring down the residue. Even though

continuation in parameters λ and τ for QP and LASSO subproblems can be used

to solve (4.13), the LASSO-based approach offers two advantages: the Spectral

Projected Gradient method can be used to quickly solve (4.15) for very large lin-

ear systems, and the continuation in τ can be naturally derived using the graph of

the value function for (4.15). The spectral projected gradient (SPG) method for

(4.15) is detailed in ((van den Berg and Friedlander, 2008a, Algorithm1). SPG is
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an iterative method, with iterates taking the form

xk+1 = Pτ [xk + γksk] ,

where the search direction sk is the negative gradient of the objective (sk =−2AT (Axk−
b)), Pτ is the projection operator onto the one-norm ball of radius τ (the set {x :

‖x‖1 ≤ τ}), and γk is a line search parameter chosen according to the Barzilai-

Borwein scheme (see e.g. (Birgin et al., 2010, Algorithm 2.1)). Since the SPG

method has already been proven to be very successful in solving large-scale CS

problems in seismic exploration Hennenfent et al. (2008a), we use it as a subroutine

in the current convex-composite formulation to solve the modified Gauss-Newton

LASSO subproblems.

4.4 Modified Gauss-Newton Method for SAA Approach
Recall the dimensionality reduced misfit function defined in (4.7):

φ̃(m;W ) =
1
2
||DW −F [m;QW ]||2F .

This problem has the same convex composite structure (see (4.4)) as the full misfit,

and we exploit this structure to design an algorithm for solving (4.7). We begin

with a basic Gauss-Newton method, which is an iterative algorithm of the form

mk+1 = mk + γkδmk ,

where δmk solves

minimize
δm

‖δDkW −∇F [mk;QW ]δm‖2
F ,

the quantity δDkW is the dimensionality-reduced linearized data residual DW −
F [mk;QW ], and γk is a line search parameter.

We adapt the Gauss-Newton method by using the following key observations:

• The scattering operator is diagonal in phase space, and thus has low
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mutual coherence: The normal operator ∇F [mk;QW ]H∇F [mk;QW ] has

a very special structure in exploration seismology. Namely, in the high-

frequency limit, this operator is diagonal in phase space (more precisely, it

is a pseudo-differential operator)Beylkin (1984); ten Kroode et al. (1998);

de Hoop and Brandsberg-Dahl (2000); Stolk and Symes (2003) for point

sources. More specifically, we can write

∇F [mk;Q]
H

∇F [mk;Q] = BL
1
2 ,

where B is a positive-definite scaling matrix and L is a discrete LaplacianSymes

(2008a); Herrmann et al. (2008a, 2009a). From this factorization, we expect

a very low mutual coherence between the columns of the scattering opera-

tor. We do not expect either the curvelet frame or the random mixing of the

sources to increase mutual coherence, since E[WW H ] = I and CCH = I.

• The GN search direction is sparse in curvelets: The gradient of the misfit,

∇φ =∇F H
δD , can be computed by correlating two wavefields (see (4.27)),

and this correlation is again a wavefield. As already noted, curvelets give an

optimally sparse representation of wavefields, so we expect the gradient to

be sparse in this frame. Next, the solution to the standard Gauss-Newton

method is given by

δm =−(∇F H [mk;Q]∇F [mk;Q])−1
∇φ . (4.16)

Using the special structure of the Hessian, outlined above, we argue that

δm can be interpreted as a scaled wavefield, and hence can also be sparsely

represented with curvelets. Note that this argument does not depend on a

correct or nearly correct velocity model mk, but only on the form of δm in

(4.16). Thus updates are expected to be sparse in curvelets even when mk is

far away from the true solution, e.g. at the beginning of FWI.
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These observations motivate us to replace the standard GN subproblem by a spar-

sity promoting LASSO variant

δxk = argmin
δx
‖δDkW −∇F [mk;QW ]CH

δx‖2
F s.t. ‖δx‖1 ≤ τk

δmk =CHδxk ,

(4.17)

where τk are parameters to be selected. Note that taking τk = 0 forces δmk = 0,

while taking τk to be very large gives us the ordinary Gauss-Newton solution update

for φ̃ . As discussed above, this subproblem can be solved using the SPG method.

Denote by vk the value function for the k-th subproblem (4.17):

vk(τk) = min
δx
‖δDkW −∇F [mk;QW ]CH

δx‖2
F s.t. ‖δx‖1 ≤ τk

= ‖δDkW −∇F [mk;QW ]δmk‖2
F .

(4.18)

The value function is carefully studied in van den Berg and Friedlander (2008a) ,

where its graph is dubbed the “Pareto trade-off curve”. The graph of the value func-

tion traces the optimal trade-off between the two-norm of the residual and the one-

norm of the solution. Because the value function is continuously differentiable,

convex and strictly decreasing, the LASSO formulation (4.17) has a corresponding

BPDN problem (4.13) for a unique σ . Hence, our approach can be thought of as

finding the sparse search direction for to the full problem from subsampled mea-

surements. The noise level in this formulation, however, refers to the error in the

linearization and the question is how to choose the magnitude of this mismatch σ ,

or correspondingly, how to choose the right τ , for each subproblem. This question

is addressed in Section 4.5.

The above interpretation—where LASSO problems are argued to recover sig-

nificant transform-domain coefficients à la CS—has no rigorous justification, par-

ticularly due to lack of CS results for frames and lack of RIP constants for ∇F

in the seismic application. Nonetheless, the point here is that the LASSO problem

(4.17) is particularly well-tailored to ideas related to sparsity promotion and CS.

To arrive at a convergence theory for the modified GN algorithm, the solution of
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the modified subproblem must be a descent direction of φ̃ . This condition is en-

sured by the convex-composite structure of φ̃ . For any convex-composite function

ρ(G (m)), the directional derivative ρ ′(m,δx) exists and satisfies

ρ
′(m;δx)≤ ρ(G (m)+∇G H

δx)−ρ(G (m)) (4.19)

from (Burke, 1990, Lemma 1.3.1). Because the subproblem (4.17) minimizes

ρ(G (m)+∇G H
δx) over the one norm ball of radius τk, we know that δmk satisfies

vk(τk) = ‖δDkW −∇F [mk;QW ]δmk‖F ≤ ‖δDkW‖F ,

with equality only if we have stationarity. Combining this with (4.19), we have

φ̃
′(mk;δmk)≤ vk(τk)−‖δDkW‖F < 0 ,

unless mk is a stationary point, in which case φ̃ ′(mk;δmk) = 0 . Therefore, the

k-th the LASSO subproblem yields a descent direction for the full nonlinear SAA

problem for any τk > 0, unless we have already reached a local minimum. The full

development is shown in Algorithm 3. If we make the additional assumptions

1. The sequence {τk} is bounded, and

2. ∇F [m;QW ] is uniformly continuous on the convex closure of m satisfying

φ̃(m,W )< φ̃(m0,W ),

where 2 above is a standard technical assumption, then hypotheses of (Burke, 1990,

Theorem 2.1.2) and (Burke, 1990, Corollary 2.1.2) are satisfied, yielding a global

convergence theory for Algorithm 3.

4.5 Practical implementation

4.5.1 Modified Gauss-Newton approach

We propose slight modifications to Algorithm 3. Motivated by the SA approach,

we found that resampling the matrix W at each linearization (i.e. using W k instead

of W ) improves recovery significantly. Intuitively, it makes sense that using several
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1: initialize m, k← 0, ∆1← 1, ε,c.
2: while ∆k > ε do
3: k← k+1
4: Compute residual δDkW = DkW −F [mk;QW ]

5: δxk← argmin
δx

{
‖δDkW −∇F [mk;QW ]CT δx‖2

F
s.t. ‖δx‖1 ≤ τk

}
6: δmk =CT δxk

7: ∆k = ‖δDkW −∇F [mk;Q]δmk‖2
F −‖δDkW‖2

F

8: Pick λk to ensure φ̃(mk +λkδmk;W )< φ̃(mk;W )+ cλk∆k (sufficient
decrease condition)

9: mk+1←mk +λkδmk

10: end while
Algorithm 3: GN-Method for FWI with Sparse Updates

different realizations may improve the result, as we remove the bias introduced by

a particular random sampling.

