Accelerating an Iterative Helmholtz Solver Using **Reconfigurable Hardware** Art Petrenko M.Sc. Defence, April 9, 2014 Seismic Laboratory for Imaging and Modelling Department of Earth, Ocean and Atmospheric Sciences, UBC

Oh by the way: I have a stutter.

Seismic Wave Simulation

Seismic Exploration for Oil and Gas

Full-waveform Inversion

Seismic Wavefield (u)

Earth model (m)

Full-waveform inversion is SLOW

The Accelerators Have Arrived

Germ

Top 10 of "Top 500" Supercomputers

	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
anal Super Computer Center Jangzhou a	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5- 2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
/SC/Oak Ridge National ratory ed States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
NNSA/LLNL ed States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
N Advanced Institute for putational Science (AICS) n	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
/SC/Argonne National ratory ed States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
s National Supercomputing re (CSCS) zerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect, NVIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325
s Advanced Computing er/Univ. of Texas ed States	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510
chungszentrum Juelich (FZJ) nany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	458,752	5,008.9	5,872.0	2,301
/NNSA/LLNL ed States	Vulcan - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	393,216	4,293.3	5,033.2	1,972
niz Rechenzentrum nany	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR IBM	147,456	2,897.0	3,185.1	3,423

FPGAs: Reconfigurable Hardware Accelerators

The Punchline

Modelling Seismic Waves Mathematical Formulation

Modelling Seismic Waves: The Wave Equation

Art Petrenko, M.Sc. defence

Seismic Source (right-hand side)

 \bigtriangleup

Wavefield (iterate)

Modelling Seismic Waves: Discretization [Operto, 2007]

Solving the Helmholtz System

The Kaczmarz Algorithm [Kaczmarz, 1937]

Art Petrenko, M.Sc. defence

Adapted from [van Leeuwen, 2012]

The Kaczmarz Algorithm: Equivalent to SSOR-NE [Björck and Elfving, 1979]

Double Kaczmarz sweep on the original system:

$A\mathbf{u} = \mathbf{q}$

Both are computed as: $\mathbf{u}_{k+1} = \mathbf{u}_k + \lambda(b_i - b_i)$

 $k: 1 \to 2N$ $i: 1 \to N, N \to 1$

One iteration of SSOR on the normal equations:

 $AA^*\mathbf{y} = \mathbf{q}$ $A^*\mathbf{y} = \mathbf{u}$

$$\langle \mathbf{a}_i, \mathbf{u}_k
angle) rac{\mathbf{a}_i^*}{\left\|\mathbf{a}_i
ight\|^2}$$

Kaczmarz + CG = CGMN [Björck & Elfving 1979]

CGMN: Solves for Fixed Point of Kaczmarz Row Projections

DKSWP $(A, \mathbf{u}, \mathbf{q}, \lambda) = Q_1 \cdots Q_N Q_N \cdots Q_1 \mathbf{u} + R\mathbf{q}$ = $Q\mathbf{u} + R\mathbf{q}$.

Assume u is a solution and re-arrange:

 $(I - Q)\mathbf{u} = R\mathbf{q}$

Contribution of This Work

Compute Node Overview [Maxeler Technologies, 2011]

Adapted from [Pell, 2013]

Art Petrenko, M.Sc. defence

Memory (LMem) 24 GB

Algorithm 1 CGMN (Björck and Elfving [4])
Input:
$$A$$
, \mathbf{u} , \mathbf{q} , λ
1: $R\mathbf{q} \leftarrow DKSWP(A, \mathbf{0}, \mathbf{q}, \lambda)$
2: $\mathbf{r} \leftarrow R\mathbf{q} - \mathbf{u} \leftarrow DKSWP(A, \mathbf{u}, \mathbf{0}, \lambda)$
3: $\mathbf{p} \leftarrow \mathbf{r}$
4: while $\|\mathbf{r}\|^2 > tol \, \mathbf{do}$
5: $\mathbf{s} \leftarrow (I - Q)\mathbf{p} = \mathbf{p} - DKSWP(A, \mathbf{p}, \mathbf{0}, \lambda)$
6: $\alpha \leftarrow \|\mathbf{r}\|^2 / \langle \mathbf{p}, \mathbf{s} \rangle$
7: $\mathbf{u} \leftarrow \mathbf{u} + \alpha \mathbf{p}$
8: $\mathbf{r} \leftarrow \mathbf{r} - \alpha \mathbf{s}$
9: $\beta \leftarrow \|\mathbf{r}\|^2_{curr} / \|\mathbf{r}\|^2_{prev}$
10: $\|\mathbf{r}\|^2_{prev} \leftarrow \|\mathbf{r}\|^2_{curr}$
11: $\mathbf{p} \leftarrow \mathbf{r} + \beta \mathbf{p}$
12: end while
Output: \mathbf{u}

