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Seismic Wave Simulation
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Seismic Exploration
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Full-waveform Inversion
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Full-waveform inversion is
SLOW
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FPGAs: Reconfigurable Hardware Accelerators



Art Petrenko, M.Sc. defence

The Punchline
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Modelling Seismic Waves 
Mathematical Formulation
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Modelling Seismic Waves: The Wave Equation
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work of Gockenbach et al. [15].
The second factor to consider when choosing between time domain and frequency domain

methods is computational expense. In the time domain computational complexity is well defined
by the number of time-steps simulated, and is O(nsrcN), where N is the total number of grid-
points in the three-dimensional discretized earth model m. This has been shown by Plessix
[47]; see also Table 1 in the work of Knibbe et al. [30]. However in the frequency domain
formulation, there are two di�erent ways to solve the associated system of linear equations:
with a direct or an iterative solver. Direct solvers are theoretically well-suited to problems with
a large number of sources, however they use a prohibitively large amount of memory for storing
intermediate factors of the matrix that are not as sparse as the original matrix. This limits their
use on large 3D FWI problems. Iterative solvers only need storage for the original matrix and
a few intermediate vectors, however they typically need a preconditioner to be e�ective. When
comparing execution time for the time domain approach and the frequency domain approach
using an iterative solver, Plessix [48] concludes that both approaches have approximately the
same performance in terms of execution time requirements for 3D problems. Finally, Virieux
and Operto [62] recommend a hybrid method due to Sirgue et al. [51]: model in time domain
but progressively build up the Fourier transform of the wavefield so that when the modelling
step is complete, full-waveform inversion can be performed in the frequency domain.

In this work I formulate the forward modelling problem in the frequency domain.

2.1 The Helmholtz system: Discretizing the wave equation
When simulating waves in the frequency domain, the PDE that describes the motion of the
wave through a heterogeneous medium can be written as

1
Ê

2m + �
2

u = q, (2.1)

and is known as the Helmholtz equation. As written above, the Helmholtz equation represents
the special case of a constant density isotropic medium which only supports acoustic waves.
Damping e�ects of viscosity are modelled heuristically by allowing m to be complex-valued. I
ignore the case of elastic and anisotropic media to keep the resulting implementation relatively
simple. The symbol � represents the Laplacian operator. I take the subsurface earth model
to be the slowness squared, m = 1/v2, where v is the sound speed of the medium. u is the
(complex) Fourier transform of the pressure with respect to time, and q is the amplitude of the
source at angular frequency Ê. The Laplacian operator here also implements perfectly matched
layer (PML) boundary conditions that eliminate reflection artefacts from the boundaries of the
domain by setting a damping layer consisting of complex velocities. (See Equation (2) in the
work by Operto et al. [42].) In the frequency domain, Equation 2.1 must be solved for each
frequency Ê that is to contribute to the final wavefield us for a given source.

When m, u and q represent quantities that have been discretized on a three-dimensional
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Modelling Seismic Waves: Discretization
[Operto, 2007]

12

  

Cartesian grid with N grid-points, Equation 2.1 can be represented as a large system of linear
equations and succinctly written in matrix notation,

A(m, Ê)u = q (2.2)

where A is the N ◊ N Helmholtz matrix. The elements of A are calculated by the method of
finite di�erences, following the strategy of Operto et al. [42], which consists of two main parts.
First, the Laplacian operator is discretized using a 3 ◊ 3 ◊ 3 cube stencil. This 27-point stencil
is a weighted average of eight di�erent second-order 7-point star stencils, each on their own
coordinate grid. The coordinate grids are rotated and scaled versions of the original Cartesian
grid. The grids are designed in such a way that even though their axes are not parallel to each
other, the grid-point locations of all eight grids coincide. This allows the cube stencil to use
all 27 points in the three-dimensional neighbourhood of a given central point. The weighting
coe�cients are tuned to minimize numerical anisotropy, as described by Operto et al. [42].

Second, the value of the earth model m at each grid-point is re-distributed to the 27 neigh-
bouring points that make up the cube stencil for that point, a process known as mass-averaging.
Mass-averaging is done using a second set of weighting coe�cients, and results in a matrix with
the same pattern of non-zero entries as the discretized Laplacian. By choosing optimal values
for the mass-averaging coe�cients, Operto et al. [42] showed that numerical dispersion of the
stencil is minimized, which enhances (by a constant factor) the stencil’s accuracy. This allows
to use as little as 4 grid-points per wavelength [42], although 6 grid points per wavelength are
used in this work. The need for accuracy by using finer grid spacings (more grid-points per
wavelength) must be balanced against the computational expense of simulating on a larger grid.
As noted by Operto et al. [42], 4 grid-points per wavelength is the limit at which the modelling
step is accurate, without modelling wavefield features that are in any case too small to be of
use to full-waveform inversion in resolving the earth model. A further advantage of the stencil
introduced by Operto et al. [42] is that it is compact. A stencil with a large extent in the
last dimension (for example as in 5-point star stencil) implies that more intervening grid-points
need to be bu�ered in short-term memory (see Section 3.3 for details).