As shown above, the direction δmk is a descent direction for φ̃ at mk for any posi-

tive τk, with the requirement that the sequence {τk}’s are are bounded imposed by

the convergence theory for the SAA objective φ̃ . Nonetheless, practical implemen-

tation requires a systematic way to select τk. A reasonable approach is to require

vk(τk) = αvk(0) for some given α < 1. Using a linear approximation of vk we find:

τk ≈ (α−1)vk(0)/v′k(0) . (4.20)

A closed-form expression for v′ is computed in (van den Berg and Friedlander,

2008a, Theorem 2.1); in our context (4.20) is given by

v′k(0) =
(α−1)‖δDkW k‖2

‖C∇F [mk;W k]
H

δDkW k‖∞

. (4.21)

When sampling W k at every iteration, it is not clear what linesearch criterion to use.

In FWI, we are typically interested in doing a fixed number of iterations (as much

as computing resources allow); motivated by SA algorithms which use prescribes

fixed sequences of steplengths, we picked the steplengths to be constant, and found

this to work well in practice.
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The practical implementation with full details is given in Algorithm 4.

1: initialize m, k← 0, ∆1← 1, ε ← 10−6.
2: while ∆k > ε and k < kmax do
3: k← k+1
4: Sample to get W k

5: Compute residual δDkW k = DW k−F [mk;QW k]
6: τk = (α−1)‖δDkW k‖2/‖C∇F [mk;QW k]T (δDkW k)‖∞

7: δxk← argmin
δx
‖δDkW k−∇F [m;QW k]CT

δx‖2
F s.t. ‖δx‖1 ≤ τk

8: δmk =CT δxk

9: ∆k = ‖δDkW k−∇F [m;Q]δmk‖2
F −||δDkW k||2F

10: mk+1←mk + γkδmk

11: end while
Algorithm 4: GN-Method for FWI in Practice

4.5.2 Modeling operator

The modeling operator, F [m,Q] is implemented via a frequency-domain finite-

difference method. The wavefield for a single frequency ω is obtained by solving

a discrete Helmholtz system:

H[ω;m]U(ω) = Q(ω), (4.22)

where H is a 9-point, mixed-grid discretizationJo et al. (1996b) of the Helmholtz

operator ω2m+∇2. The data for a single frequency are obtained by sampling

the wavefield at the receiver locations: D(ω) = PU(ω), where P is the sampling

operator. The modeling operator, finally, produces data for several frequencies and

stacks the results. The action of the scattering operator on a vector δm for each

frequency ω can be computed as follows:

Solve H[ω,m]U(ω) = Q (4.23)

Solve H[ω,m]HδU(ω) = ω
2diag(δm)U(ω) . (4.24)
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The action of the adjoint for each frequency ω is calculated as follows:

Solve H[ω,m]U(ω) = Q (4.25)

Solve H[ω,m]HV (ω) = PH
δD(ω) (4.26)

Compute δm = ∑
ω

ω
2diag(UV H) . (4.27)

These formulas can be derived via the adjoint-state methodLailly (1983); Tarantola

(1984b). We refer to Plessix (2006) for a detailed overview of such techniques in

geophysics.

4.5.3 Inversion strategy

A well-known strategy in full waveform inversion is to invert the data starting from

low frequencies and gradually moving to higher frequenciesBunks et al. (1995);

Pratt et al. (1996). This helps to mitigate some of the issues with local minima.

In this case we simply apply the proposed GN algorithm for a fixed number of

iterations on a certain frequency band and use the end result as initial guess for the

next frequency band.

4.6 Results
We test the proposed method on a part of the BG-Compass synthetic benchmark

model. The velocity is depicted in figure 4.2. The data are generated for 350

sources and 700 receivers, all regularly spaced along the top of the model. The

initial model for the inversion is depicted in figure 4.2. We used 7 simultaneous

sources (columns in W ) for this experiment. Hence, a single evaluation of the mis-

fit is 50 times cheaper than an evaluation of the full misfit. The subproblems are

solved using 20 SPG iterations. The cost of calculating the update in this case is

then comparable to one evaluation of the full misfit.

The inversion is carried out in 10 partially overlapping frequency bands with

10 frequencies each, starting at 2.9 Hz and going up to 25 Hz. We perform 10 GN

iterations for each frequency band and use the end result as starting model for the

next band. The result with and without renewals are shown in figure 4.3. As a
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benchmark, we also show the result obtained with L-BFGS on the full data.

The convergence history in terms of the model mistmatch is also shown. The re-

newals clearly benefit the inversion, giving a less noisy final result as well as a

smaller `2 model mismatch. The renewals appear to be especially beneficial in the

later stage of the inversion. The modified GN method outperforms L-BFGS in this

example.

4.7 Discussion
In this paper, we designed a modified Gauss-Newton algorithm for seismic wave-

form inversion using ideas from stochastic optimization and compressive sensing.

Stochastic optimization techniques and dimensionality reduction are used to yield

a method that makes fast progress on the whole problem but works only on small

randomized subsets of the data at a time. The randomsubsampling weights are pe-

riodically redrawn, to remove any bias introduced by a particular weighting matrix

and further speed up the progress of the method.

The randomly subsampled Gauss-Newton subproblems may be seen as Compres-

sive Sensing experiments, where a sparse vector is reconstructed from randomly

undersampled measurements. Together with the compressibility of seismic im-

ages Herrmann and Li (2011a) and wavefieldsSmith (1998); Demanet and Peyré

(2011) in Curvelets, this motivated the proposed modification of the Gauss-Newton

subproblem to include curvelet transform-domain sparsity of the updates.

The main innovation of the new method is a rigorous way to exploit the com-

pressibility of seismic wavefields and images in the curvelet domain in the con-

text of a large-scale application with a nonlinear forward model. Specifically, the

Gauss-Newton subproblems are subsampled using randomization techniques and

then regularized by a constraint on the one-norm of the curvelet representation of

the update, turning them into LASSO problems. The purpose of this regularization

is to “fill in” the null space of the wave-equation Hessian, using curvelet-domain

sparsity promotion. While the LASSO problems are are harder to solve, they re-

main feasible when dimensionality reduction techniques are used.

The sparse regularization of the updates may also be a way to get around the

problem of “loop skipping” (local minima). While good starting models and mul-
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tiscale continuation methods have successfully mitigated some of the ill effects of

these local minima, curvelets and sparsity promotion may be an additional safe-

guard for getting trapped in a local minimum. This is because strict constraints on

the `1-norm of the updates forces components to enter the solution slowly, and as

a result curvelets in model space map to “curvelet images” in the data space that

share characteristics of the scale and direction of the corresponding curvelet in the

model space. As a consequence, the misfit functional is calculated over relatively

small subsets of “curvelet images” that have some support and direction and this

reduces the effects of “loop skipping”.

4.8 Conclusions
We present a modified Gauss-Newton algorithm for seismic waveform inversion.

Using random source superposition, we reduce the computational cost involved

in solving Gauss-Newton subproblems. Our approach can be seen as an instance

of the Sample Average Approximation method, which introduces random noise

as source crosstalk in the updates. The noise level is controlled by the batch size

(the number of randomized sources); with larger batch size corresponding to lower

noise level. To regularize the subproblems and to suppress the noisy source-cross

talk, we add an `1 constraint on the curvelet coefficients of the updates. The ratio-

nale for adding this constraint lies in curvelet-domain compressibility of seismic

wavefields, which is due to the special representation of updates as correlations

of source and residual wavefields. This argument in combination with curvelet-

domain compressibility of seismic images motivated us to develop and implement

a modified Gauss-Newton method with LASSO subproblems.