Design at high level of abstraction

222	((x[2]*R[24] + x[1]*R[25]) +
223	x[0]*R[26]));
224	<pre>DFEVar relaxationFactor = io.scalarInput("relaxationFactor", kaczmarz</pre>
225	DFEComplex kaczmarz_numerator = computation_stage ? relaxationFactor*
226	<pre>DFEComplex[] R_conj = new DFEComplex[kaczmarzEngineCode.KaczmarzManage</pre>
227	<pre>for(int j=0; j<kaczmarzenginecode.kaczmarzmanager.array_size; j++){<="" pre=""></kaczmarzenginecode.kaczmarzmanager.array_size;></pre>
228	<pre>R_conj[j] = kaczmarzEngineCode.KaczmarzWriteLMemKernel.ComplexTru</pre>
229	<pre>R_conj[j].setReal(R[j].getReal());</pre>
230	R_conj[j].setImaginary(-R[j].getImaginary());
231	}
232	DFEComplex[] R_scaled = new DFEComplex[kaczmarzEngineCode.KaczmarzMana
233	for(int j=0; j <kaczmarzenginecode.kaczmarzmanager.array_size; j++){<="" th=""></kaczmarzenginecode.kaczmarzmanager.array_size;>
234	R_scaled[j] = kaczmarzEngineCode.KaczmarzWriteLMemKernel.ComplexT
235	R_scaled[j] = kaczmarz_numerator*R_conj[j];
236	}
237	//DFEComplex[] x_updated = new DFEComplex[kaczmarzEngineCode.KaczmarzI
238	for(int j=0; j <kaczmarzenginecode.kaczmarzmanager.array_size; j++){<="" th=""></kaczmarzenginecode.kaczmarzmanager.array_size;>
239	<pre>x_updated[j] <== x[j] + R_scaled[j];</pre>
240	}

```
kaczmarzEngineCode.KaczmarzWriteLMemKernel.TruncatedFloatingPoint);
ionFactor*(b - dot_product) : 0;
marzManager.array_size];
e; j++){
ComplexTruncatedFloatingPoint.newInstance(this);
```

aczmarzManager.array_size]; e; j++){ L.ComplexTruncatedFloatingPoint.newInstance(**this**);

```
e.KaczmarzManager.array_size];
e; j++){
```

21

Implementation Details

Layout of 3D Wavefields in 1D Memory

3D layout

Linear layout (for $5 \ge 5 \ge 5$ system)

19	24	29
4	25	30
5	26	31
6		

23

Buffering: Overcoming Latency of Memory Access

Memory (24 GB)

Pipelining: Overcoming Latency of Computation

Pipelining: Overcoming Latency of Computation

Pipelining: Overcoming Latency of Computation

Memory Access: 384 bytes / burst

Number of bits in a real	Number of bits in a	Complex numbers
number	complex number	per burst
24	48	64
32 (single precision)	64	48
48	96	32
64 (double precision)	128	24

Backward Sweep: Double Buffering

First 48 ticks

burst i-1

WRITE -

Second 48 ticks

burst i-1

READ	

Art Petrenko, M.Sc. defence

burst i

READ-

burst i-2

WRITE -

Number Representation

Results

End-to-end Execution Time

32

Kaczmarz Sweeps: No Longer the Bottleneck

Reference Implementation

other CGMN operations (inner products, vector addition, etc.)

Art Petrenko, M.Sc. defence

Kaczmarz sweeps

Effect of matrix row ordering on CGMN convergence

Art Petrenko, M.Sc. defence

"Accelerator ordering"

34

FPGA Resource Usage

Recent Work: Multiple Kaczmarz Sweeps / CGMN Iteration (432 x 240 x 25 system)

Number of double Kaczmarz sweeps / CGMN iteration

Number of double Kaczmarz sweeps / CGMN iteration

The Next Step

for larger systems.

Art Petrenko, M.Sc. defence

Problem: On-chip memory (4 MB) limits block size to 300 x 300 in the two faster dimensions. Solution: Implement domain decomposition

Straight-forward Extension

once.

Art Petrenko, M.Sc. defence

Goal: Systematically use all 4 accelerators. **Solution:** Solve several forward problems at

Future Work

only approximately 10% of CGMN time. Solution: Port all of CGMN to the DFE.