The mass matrix and the discretized Laplacian are added together to make the Helmholtz
matrix A, which is very sparse: while N is at least 107 for a realistic model, the number of
non-zeros per row, determined by the finite di�erence stencil, is at most only 27. A is also
very structured: its non-zeros are arranged in 27 diagonals. This means that the locations of
the non-zero elements, taken together, of each matrix row, do not repeat. In other words, the
support of each matrix row is unique (although the support of rows that correspond to grid
points adjacent to the edge of the grid is a subset of the support of the rows that correspond
to adjacent points). These special properties mean that the rows of the Helmholtz matrix are
linearly independent and hence theoretically (disregarding round-o� errors) A is invertible.
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Solving the Helmholtz System
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The Kaczmarz Algorithm 
[Kaczmarz, 1937]
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Adapted	  from	  [van	  Leeuwen,	  2012]

2.4 Preconditioning conjugate gradients: The CGMN
algorithm

Despite the advantages mentioned in the last section, the Kaczmarz algorithm (SSOR-NE)
converges slowly, thus it is not suitable for direct application to the Helmholtz system (Equa-
tion 2.2). Instead, Björck and Elfving [4] showed that it can be used to accelerate the method
of conjugate gradients, calling the resulting algorithm CGMN. Recent studies of how CGMN
fares in solving the Helmholtz equation include work by van Leeuwen [57] and Gordon and
Gordon [18]. In the latter case, CGMN is equivalent to the sequential (non-parallel, running
on only one processor core) version of the algorithm CARP-CG, introduced by Gordon and
Gordon [17]. I now describe the CGMN algorithm.

First, it is useful to represent the Kaczmarz sweeps in matrix notation. Following Tanabe
[55], let Qi be the projection matrix onto the hyperplane defined by Èai, xÍ = 0:

Qi = I ≠ ⁄

ÎaiÎ2 aú
i ai.

The double sweep can then be written as

DKSWP(A, u, q, ⁄) = Q1 · · · QN QN · · · Q1u + Rq

= Qu + Rq.

(2.5)

Since A is invertible, SSOR-NE will converge to the solution of Equation 2.2, as mentioned by
Björck and Elfving [4]. At that point, the iterate u will be a fixed point of the relation 2.4,
which means that Equation 2.5 can be re-written as a linear system:

(I ≠ Q)u = Rq, (2.6)

where I is the identity matrix. As mentioned by Björck and Elfving [4] and proved by, for
example, Gordon and Gordon [17], the system in Equation 2.6 is consistent, symmetric and
positive semi-definite. Björck and Elfving [4] show in their Lemma 5.1 that this is su�cient
for CG to converge to the pseudoinverse (minimum ¸2-norm) solution of Equation 2.6, which is
the same as the solution of the original system (Equation 2.2). Note that the matrices Q and
R do not have to be formed explicitly, as their action on a vector is calculated using a double
Kaczmarz sweep, as in Equation 2.5.

Thus, CGMN is the use of the method of conjugate gradients to solve the SSOR-NE iteration
system (Equation 2.6) for the fixed point of that iteration. SSOR-NE is implemented e�ciently
using Kaczmarz row projections. Björck and Elfving [4] also note that it is possible to view
CGMN as solving a variant of the Helmholtz system (Equation 2.2), preconditioned from the
left by a matrix derived from a decomposition of AA

ú.
Pseudo-code for the CGMN algorithm is given below. Note that the double Kaczmarz sweep

on line 1 of the algorithm is performed with an initial guess of zero because only the action
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The Kaczmarz Algorithm: Equivalent to SSOR-NE
[Björck and Elfving, 1979]
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Double Kaczmarz sweep
on the original system:          

One iteration of SSOR on 
the normal equations:

AA⇤y = q

A⇤y = u

uk+1 = uk + �(bi � hai,uki)
a⇤i

kaik2

Au = q

k :1 ! 2N

i :1 ! N,N ! 1

Both are computed as:
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Kaczmarz + CG = CGMN 
[Björck & Elfving 1979]
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CGMN: Solves for Fixed Point of Kaczmarz Row 
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Adapted	  from	  [Pell,	  2013]

Compute Node Overview
[Maxeler Technologies, 2011]
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of R is required. Similarly, the double sweep on line 2 is done with a right hand side of zero
because only the action of Q is required. Also note that although u was used as the Kaczmarz
iterate in deriving the equivalent system (Equation 2.6), the double sweep in the main while
loop of CGMN (line 5 of the algorithm) is performed on the CGMN search direction p, and not
on the wavefield. The double sweep would only be performed on the wavefield if the Kaczmarz
algorithm were used to solve the Helmholtz system directly, which is not being done. This double
sweep is equivalent to the matrix-vector product with the system matrix of Equation 2.6 that
would otherwise be required. References to the Kaczmarz iterate indicate intermediate vectors
in the calculation of s, in contrast to the CG iterate, which is the wavefield u.