Using the convex-composite structure of the problem, we provide a global con-

vergence theory for this algorithm for a single fixed random realization (batch)

of simultaneous shots. We supplemented this theoretical proof with a heuristic

argument justifying the redrawing of random source weights after solving each

Gauss-Newton subproblem. Even though the convergence theory does not extend

to this case, we argue that these renewals remove bias introduced by a particular

realization of the random weights, and show that incorporating renewals leads to

better results.
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Figure 4.1: Schematic depiction of pareto curve used to select τ for the GN
subproblems.
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Figure 4.2: Compass Benchmark model with velocities ranging from 1480 -
4500 m/s (top) and initial model used for the inversion (bottom). Note
the total lack of lateral variation in the initial model.
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Figure 4.3: Inversion result for the modified Gauss-Newton algorithm with-
out (top) and with (middle) renewals. The result obtained with a stan-
dard Quasi-Newton approach is depicted in bottom. The latter approach
does not include dimensionaility reduction techniques.
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Chapter 5

Modified Gauss-Newton
full-waveform inversion
explained—why
sparsity-promoting updates do
matter

5.1 Introduction
Full-waveform inversion (FWI, Pratt et al., 1998b; Virieux and Operto, 2009) aims

to reap information on underground physical medium parameters, such as spatial

velocity and density distributions, from observed seismic measurements collected

at the surface or within well bores. Mathematically, FWI corresponds to partial-

differential equation (PDE) constrained optimization problem where the PDE con-

straints are generally eliminated and where the medium parameters are obtained

by minimizing the least-squares misfit between observed and modeled data (Taran-

tola, 1984a; Pratt et al., 1998a). In the last twenty years, numerous first-order

gradient-based methods have been developed to solve this inversion problem, in-

A version of this chapter has been submitted to Geophysics.
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cluding gradient descent (Pratt et al., 1998a; Warner et al., 2013), nonlinear con-

jugate gradients (Gilbert and Nocedal, 1992; Mora, 1987; Tarantola, 1986; Crase

et al., 1990) and so on. However, as reported by Pratt et al. (1998a) and Shin et al.

(2001)], first-order methods may suffer from slow convergence which is, in part,

related to difficulties in calculating reliable step lengths, and also, to the fact that

first-derivative information only is used. This slow convergence may lead to infe-

rior results in situations where one can only afford a small number of iterations that

utilize all observed data.

As shown by Mtivier et al. (2013), Pratt et al. (1998a) and Gratton et al. (2007),

second-order methods have the potential to achieve better convergence than first-

order methods when the starting model is reasonably close to the true model. In

this situation, inverting the Hessian matrix—i.e., the matrix that contains second-

derivative information—compensates for source-related blurring, limited aperture

and other amplitude-related effects. Unfortunately, true Hessian matrices are im-

possible to explicitly form for large scale problems, and they are challenging to

invert iteratively since this matrix is not guaranteed to be positive definite. For

this reason, it is common to approximate the Hessian by the semi-positive defi-

nite Gauss-Newton Hessian, which can readily be inverted using iterative methods

(Hestenes and Stiefel, 1952). While incorporating partial second-order information

can lead to significant improvements in the convergence (Mtivier et al., 2013; Pratt

et al., 1998a), the computational costs of inverting the Gauss-Newton Hessian iter-

atively, for each model update, become quickly prohibitive expensive because eval-

uation of the action of the Gauss-Newton Hessian—formed, for instance, by com-

pounding Jacobian (linearized Born modeling) matrix and its adjoint (migration)—

require multiple expensive PDE solves.

To overcome the generally prohibitive expensive costs of computing Gauss-

Newton updates, each of which involve the (approximate) iterative least-squares

solution of the wave-equation Jacobian, we propose a curvelet-domain sparsity-

promoting method (Li et al., 2012) that only works with randomized subsets of

source experiments. By limiting the number of PDE solves, we obtain an order-

of-magnitude improvement in computational efficiency where least-squares inver-

sions of the Jacobian could be computed at the cost of roughly one reverse-time

migration with all data [chapter 2](Tu et al., 2013). In this approach, we base our
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argument on the observations that Gauss-Newton updates are sparse in the curvelet

domain and random subsampling related artifacts are not sparse in this domain,

thereby creating favorable conditions for sparsity promotion. During these inver-

sions, incoherent (and therefore non-sparse) energy is mapped via curvelet-domain

sparsity-promotion to coherent events in the Gauss-Newton updates, in a similar

way as we demonstrate for least-squares migration (Herrmann and Li, 2012; Tu

et al., 2013). While the resulting modified Gauss-Newton method (MGN, Her-

rmann et al., 2011b) yields encouraging results in improving the computational per-

formance, and more importantly, the quality of FWI (Li et al., 2012), our approach

becomes problematic and differs fundamentally from existing regularization meth-

ods for inverse problems because it imposes `1-constraints on the Gauss-Newton

updates rather than on the model iterates themselves. The latter is more common

and undergirds recent work by (Gauthier et al., 1986; Hansen, 1998; Askan et al.,

2007). The main aim of our work is to provide arguments explaining why and

when our approach forms an attractive alternative to imposing sparsity constraints

on the model directly.

In spite of the fact that regularizing model iterations, rather than model updates,

seems to make more intuitive sense, it appears that these type of regularization

methods rely critically on prior knowledge of the sparsity level (the `1-norm) of

the (unknown) model. This critical dependence may hamper application of these

methods to large scale problems or at least calls for a continuation technique that

somehow relaxes the constraint, a topic of active research in current-day inverse

problems (van den Berg and Friedlander, 2008b; Lin and Herrmann, 2013; Hen-

nenfent et al., 2008b). As we will demonstrate, imposing constraints on the lin-

earized, and therefore convex, subproblems by using a combination of theoretical

convex-composite and problem-specific arguments shows that under certain cir-

cumstances sparse models can be obtained from model updates that solve sparsity-

promoting Gauss-Newton subproblems. By means of carefully selected examples,

we demonstrate for which type of problems and how this can be accomplished.

We find that it suffices to choose a series of conservative sparsity levels for the

`1-norm constraints on the updates as long as the supports—i.e., the locations of

the non-zeros—do not differ too much for the different Gauss-Newton updates so

that their sum, and therefore the model iterate itself, remains sparse as well. As our
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examples will demonstrate, the SPG`1-framework (van den Berg and Friedlander,

2008b), which holds for convex problems with convex constraints, can be used to

determine sparsity levels that lead to sparse updates that meet the above criterion

for certain problems. These include problems where the model and the updates—

i.e., the model, the difference between the starting model and the true model and

any update—permit sparse representations in some transformed domain.

This chapter is organized as follows. First, we introduce the Gauss-Newton

method and how it can be extended to include an `1-norm constraint. Next, we

compare this approach to the modified Gauss-Newton method where `1-norm con-

straints are imposed on the model updates. Afterwards, we compare results from

the modified Gauss-Newton method with `1- or `2-norm constraints and without

constraints in order to understand the importance of sparsity promotion. We, then,

carry these experiments out for two-parameter problems so we can plot the objec-

tive, solution path, and constraints in a 2D plane in order to illustrate how these

constraints factor into the optimization. Finally, to further validate the proposed

method, we consider the notoriously difficult problem of phase retrieval (Bauschke

et al., 2002), and two seismic examples, one of which is blind.

5.2 Optimization algorithms
Full-waveform inversion (FWI), like many other linear and nonlinear geophysi-

cal problems, involves the solution of an optimization problem. Depending on

problem specifics and the prior knowledge, these optimization problems can take

different forms, e.g. they can be constrained or unconstrained; first- or second-

order. Without being all inclusive, we briefly introduce the types of optimization

problems relevant to solving nonlinear sparsity-promoting inversion problems.

5.2.1 The unconstrained least-squares objective

FWI can be considered as an unconstrained least-squares (LS) minimization prob-

lem (Nocedal and Wright, 2006a)

LS : min
m

Φ(m) :=
{

1
2
‖d−F [m]‖2

2

}
,
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where the vector d represents the observed data that we want to fit with the non-

linear forward modeling operator F , parameterized by the discrete and vectorized

model m. We assume the source function to be known and fixed throughout this

chapter.

FWI is challenging for the following reasons. First, evaluations of the forward

modeling operator F [m] are expensive because they involve the solution of large-

scale PDE’s (Helmholtz systems). Second, the forward map is nonlinear in the

medium properties and solutions of the wave equation are oscillatory, which leads

to multiple local minima related to cycle skipping when starting models are not

close enough to the true model.

To reduce reliance of accurate starting models, several types of regularization

have been proposed to include prior information (Hansen, 1998; Vogel and Oman,

1996; Abubakar and van den Berg, 2002). In this chapter, we limit ourselves to

sparsity promoting priors that exploit structure on model updates with respect to

the starting model. Before specializing our finding to FWI, we first introduce con-

strained and unconstrained formulations as well as our modified Gauss-Newton

formulation for arbitrary forward modeling operators F , which are assumed to be

differentiable functions with respect to the model m.