Art Petrenko, M.Sc. defence

Problem: Kaczmarz sweeps now account for

Future Work

Fact: Reading A from memory limits Result: Read only earth model ${\bf m}$ and generate A on the DFE.

Art Petrenko, M.Sc. defence

optimizations like increasing FPGA frequency.

Future Work

24 GB. **Solution: Parallelize** CGMN to CARP-CG [Gordon & Gordon, 2010].

Art Petrenko, M.Sc. defence

Problem: Domain size limited by memory size:

Conclusion

from a dataflow computing paradigm.

Art Petrenko, M.Sc. defence

Have implemented frequency-domain wave simulation using reconfigurable hardware. A speed-up of 2 x 1 Intel Xeon core results

Acknowledgements

Thank you to:

SLIM group!

This work was financially supported in part by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (RGPIN 261641-06) and the Collaborative Research and Development Grant DNOISE II (CDRP J 375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, Chevron, ConocoPhillips, CGG, ION GXT, Petrobras, PGS, Statoil, Total SA, WesternGeco, Woodside.

• Felix Herrmann, Henryk Modzelewski, Diego Oriato, Simon Tilbury, Tristan van Leeuwen, Eddie Hung, Lina Miao, Rafael Lago, my Master's commitee members: Michael Friedlander, Christian Schoof, my external examiner: Steve Wilton, Maxeler Technologies, and everyone in the

References

Å. Björck and T. Elfving. Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations. BIT Numerical Mathematics, 19(2):145–163, 1979. ISSN 0006-3835. doi: 10.1007/BF01930845. URL http://dx.doi.org/10.1007/BF01930845.

D. Gordon and R. Gordon. Component-averaged row projections: A robust, block-parallel scheme for sparse linear systems. SIAM Journal on Scientific Computing, 27(3):1092–1117, 2005. doi: 10.1137/040609458. URL http://epubs.siam.org/doi/abs/10.1137/040609458.

D. Gordon and R. Gordon. CARP-CG: A robust and efficient parallel solver for linear systems, applied to strongly convection dominated PDEs. Parallel Computing, 36(9): 495–515, 2010. ISSN 0167-8191. doi: 10.1016/j.parco.2010.05.004. URL http://www.sciencedirect.com/science/article/pii/S0167819110000827.

F. Grüll, M. Kunz, M. Hausmann, and U. Kebschull. An implementation of 3D electron tomography on FPGAs. In Reconfigurable Computing and FPGAs (ReConFig), 2012 International Conference on, pages 1–5, 2012. doi: 10.1109/ReConFig.2012.6416732.

S. Kaczmarz. Angenäherte auflösung von systemen linearer gleichungen. Bulletin International de l'Academie Polonaise des Sciences et des Lettres, 35:355–357, 1937.

S. Kaczmarz. Approximate solution of systems of linear equations. International Journal of Control, 57(6):1269–1271, 1993. doi: 10.1080/00207179308934446. (translation)

T. van Leeuwen, D. Gordon, R. Gordon, and F. J. Herrmann. Preconditioning the Helmholtz equation via row-projections. In EAGE technical program. EAGE, 2012. URL https://www.slim.eos.ubc.ca/Publications/Public/Conferences/EAGE/2012/vanleeuwen2012EAGEcarpcg/vanleeuwen2012EAGEcarpcg.pdf.

H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon. Top 500 supercomputer sites, November 2013. URL <u>https://www.top500.org</u>.

S. Operto, J. Virieux, P. Amestoy, J.-Y. L'Excellent, L. Giraud, and H. B. H. Ali. 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study. Geophysics, 72(5):SM195–SM211, 2007. doi: 10.1190/1.2759835. URL http://geophysics.geoscienceworld.org/content/72/5/SM195-SM211, 2007. doi: 10.1190/1.2759835. URL http://geophysics.geoscienceworld.org/content/72/5/SM195-SM211, 2007. doi: 10.1190/1.2759835. URL http://geophysics.geoscienceworld.org/content/72/5/SM195-SM211, 2007. doi: 10.1190/1.2759835. URL http://geophysics.geoscienceworld.org/content/72/5/SM195-SM211, 2007. doi: 10.1190/1.2759835. URL http://geophysics.geoscienceworld.org/content/72/5/SM195-SM211, 2007. doi: 10.1190/1.2759835. URL http://geophysics.geoscienceworld.org/content/72/5/

O. Pell, J. Bower, R. Dimond, O. Mencer, and M. J. Flynn. Finite-difference wave propagation modeling on special-purpose dataflow machines. Parallel and Distributed Systems, IEEE Transactions on, 24(5):906–915, 2013. ISSN 1045-9219. doi: 10.1109/TPDS.2012.198.