Algorithm 1 CGMN (Björck and Elfving [4])
Input: A, u, q, ⁄

1: Rq Ω DKSWP(A, 0, q, ⁄)
2: r Ω Rq ≠ u + DKSWP(A, u, 0, ⁄)
3: p Ω r
4: while ÎrÎ2

> tol do
5: s Ω (I ≠ Q)p = p ≠ DKSWP(A, p, 0, ⁄)
6: – Ω ÎrÎ2

/ Èp, sÍ
7: u Ω u + –p
8: r Ω r ≠ –s
9: — Ω ÎrÎ2

curr / ÎrÎ2
prev

10: ÎrÎ2
prev Ω ÎrÎ2

curr
11: p Ω r + —p
12: end while
Output: u

I remark that it is possible to perform more than one double Kaczmarz sweep, one after
the other, in CGMN (line 5 of Algorithm 1). If the Kaczmarz sweeps are viewed as a precondi-
tioner for CG, as mentioned above, multiple sweeps correspond to a more exact preconditioner.
Fewer outer CGMN iterations would have to be performed, at the cost of several invocations
of DKSWP in the main while loop. Because the Kaczmarz algorithm takes more sweeps to
converge to a solution than CG takes iterations, such a trade-o� might be viewed as exchanging
a precise tool for a less precise one, and hence undesirable. However as I show in Section 4.1,
the characteristics of the Kaczmarz algorithm as implemented on an FPGA-based accelerator
might encourage such an adjustment.

In this chapter I have described the mathematical formulation of the approach I take to
solving the seismic wave simulation problem. The reader will recall that this problem is relevant
because of the role it plays in full-waveform inversion, a key algorithm in seismic exploration.
The next chapter will focus on a description of the implementation of this problem to an
FPGA-based hardware accelerator.

11

Kernel:	  running	  on
accelerator



Art Petrenko, M.Sc. defence 20

Low levels of abstraction are scary
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Design at high level of abstraction
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Implementation Details
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Layout of 3D Wavefields in 1D Memory
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Buffering: Overcoming Latency of Memory Access
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Pipelining: Overcoming Latency of Computation
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Pipelining: Overcoming Latency of Computation
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Pipelining: Overcoming Latency of Computation
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Memory Access: 384 bytes / burst
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Figure 3.2: Matrix row storage e�ciency as a function of the number of bits used to
represent the real and imaginary parts of each matrix element. This figure assumes
27 elements are stored per row. Note that the three e�ciency “modes” use di�erent
amounts of storage for one row: half a burst, a full burst (384 bytes) and two bursts,
respectively. Single precision (32 bit real numbers, resulting in one burst per row)
is used in this work.

Number of bits in a real
number

Number of bits in a
complex number

Complex numbers
per burst

24 48 64
32 (single precision) 64 48
48 96 32
64 (double precision) 128 24

Table 3.1: Possible bitwidths for complex elements of the Kaczmarz iterate and right-
hand side vectors. Bitwidths are constrained by needing to be an integer fraction of
the FPGA memory controller’s burst size. Single precision is used in this work.

only for the computation. This adds an extra level of complexity to the development and has
not yet been attempted by the author.

The Kaczmarz algorithm also requires one complex element from the iterate and right-hand
side vectors at every clock tick, which means that the vector elements must be an integer fraction
of the burst size. Possible options for the bitwidth of the vector element datatype are shown in
Table 3.1. As a compromise between the need for an adequately precise number representation
and a design that fits onto the FPGA, I settle on 32 bits for a real number. Although it is not
necessary to store the invidiual non-zero elements of a row at the same precision as the elements
of the iterate and right-hand side vectors, this is being done in the current implementation for
simplicity. I note that this is not optimal in terms of matrix storage e�ciency.
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Backward Sweep: Double Buffering
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Number Representation
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32	  bits	  used	  in	  this	  work
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End-to-end Execution Time
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Kaczmarz Sweeps: No Longer the Bottleneck

33







Kaczmarz	  sweeps

other	  CGMN	  operations
(inner	  products,	  vector	  addition,	  etc.)



Art Petrenko, M.Sc. defence

Effect of matrix row ordering on CGMN 
convergence
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FPGA Resource Usage
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Recent Work: Multiple Kaczmarz Sweeps / CGMN Iteration
(432 x 240 x 25 system)
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Avoiding Future Communication Bottlenecks
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The Next Step

Problem: On-chip memory (4 MB) limits block 
size to 300 x 300 in the two faster dimensions.
Solution: Implement domain decomposition 
for larger systems.
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Straight-forward Extension

Goal: Systematically use all 4 accelerators.
Solution: Solve several forward problems at 
once.
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Future Work

Problem: Kaczmarz sweeps now account for 
only approximately 10% of CGMN time.
Solution: Port all of CGMN to the DFE.
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Future Work

Fact: Reading A from memory limits 
optimizations like increasing FPGA frequency.
Result: Read only earth model m and 
generate A on the DFE.
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Future Work

Problem: Domain size limited by memory size: 
24 GB.
Solution: Parallelize CGMN to CARP-CG 
[Gordon & Gordon, 2010]. 
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Conclusion

Have implemented frequency-domain wave 
simulation using reconfigurable hardware.
A speed-up of 2 x 1 Intel Xeon core results 
from a dataflow computing paradigm.
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