5.2.2 The `1-norm constrained least-squares objective

Motivated by sparsity exhibited by certain model updates—think for example of

velocity perturbations in a FWI setting that are known to be compressible in the

curvelet domain (Candès et al., 2006)—we would like to find solutions of LS that

yield sparse updates with respect to the initial model m0. We can accomplish this

by adding a sparsity constraint on the model update minimizing the least-squares

objective (LS). We have

LS`1 : min
x

Φ(x) :=
{

1
2
‖d−F [SHx]‖2

2

}
subject to ‖x−x0‖`1 ≤ τ,

where SH is the inverse sparsifying transform. In this expression, the vector x0

denotes the transform domain coefficients of m0—i.e., x0 = Sm0 of the known

starting model while x represent the synthesis coefficients that minimize the least-
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squares objective subject to a `1-norm on the model update guaranteeing ‖x−
x0‖`1 ≤ τ . The choice for the sparsity level τ depends on the `1-norm of the model

update (the difference between the true and starting models). For now, we will as-

sume that this sparsity level is known. Unfortunately, in practice we cannot make

this assumption and this requirement forms part of the motivation regularizing de-

scent directions instead via `1-norm constraints.

5.2.3 Gauss-Newton for the unconstrained least-squares objective

There are numerous ways to solve (un)constrained optimization problems of the

type LS and LS`1. Compared to first-order gradient based methods, second-order

Gauss-Newton methods generally yield improved descent directions, converge faster,

and are amenable to imposing structure on descent directions via `1-norm mini-

mization. We arrive at the Gauss-Newton formulation by linearizing F within the

‖ · ‖2norm brackets of LS. We compute the Gauss-Newton descent direction at

the kth by solving the following linear least-squares problem (Nocedal and Wright,

2006a):

δmk = argmin
δm

‖δdk−∇F [mk]δm‖2
2. (5.1)

In this expression, ∇F [mk] represents the Jacobian evaluated at the model iterate

of the kth iteration mk. The vector δdk = d−F [mk] contains the correspond-

ing data residual. As outlined in Algorithm 5 where α is the step length, we re-

peat these iterations until the `2-norm of this residual is below some user-selected

threshold ξ . While Gauss-Newton iterations are known to require fewer iterations

compared to first-order gradient descent methods, incorporating second-order in-

formation comes at the price of having to solve least-squares problems (cf. Equa-

tion 5.1) for each model iterate. This can be problematic for large-scale problems,

such as FWI, or for problems where the Jacobian has a null space—i.e., the Jaco-

bian in Equation 5.1 is ill conditioned.
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Output: Solution m̃ of the Gauss-
Newton problem for starting model m0, tolerance ξ , and step length α .

1. k = 0
2. while ‖d−F [mk]‖2

2 ≥ ξ do
3. δmk = argminδm ‖δdk−∇F [mk]δm‖2 // descent

direction
4. mk+1 = mk +αδmk // model update
5. k = k+1
6. end
7. m̃←−mk

Algorithm 5: Gauss-Newton method for unconstrained objective (LS).

5.2.4 Gauss-Newton method for the `1-norm constrained
least-squares objective

Gauss-Newton methods can readily be extended to solve `1-norm constrained ob-

jectives (LS`1). In that case, the descent direction at the kth iteration becomes

δmk = SH argmin
δx
‖δdk−∇F [mk]SH

δx‖2
2 subject to ‖δx+xk−x0‖`1 ≤ τ.

(5.2)

In this constrained formulation, the Gauss-Newton subproblems optimize over

the transform-domain coefficients and the descent direction at the kth iteration is

obtained by inverse transforming these coefficient via SH . Replacing the uncon-

strained least-squares problem on line 3 of Algorithm 5 by the constrained least-

squares problem of Equation 5.2.

5.2.5 Modified Gauss-Newton method for unconstrained
least-squares objective

Imposing `1 constraints on the descent directions δmk themselves can lead to al-

gorithms that are not only computationally efficient but that are also less sensitive

to the sparsity level when following a scheme that carefully relaxes sparsity con-

straints on the descent directions. We introduced such an approach in the context

of FWI, coined the modified Gauss-Newton method as outlined in Algorithm 6 be-

low. Solutions of the `1-norm constrained Gauss-Newton subproblems of the type
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δmk = SH argmin
δx
‖δdk−∇F [mk]SH

δx‖2
2 subject to ‖δx‖`1 ≤ τk (5.3)

lie at the heart of this approach (Li and Herrmann, 2010a). Contrary to Equa-

tion 5.2 — where we impose a single `1-norm constraint on the transform-domain

coefficients of the difference between the sum of the current model iterate and

Gauss-Newton update at iteration k and the transform-domain coefficients of the

starting model — we impose different sparsity constraints τk on the descent direc-

tions for each linearized Gauss-Newton subproblem. Since the Gauss-Newton sub-

problems are convex, we choose the τk for each subproblem (Equation 5.3) using a

root-finding algorithm on the Pareto tradeoff curve (van den Berg and Friedlander,

2008b; Hennenfent et al., 2008b; Lin and Herrmann, 2013). For our purpose, it is

sufficient to solve for each Gauss-Newton subproblem Equation 5.3 with the spar-

sity level set to τk =
‖δdk‖2

‖S∇F T[mk]δd‖∞

where ‖·‖∞ is the `∞, which corresponds taking

the maximal value. This value for the sparsity level corresponds to the first τ se-

lected by SPG`1 (van den Berg and Friedlander, 2008b; Hennenfent et al., 2008b;

Lin and Herrmann, 2013) and is a very conservative value for the sparsity level on

the transform coefficients of the descent directions. Remark that after each itera-

tion we update the model, which leads to a new Gauss-Newton subproblem. As

we will show below, this empirical strategy can be applied successfully to nonlin-

ear (non-convex) problems and that for linear problems this strategy is equivalent

to the root-finding method undergirding SPG`1. We will also demonstrate that the

above choice of sparsity levels for the Gauss-Newton subproblems does not require

detailed information on the `1-norm of the transform coefficients of the difference

between the starting and true models. Instead, the algorithm needs as conservative

estimate of the `1-norm for the updates. As long as the sparsity levels are bounded,

the `1-norm constrained descent direction remain descent directions and the algo-

rithm provably converges (Burke, 1992). In Algorithm 6, we summarize the details

of the modified Gauss-Newton method.
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Output: Solution m̃ of the modified Gauss-
Newton problem for starting model m0, tolerance ξ , and step length α .

1. k = 0
2. while ‖d−F [m]‖2

2 ≥ ξ do
3. τk = ‖δdk‖2/‖S∇F H[mk]δdk‖∞

4. δm = argminδx ‖δd−∇F [mk]SHδx‖2
2 subject to ‖δx‖`1 ≤

τk // Gauss-Newton update
5. mk+1 = mk +αSHδxk // update with linesearch
6. k = k+1
7. end

Algorithm 6: Modified Gauss-Newton method with sparse update for uncon-
strained LS objective function.

5.3 Comparisons on stylized two-parameter examples
Our main goal is to provide a justification for our modified Gauss-Newton method

for a particular class of problems where the difference between the starting model

and true is sparse in some transformed domains. For this purpose, we will conduct

a series of stylized examples designed to demonstrate the superior performance

of our method compared formulations that either do not exploit sparsity—i.e., LS
and Equation 5.1, or do exploit sparsity by either constraining the model as in

LS`1 and Equation 5.2 or descent directions as in Equation 5.3. We conduct our

study to substantiate our claim that for conservative chosen sparsity levels, the

modified Gauss-Newton method yields for particular problems sparse solutions

without requiring prior knowledge on the sparsity level. Our stylized examples are

divided into convex problems where local minima is global minima coincide and

non-convex problems that may have local minima. For convex problems, we show

that Algorithm 6 converges to the solution while Gauss-Newton applied to `1-norm

constrained objective function (Algorithm 5 with line 3 defined by Equation 5.2)

will only converge to the true solution if it is inside the constraint set. For non-

convex problems, the modified Gauss-Newton method is more likely to converge

to a global or local minimum as long as the difference between the starting and

true model permits a sparse representation that is a sparse perturbation of the initial

model.
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5.3.1 Solution paths of a determined convex problem with a unique
solution

To get a better understanding of the behavior of the above optimization methods,

we compare solution paths for Algorithm 5 with and without `1-norm constraints

for correct and wrong values of the sparsity levels on a simple determined two-

dimensional problem. We also do this for the modified Gauss-Newton method

outlined in Algorithm 6. By setting F [m]
def
= Am with A =

[
2 4

6 −3

]
we arrive at

a linear convex problem that has a unique (denoted by the green dot in Figure 5.1)

global solution for the two model parameters m=

[
m1

m2

]
(Local minima correspond

to global minima for convex problems, and Jacobian of this problem is A). For the

data given by d =

[
−6

−3

]
the solution equals mtrue =

[
−1

−1

]
. As we can see from

Figure 5.1, this solution corresponds to the global minimum of the least-squares

objective as a function of the two model parameters. As expected, solutions paths

for the unconstrained (Algorithm 5) and correct `1-norm constrained (Algorithm 5

with line 3 replaced by Equation 5.2) Gauss-Newton methods both arrive at the

correct global minimum, and therefore, yield the correct solution. Irrespective of

the starting model, we can expect this behavior as long as the restriction to the “`1-

norm ball” — i.e., the diamond-shaped constraint set denoted by the green dashed

line in Figure 5.1b — includes the global minimum. However, if we choose a spar-

sity level so small that it no longer includes the global minimum, the constrained

formulation proceeds, as illustrated in Figure 5.1c, to the wrong solution. Instead

of finding the correct global minimum, the algorithm converges to a solution that

minimizes the least-squares objective while meeting the `1-norm constraint. This

example clearly shows the potential danger of including `1-norm or other con-

straints. The global minimum needs to be within the constraint set in order to find

the correct solutions.

Results from the modified Gauss-Newton method, on the other hand, arrive at

the correct global minimum irrespective of the type of norm (diamond-shaped `1-

norm ball as in Figure 5.1d or the circular-shaped `2-norm ball as in Figure 5.1e).

This behavior, where the descent directions are constrained, is consistent with the-
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oretical findings of Burke (1992), who states that Algorithm 6 converges despite

the fact that we impose constraints on the search directions. For illustrative pur-

poses, we imposed the `2-norm as well by simply replacing line 3 in Algorithm 6

by τk = ‖δdk‖2/‖ATδdk‖2 and the `1-norm in line 4 by the `2-norm. While this

example clearly shows that global minima can still be found when imposing con-

straints on the updates, it does not demonstrate the added value of these constraints

for more challenging problems that do not have a unique solution.

5.3.2 Solutions paths of an underdetermined convex problem with
multiple solutions

To further study the behavior of the above listed optimization problem, we con-

duct the same experiments for the underdetermined case where A =
[
2 4

]
and

d = −4. Without imposing prior knowledge, this problem has infinitely many so-

lutions. Again, we compare the performance of the different optimization problems

by plotting the least-squares objective in color code, the solutions minimizing the

least-squares objective that lie on the line −4+ 2m1 + 4m2 = 0, and the solutions

paths in Figure 5.2 from starting models located at

[
3

4

]
.

Since our problem currently does not have a unique solution, we will impose

sparsity on the solution. This means that we are looking for solutions that align

with the principle axes in which case one of the two model parameters is zero. As

expected, the solution path that minimizes the least-squares objective only misses

the sparse minimum at

[
3

−0.5

]
denoted by the green dot. Similarly, the `1-norm

constrained formulations also fail to find the correct minimum in cases where the

sparsity level τ is too high (Figure 5.2b), in which case the solution corresponds

to the unconstrained least-squares solution, or too small (Figure 5.2c) in which

case the solution is sparse but wrong in amplitude. As long as we know the exact

sparsity level in advance, we can inflate the `1 ball so one of its corners touches the

least-squares objective (see Figure 5.2d), which yields a sparse solution where one

of the two model parameters is zero.

As illustrated in Figure 5.2e, solution paths for our modified Gauss-Newton

method with `1-norm constraints on the descent directions also find the sparse so-
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Figure 5.1: Solution path of different methods for convex problem that has a
unique solution: (a) Algorithm 5; (b) Algorithm 5 with line 3 defined
by Equation 5.2 (correct `1 constraint); (c) same as Figure 5.1b but with
wrong `1 constraint; (d) Algorithm 6 but with `1 constraint on the up-
dates; (d) Algorithm 6 but with `2 constraint.
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lution without having prior knowledge on the true sparsity level. This example

illustrates that we can find sparse solutions by imposing `1-norm constraints on the

model updates according to Algorithm 6. Figure 5.2f shows the `1-norm plays a

crucial role since constraining the `2-norm on the updates does not lead to a sparse

solution. Contrary to the `2-norm constrained descent directions, descent direc-

tions constrained by the `1-norm are all sparse and have the same locations for the

significant entries while moving to the sparse solution as shown in Figure 5.2e.

The above observations for convex problems with `1-norm constraints provide

an intuitive explanation why imposing `1-norm constraints on updates may make

sense in certain circumstances. This comes not as a surprise because the modi-

fied Gauss-Newton for these problems is derived from the same principle as the

SPG`1 (van den Berg and Friedlander, 2008b; Hennenfent et al., 2008b) solver,

which solves sparsity-promoting problems by solving a number of relaxed `1-norm

constrained least-squares problems. Since the descent directions apparently share

the same sparse support, we argue that for certain problems our modified Gauss-

Newton approach exhibits the same behavior for certain non-convex problems.

5.3.3 Solutions paths for undetermined non-convex problems with
multiple solutions

Many inverse problems in geophysics are nonlinear, and therefore, non-convex.

Unfortunately, FWI is no exception. For our stylized two-parameter problem this

means that the minima for the least-squares objective no longer lie on a straight

line, but instead, on an arbitrary curve. While it is still relatively straightfor-

ward to find a minimum, by using classical derivative-based optimization meth-

ods (Ruszczyński, 2006), finding the global minimum is far more difficult (Horst

et al., 2000), due to the existence of local minima. To make matters worse, im-

posing sparsity as prior information via `1-norm constraints, an approach we used

successfully to solve underdetermined convex problems, is also jeopardized since

it may no longer be likely that the `1-norm ball touches the least-squares objec-

tive at its corners, and therefore, it would no longer yield a sparse solution for the

update with respect to the starting model—i.e., the starting vector for the model

parameters.

To illustrate this phenomenon, we consider a nonlinear quadratic problem by
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Figure 5.2: Solution path of different methods for a linear problem that has
multiple solutions: (a) Algorithm 5; (b) Algorithm 5 with line 3 de-
fined by Equation 5.2 with wrong constraint (τ > τtrue); (c) same as
Figure 5.2b with wrong constraint (τ < τtrue) ; (d) same as Figure 5.2b
but with the right constraint (τ = τtrue); (e) Algorithm 6; (f) Algorithm 6
but with `2 constraint on the updates.
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setting F [m]
def
= (Am)T Am with ∇F [m] = (Am)T . In this formulation, the data

is no longer linear but quadratic in the model parameters. As we can see from

Figure 5.3, this problem yields non-unique minima for the least-squares objective

that lie on an ellipse (denoted by the white line) given by the following expression

4m2
1 +m2

2 = 4 for A =

[
2

1

]
and d = −4. As before, we conduct our experiments

comparing the different optimization formulations and plot the solutions paths for

the unconstrained (Figure 5.3a); constrained with a `1-norm constraint τ that is too

large (Figure 5.3b, τ > τtrue); correct (Figure 5.3c, τ = τtrue) or gradually relaxed

(Figure 5.3d) from a small τ to a large τ . In all cases (Figures 5.3a—5.3c), no

sparse solutions (denoted by the green dot) are found because of the curvature of

the ellipsoid delineating the minimum of least-squares objective for this quadratic

optimization problem. This example illustrates possible limitations of `1-norm

constraints when solving non-convex problems even in cases where the sparsity

level is known. This observation was also recently made in the literature (see Van

Den Doel et al., 2012).

However, this is not the end of the story as we can see when we closely inspect

the solution path yielded by the modified Gauss-Newton method with `1-norm con-

straints. In that case (Figure 5.3e), Algorithm 6 gives rise to descent directions that

continue to make progress towards the sparse minimum until the solutions of the

Gauss-Newton subproblems bend upwards to hit the least-squares objective. The

`1-norm constraints on the descent directions are responsible for this behavior be-

cause we do not observe the same behavior when we impose `2-norm constraints

instead (juxtapose Figure 5.3e and 5.3f). We explain the relative success of the

modified Gauss-Newton compared to imposing (the correct) `1-norm constraint on

the model (Figure 5.3c by virtue of the fact that the `1-norm balls for our modi-

fied Gauss-Newton method are smaller—because the `1-norm of the model updates

goes to zero as the algorithm converges to the minimum—and consequently this

method may be less sensitive to the curvature of the least-squares constraint (the el-

lipsoid in this case) as the solution approaches the minimum of the objective. Since

the problem permits a sparse solution (denoted by the green dot), this phenomenon

provides an explanation why the modified Gauss-Newton method finds descent

directions that are sparse while sharing approximately the same non zeros—i.e.,
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support. As a consequence of sharing the same support, we would expect sparse,

or at least relatively close to sparse, solutions that only become “dense” as we ap-

proach the minimum of the quadratic objective. This is, arguably, good enough

because in most instances we cannot afford enough iterations to bring us close to a

minimum due to the size and numerical complexity of geophysical problems.

Obviously, these results are encouraging for the following two reasons. First,

we proposed an algorithm that yields sparse solutions as long as the sparsified de-

scent directions have approximately the same support—i.e., have approximately

the same locations for the non-zeros. The question now is what type of prob-

lems exhibit this type of behavior. Second, the proposed modified Gauss-Newton

method seems to be less sensitive to the curvature (read conditioning of the Hes-

sian, Van Den Doel et al. (2012)) and does not require prior information on the

sparsity level. Before we apply the modified Gauss-Newton method to realistic

(blind) FWI problems, let us first examine its performance on a larger scale non-

linear problem.

5.3.4 Application to the “phase-retrieval” problem

With some intuition built from the stylized two-parameter convex and non-convex

problems of the previous section, we now study the performance of the modified

Gauss-Newton method on a more challenging non-convex underdetermined opti-

mization problem, referred to as the “phase retrieval” problem:

Phase : min
m

Φ(m) :=
{

1
2
‖d−diag(Am)(Am)‖2

2

}
,

where we choose A to be a slightly underdetermined 400× 512 random Gaus-

sian matrix. Given this choice for A, F [m]
def
= diag(Am)(Am) and ∇F [m] =

diag(Am)A our task is to recover the model parameters from data collected in

the vector d = F [mtrue]. For simplicity, we will assume the data to be noise free

and our goal is to recover the vector m̃ from the square of the entries yielded by

applying the slightly underdetermined system A to the true model vector.

While seemingly harmless, this type of non-convex optimization problem is

because of the nonlinearity of the forward operator F [m] notoriously difficult to
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Figure 5.3: Solution path of different methods for a nonlinear problem that
multiple solutions: (a) Algorithm 5; (b) Algorithm 5 with line 3 de-
fined by Equation 5.2 with wrong constraint (τ > τtrue); (c) same as
Figure 5.3b but with the right constraint; (d) same as Figure 5.3b but
with the gradually relaxed constraint; (e) Algorithm 6; (f) Algorithm 6
with `2 constraint on the updates.
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solve without prior knowledge on m. However, if we choose the model vector and

starting models in such as way that their difference is sparse (see Figure 5.4), e.g. by

choosing a smooth (background) model and sparse-spike model permutations, the

above optimization problem may become easier to solve with `1-norm constraints.

Figures 5.4b and 5.4c contain results of applying the unconstrained LS and

constrained formulations LS`1 to this “phase-retrieval” problem with a correct

starting model and a correct sparsity level for the spiky perturbations. From these

plots, it is clear that both formulations are not able to recover the sparse spike train

despite accurate knowledge on the starting model and sparsity level of the spiky

perturbations. The result for LS is noisy because of the random “crosstalk” gener-

ated by the Gaussian measurement matrix A. Adding a `1-norm constraint to the

least-squares objective removes this interference noise but yields the wrong sparse

solution. The modified Gauss-Newton method, on the other hand, is capable of

accurately resolving both the locations and magnitudes of the spikes.

The reason for the superior performance of the modified Gauss-Newton method

is twofold. First, the modified Gauss-Newton method exploits the sparse structure

of the perturbations. While this may seem unrealistic but as we will demonstrate

below this sparsity assumption is valid for FWI. Second, and more importantly,

the `1-norm constrained descent directions of the modified Gauss-Newton method

share a substantial fraction of their support from iteration to iteration, yielding a

solution that preserves the smooth component and accurately recovers the sparse

difference. We illustrate this behavior in Figure 5.5, where we plot the support

(locations of the non zeros) for the `1-norm constrained Gauss-Newton search di-

rections. Compared to the locations of the true spikes, plotted in red at the bottom

of Figure 5.5, the sparsity patterns of the Gauss-Newton descent direction remain

sparse with non-zero patterns that are coincident with the true support in red. This

observed behavior partly explains the successful recovery of the modified Gauss-

Newton method in a situation where the other two methods failed. As we can see

from Figure 5.4e promoting sparsity via the `1-norm again plays a crucial role be-

cause modified Gauss-Newton with `2-norm constraints fails. Also relaxing the

`1-norm constraint added to the `2-norm objective does not result in the correct

sparse solution (juxtapose Figures 5.4c and 5.4f).

Our observations are also confirmed by plots for the relative `2 norms for the
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Figure 5.4: Results for phase retrieval example from difference methods: (a)
true solution and initial guess; (b) solution of Algorithm 5; (c) solution
of Algorithm 5 with line 3 defined by Equation 5.2; (d) solution of Al-
gorithm 6; (e) solution of Algorithm 6 but with `2 constraint on the up-
dates; (f) same as Figure 5.4c but with gradually relaxed `1 constrained
objective function;

residuals and model errors as a function of the number of Gauss-Newton iterations

included in Figure 5.6. These plots clearly show that fitting the data with accurate

knowledge on the sparsity level by itself is not sufficient. While prior knowledge on

the sparsity level helps, progress to the true solution stalls for LS and LS`1 because

both algorithms get trapped in local minima. Conversely, the modified Gauss-

Newton method of Algorithm 6 continues to make progress towards the solution

bringing both the relative data residual and model errors down as Algorithm 6

progresses.
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Figure 5.6: Data misfit and relative model error for phase retrieval example:
(a) data misfit; (b) relative model error.

5.4 Application to FWI
In the previous section, we were able to demonstrate that under certain conditions,

the modified Gauss-Newton method can lead to accurate results. We will now

argue that this method can also perform well on FWI for which the method was

originally developed (Li et al., 2012). Before we apply this method to two realistic

synthetic examples, let us first briefly present the original randomized formulation

for the modified Gauss-Newton method, followed by a brief motivation why we

expect this approach to perform well given our findings so far.
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5.4.1 Randomized modified Gauss-Newton

FWI is extremely challenging for several reasons including the problem size and

sensitivity to cycle skipping. In earlier work (Li et al., 2012), we demonstrated that

the excessive demands on computational resources of multi-experiment FWI can

be overcome by working with small randomized subsets of the data (read small

numbers of randomized composite shots or randomly selected shots) during the

modified Gauss-Newton iterations. As we have shown in the past, working with

randomized subsets of shots and angular frequencies turns the now dimensionality-

reduced Gauss-Newton subproblems into underdetermined problems that give rise

to sub-sampling related artifacts as we already observed in Figure 5.4b.

In the FWI setting, we remove these sub-sampling related artifacts by pro-

moting curvelet-domain sparsity on the descent directions by solving for the kth

Gauss-Newton iteration the following `1-norm constrained optimization problem

(Li et al., 2012):

δmk = SH argmin
δx
‖δDk−∇F [mk,Qk]S

H
δx‖2

F subject to ‖δx‖`1 ≤ τk. (5.4)

In this expression, the optimization is carried out over the curvelet coefficients,

which are brought back to the physical domain via the inverse curvelet transform,

given by the adjoint, denoted by the symbol H , of the forward curvelet transform

S. At each iteration, the descent directions themselves are calculated over ran-

domly selected frequencies in overlapping windows for data residuals (for each

shot record in the columns) {δDk = D−F [mk,Qk]} and sources Qk that are also

randomly selected. We denote these randomly sub-sampled quantities by the un-

derbar. To accelerate the convergence, we select independent subsets for each

modified Gauss-Newton problem, which are only solved approximately. For com-

pleteness, we included this randomized modified Gauss-Newton method in Algo-

rithm 7. For a detailed description of this algorithm, we refer to the literature (Li

et al., 2012).

We now evaluate this algorithm on two different synthetic models, namely the

BG North Sea COMPASS model and the blind Chevron Gulf of Mexico (GOM)

model. Both models are generated with real geological information but reflect

completely different geological settings. The BG model was designed to evaluate
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FWI potential ability to resolve fine reservoir-scale variations in the rock proper-

ties, which would make it ideal for our modified Gauss-Newton method because

this model can be well approximated by only one percent of the largest curvelet

coefficients. Since we have access to the true model, this example will allow us to

quantitatively compare the different algorithms. The blind Gulf of Mexico exam-

ple, on the other hand, is much more challenging. It is very deep, well beyond the

penetration depth of turning waves from which FWI normally reaps its informa-

tion; it is noisy and contains challenging high-velocity salt bodies that are difficult

to delineate.

Output: Solution m̃ of the randomized modified Gauss-
Newton problem for starting model m0, tolerance ξ , and step length α .

1. m̃←−m0, and ξ // initial guess and expected
residual

2. while ‖δDk‖2 ≥ ξ do
4. τk = ‖δDk‖F/‖S∇F H[mk,Qk]δDk‖∞

5. Solve Equation 5.4
6. mk+1 = mk +αSHδxk // update with linesearch
7. end

Algorithm 7: Modified Gauss-Newton with curvelet-domain sparsity promotion
and randomization.

5.4.2 BG COMPASS model

The BG COMPASS model (Figure 5.7a) contains a large amount of variability

constrained by well data. We use this velocity model to generate synthetic data

by running a time-domain finite-difference code with a 15Hz Ricker wavelet. In

total, we simulated 350 shots with 20m shot intervals; all shots share the same 700

receiver positions with 10m receiver intervals, yielding a maximum offset of 7km.

All inversions based on our frequency-domain methods start from 5Hz with

a heavily smoothed velocity model without lateral variations (Figure 5.7b). To

avoid local minima, the inversions are carried out in 8 increasing sequential but

overlapping frequency bands on the interval 5− 15Hz (Bunks et al., 1995), each

using 20 different randomly selected simultaneous shots and 3 random selected

frequencies. We use 10 modified Gauss-Newton iterations (Equation 5.3) for each
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frequency band. For each modified Gauss-Newton subproblem, we use roughly 10

iterations of SPG`1 (van den Berg and Friedlander, 2008b). Figure 5.7 contains our

results for the inverted velocity by the different algorithms, namely unconstrained

LS is plotted in Figure 5.7c; constrained LS`1 with correct sparsity constraint level

as in Figure 5.7e and wrong sparsity constraint level as in Figure 5.7d; our modified

Gauss-Newton method is plotted in Figure 5.7f.

From these examples, the following observations can be made. First, without

sparsity-promoting constraints, the inversions fail to recover the velocity model

using a relatively small number of randomly selected shots and frequencies. Con-

sequently, we are able to significantly speedup the inversion, which is consistent

with our observations reported in the literature (Li et al., 2012). Second, imposing

sparsity as additional constraint for the least-square objective does not give a sat-

isfying inversion result, even when we use the correct `1-norm constraint. Again,

imposing `1-norm constraints on the updates yields the best results as plotted in

Figure 5.7f. As before, replacing the `1-norm constraint by a `2-norm constraint

leads to noisy and inferior results (Figure 5.7g). These observations are also re-

flected in the behavior of the relative data error (plotted in Figure 5.8a) where

the modified Gauss-Newton method is the most successful in bringing the relative

residual down. The behavior of the relative model errors (Figure 5.8b) paints an

even more drastic picture where all but the result from the modified Gauss-Newton

have relative model errors that are not only inferior but also diverge after a certain

number of iterations. While the iteration-to-iteration percentage of overlapping

curvelet coefficients decreases somewhat, more than 50 % of the support of the

curvelet coefficient overlap, explaining that the final result remains sparse in the

curvelet domain, as shown in Figure 5.9.

5.4.3 Blind Gulf of Mexico example

Aside from accelerating FWI, where each Gauss-Newton subproblem can be con-

sidered as a compressive-sensing type of recovery problem, the constrained updates

can also be considered as curvelet-domain “denoised” model updates. The “noise”

in this case refers to subsampling artifacts related to the acceleration and to un-

modeled components in the data. The latter include elastic (converted) energy but

89



lateral (m)

de
pt

h 
(m

)

 

 

0 1000 2000 3000 4000 5000 6000 7000

0

500

1000

1500

2000 1500

2000

2500

3000

3500

4000

4500

(a)
lateral (m)

de
pt

h 
(m

)

 

 

0 1000 2000 3000 4000 5000 6000 7000

0

500

1000

1500

2000 1500

2000

2500

3000

3500

4000

4500

(b)

lateral (m)

de
pt

h 
(m

)

 

 

0 1000 2000 3000 4000 5000 6000 7000

0

500

1000

1500

2000 1500

2000

2500

3000

3500

4000

4500

(c)
lateral (m)

de
pt

h 
(m

)
 

 

0 1000 2000 3000 4000 5000 6000 7000

0

500

1000

1500

2000 1500

2000

2500

3000

3500

4000

4500

(d)

lateral (m)

de
pt

h 
(m

)

 

 

0 1000 2000 3000 4000 5000 6000 7000

0

500

1000

1500

2000 1500

2000

2500

3000

3500

4000

4500

(e)
lateral (m)

de
pt

h 
(m

)

 

 

0 1000 2000 3000 4000 5000 6000 7000

0

500

1000

1500

2000 1500

2000

2500

3000

3500

4000

4500

(f)

lateral (m)

de
pt

h 
(m

)

 

 

0 1000 2000 3000 4000 5000 6000 7000

0

500

1000

1500

2000 1500

2000

2500

3000

3500

4000

4500

(g)

Figure 5.7: FWI result from BG COMPASS model data set: (a) true model
used to generate observed data; (b) starting model for FWI; (c) Gauss-
Newton result with unconstrained objective function; (d) Gauss-Newton
result with incorrect `1 constrained objective function; (τ < τtrue); (e)
same as Figure 5.7d but with correct `1 constrained objective function;
(τ = τtrue); (f) modified Gauss-Newton result with `1 constraint on the
updates; (g) same as Figure 5.7f but with `2 constraint on the updates.
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Figure 5.8: Data misfit and relative model error for BG model example: (a)
data fitting residual; (b) relative model error.
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Figure 5.9: Percentage of curvelet coefficients that are at the right support
positions.

also, to some extend reflection events that normally would have been muted during

the FWI workflow.

The results for different inversions, using the starting model plotted in Fig-

ure 5.10a, are included in Figure 5.10b for unconstrained Gauss-Newton; in Fig-

ure 5.10c for modified Gauss-Newton with `2; and in Figure 5.10d for modified

Gauss-Newton with `1. As described in (Herrmann et al., 2013), the starting

model was obtained by carrying out ray-based travel-time tomography yielding
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a root-mean-square traveltime misfit of only 11ms. To handle low-frequency noise

in the data, consisting of 3201 shots with a 25m shot interval, we performed

curvelt-domain denoising on selected monochromatic frequency slices (Kumar,

2009; Hennenfent and Herrmann, 2006b) on the interval 2-5Hz in the source-offset

domain. The receiver spacing was 25m and the maximal offset of this streamer data

set 20km.

In addition to the bad signal-to-noise ratio at the low frequencies, this data set

is extremely challenging because of the limited offset, presence of complex high-

velocity salt bodies, and large depth. As we can see from the inversion results,

this combination exposes certain shortcomings of FWI to recover the deeper por-

tions of the model, the top of the salt and complexity within the salt. Despite these

shortcomings, the inversion results in Figure 5.10 are important for the following

reasons. First, the results are obtained automatically without human intervention

by running Algorithm 7 for 25 iterations and using 600 randomly selected shots

for each MGN iteration. This means that these results are reproducible. Second,

the unmodeled “noise” leads to major artifacts if we do not impose constraints

on the Gauss-Newton updates as we can observe from Figure 5.10a. One the

other hand, imposing constraints on the norm of the curvelet coefficients of the

model updates improves the inversion results (Figure 5.10d). As before, promot-

ing curvelet-domain sparsity via the `1 performs the best. This can be understood

because this sparsity constraint acts as denoiser during which only the largest, and

therefore most significant, curvelet coefficients are allowed into the model updates.

This prevents overfitting of components that do not lie in the range of the forward

modeling operator. While it is clear that standard FWI is unable to handle this type

of data, comparison between the data misfit for the starting and final models shows

that certain phases in the data that were originally cycle skipper have a better fit as

we can see in Figure 5.11.

5.5 Conclusion
Full-waveform inversion is challenging due to the fact that it is computationally

expensive, and also, requires accurate starting models and modeling engines. Our

main contribution has been to demonstrate how to reduce computational cost while
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Figure 5.10: FWI result from Chevron Gulf of Mexico data set: (a) ray based
tomography starting model for FWI; (b) Gauss-Newton result with
unconstrained objective function; (c) inverted result with modified
Gauss-Newton with `2 constraint. (d) inverted result with modified
Gauss-Newton with `1 constraint.

being less sensitive to unmodeled components in the data, by considering each

Gauss-Newton subproblem as a compressive-sensing type of sparse recovery prob-

lem. Compared to conventional linear sparse inversion problems, full-waveform

inversion is significantly more challenging because it is nonlinear, and therefore,

it is not clear how sparsity promotion could benefit the inversion. By means of

carefully selected examples, we have attempted to classify under which conditions

sparsity constraints on the model updates improve the inversion results. We found

that for earth models that are sparse in the curvelet domain, improved inversion re-

sults can be obtained as long as the model updates are also sparse with locations of

significant coefficients persisting amongst the different model updates. We verified

this empirical observation on quadratic problems with sparse spikes and on two re-

alistic synthetic data sets for which we obtained improved results when imposing
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Figure 5.11: Sample shot comparison (black wiggle is one of the true observe
shot at 60km, while background is simulated shot record with initial
model or FWI result): (a) initial model shot record; (b) FWI result shot
record.

sparsity on the updates rather than on the model itself.

Our examples exhibited that nonlinear inversions with constraints on the model

itself, even when the one-norm of this model is known, do not necessarily lead to

accurate results. Ad hoc relaxation of the constraints helped, but still led to erro-

neous results; however, results from the modified Gauss-Newton method with one-

norm constraints greatly improved the results while relying on automatic choices

for the constraints for each model update. Empirical observations demonstrated

that sparse recovery techniques from the well-understood compressive-sensing frame-

work at least partially carry over to nonlinear full-waveform problems for earth

models and model updates that permit sparse representations in some transformed

domains. While the results on the blind Gulf of Mexico salt model leave room for

improvement, the proposed method at least demonstrates that promoting curvelet-

domain sparsity improves the results and reduces the reliance on labor intensive

data processing, parameter selections, and hand picking of the top and bottom of

the salt.
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Chapter 6

Conclusions

6.1 Seismic imaging
In the first of this thesis (chapter 2), we combined randomized dimensionally re-

duction and a curvelet-based sparsity-promoting promoting inversion algorithm

to create high-resolution images at a reduced computational cost while also mit-

igating subsampling related artifacts. Randomized dimensionality reduction saved

computation costs by replacing all the sources with subsets of randomly selected

sequential shots or simultaneous shots, requiring fewer wave-equation solves. This

process creates subsampling related artifacts, such as source-cross talk and non-

uniform illumination. We mitigated these subsampling related artifacts using sparsity-

promoting inversion, exploiting the structure of the imaging results in the curvelet

domain, which efficiently represents geological models. Our approach allowed us

to carry out seismic imaging with subsampled sources at the cost of approximately

one reverse-time migration with all the sources, obtaining significantly better re-

sults. We made our case by providing examples, as well as convergence rate and

model error, and performing a case study of the BG compass model dataset, gen-

erated from information of real well-log data.
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6.2 Full-waveform inversion
In the second portion of this thesis (chapter 3, chapter 4 and chapter 5), we intro-

duced a modified Gauss-Newton algorithm to solve the full-waveform inversion

problem. Again, we utilized the randomized dimensionality reduction technique

in order to avoid the high costs of computing the Gauss-Newton updates; we also

used sparsity-promoting inversion to mitigate the corresponding subsampling re-

lated artifacts. As a result, we discovered that we could compute the modified

Gauss-Newton updates at the approximate cost of one gradient direction with all

sources, and also, we found the final result provides a better resolution compared

to alternative methods without promoting sparsity on the updates. Finally, we dis-

covered our method has another advantage. The most intuitive way to regularize

the velocity model is the directly impose constraint upon the velocity model itself;

however, by utilizing the modified Gauss-Newton method, we have observed that

imposing constraint on the individual updates can also regularize the model. We

explored different situations in which the Gauss-Newton method can be applied by

using carefully selected examples, such as phase-retrieval problem, the BG com-

pass model and the Chevron Gulf of Mexico blind full-waveform inversion test.

6.3 Future extensions

6.3.1 Density variation

Including density in the full-waveform inversion or seismic imaging will increase

its accuracy because real data has contributions from density variations. To in-

vert for density, we can borrow ideas from joint-sparse recovery van den Berg

and Friedlander (2009); Miao (2014), which is designed to recover an unknown

sparse matrix from sets of compressed measurements. According to Gardner et al.

(1974), density and velocity models from the same area often share same struc-

tures, meaning both of them will share similar curvelet support, as shown in Fig-

ure 6.1. Figure 6.1a and Figure 6.1b show a synthetic BG Compass model, gener-

ated constrained by real well-log information. Figure 6.1c and Figure 6.1d show

the synthesis curvelet coefficients of Figure 6.1a and Figure 6.1b. We observed

from the experiment that about 93% non-zero coefficients overlap, allowing us to
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invert density and velocity together with joint-sparsity promotion.

Joint-sparse recovery: In (van den Berg and Friedlander, 2009), a multiple-

measurement-vector (MMV) problem can be formed as

minimize
X

‖X‖p,q subject to A (X) = b, (6.1)

where A is a sampling operator acting on the columns of the matrix X. The mea-

surement b is a vector. The `p,q norm of X is defined as ‖X‖p,q =(∑n
j=1 ‖X j,:‖p

q)1/p,

in which X j,: is jth row of X. According to van den Berg and Friedlander (2009),

joint sparsity via `1,2 norm can provide better recovery compared to sparsity pro-

motion on X organized as a long vector (this corresponds to the `1,1 norm), when

X has nonzero entries in a few rows (ie. X is row-sparse). To test the improved

recovery by joint sparsity promotion, we sample a sparse 512× 2 matrix X with

a sampling operator A , which contains two random 120× 512 Gaussian matri-

ces. There are only 20 non-zeros in each column of X; 16 non-zeros in these

two columns are at the same location. We generate the measurement vector b by

b = A (X)+ e, where e is a random noise vector. From the recovered results in

Figure 6.2, we can easily observe the advantage of joint-sparsity promotion when

X is row-sparse.

6.3.2 Time-domain approach

In order to produce accurate inversion results, we must select significant data along

the time axis. For example, full-waveform inversion is mostly driven by refraction

waves, containing long wavelength information which builds up background ve-

locity. Additionally, seismic imaging is mainly driven by the reflected wave, which

contains information of the reflectivity position. This cannot be easily done in the

frequency domain because we must simulate data of all frequencies which are com-

putationally intractable; however, in the time domain it is relatively easy to remove

irrelevant data. Figure 6.3 shows the actions of three different operator B and their

corresponding Gauss-Newton search directions. Figure 6.3a, Figure 6.3c and Fig-

ure 6.3e are full data, refraction data and reflection data, respectively. The Gauss-

Newton search direction of the refraction wave contains low-frequency background
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Figure 6.1: Curvelet domain sparsity. (a:) True velocity perturbation. (b:)
True density perturbation. (c:) Curvelet synthesis of a. (d:) Curvelet
synthesis of b.
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Figure 6.2: Joint-recovery from MMV. (a) First row of X. (b) Second row of
X.

velocity components; while the direction of the reflected waves contain more in-

formation of the reflector positions. By sequentially selecting and utilizing the

different data, we should be able to construct a correct background velocity model

before introducing accurate details to the solution.

6.3.3 Towards 3D

It is more expensive to solve 3D than 2D wave-equations. The seismic wave has to

propagate exponentially more grid points in the 3D model, meaning that the cost

will grow rapidly with its size. Additionally, exclusive to the frequency domain,

the 3D Helmholtz matrix has more off-diagonal entries than the 2D Helmholtz ma-

trix because of the differing wave-equation stencils. Therefore, the 3D Helmholtz

matrix is more dense, making it more expensive or even impossible to invert. This
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Figure 6.3: Gauss-Newton search directions. (a) full data residual. (b) direc-
tion from (a); (c): muted data residual (keeping refraction wave); (d)
direction from (c); (e): muted data residual (keeping reflection wave);
(f) direction from (e);
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creates a situation in which we can use the randomized dimensionality reduction

techniques proposed in this thesis to reduce costs even more significantly in the

3D than the 2D problems. Additionally, 3D geometry provides us more space to

subsample the data in two dimensions on the surface; therefore, dimensionality

reduction techniques could be more efficient for 3D problems than 2D problems.
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