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Abstract

The primary focus of most reflection seismic surveys is to help locate
hydro-carbon recourses. Due to an ever increasing scarcity of these re-
courses, we must increase the size and quality of our seismic surveys. How-
ever, processing such large seismic data volumes to accurately recover earth
properties is a painstaking and computationally intensive process.

Due to the way reflection seismic surveys are conducted there are often
holes in the collected data, where traces are not recorded. This can be due
to physical or cost constraints. For some of the initial stages of process-
ing these missing traces are of little consequence. However processes like
multiple prediction and removal, interferometric ground roll prediction, and
migration require densely sampled data on a regular grid. Thus the need to
interpolate undersampled data cannot be ignored.

Using the fact that reflection seismic data sets obey a reciprocal relation-
ship in source and receiver locations, combined with recent advances in the
field of compressed sensing, we show that properly regularized the wavefield
reconstruction problem can be solved with a high degree of accuracy. We
exploit the compressible nature of seismic data in the curvelet domain to
solve regularized `1 recovery problems that seek to match the measured data
and enforce the above mentioned reciprocity.

Using our method we were able to achieve results with a 20.45 dB sig-
nal to noise ratio when reconstructing a marine data set that had 50% of
its traces decimated. This is a 13.44 dB improvement over using the same
method run without taking reciprocity into account.
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Preface

This thesis was prepared with Madagascar, a reproducible research soft-
ware package available at www.ahay.org.

A large amount of code was developed in the Seismic Laboratory for
Imaging and Modeling (SLIM). The numerical algorithms and applications
are mainly written in Matlab. Early experiments were conducted using
SLIMpy (slim.eos.ubc.ca/SLIMpy) a Python interface that exploits func-
tionalities of seismic data processing packages, such as MADAGASCAR,
through operator overloading. The main work was done using the SPOT
and SPGL1 matlab packages developed by Dr. M.P. Friedlander and E.W.
Van den Berg at UBC.
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Chapter 1

Introduction

Hydrocarbon resources are becoming increasingly scarce. The scarcity of
these valuable resources has led to the drilling of reservoirs at greater depths
than previously explored. Extracting oil and gas from reservoirs at such
great depths requires high resolution images of the subsurface. However
imaging the subsurface at these depths requires large volumes of high qual-
ity seismic data. Unfortunately it is possible to spend millions of dollars on
a seismic survey, and several months on processing the data without obtain-
ing an accurate model of the subsurface, either through a lack of resolution
due to not acquiring enough data, or the presence of noise.

Many seismic data processing steps, such as migration, require densely
sampled data on a regular grid. Some processes can require data that is
sampled above the Shannon-Nyquist sampling rate. Conducting reflection
seismic surveys is an expansive and labour intensive process. Billions of dol-
lars are spent every year on seismic exploration projects. However even with
such large expenditures, and intense effort, it is often not feasible to collect
all of the information necessary to accurately image the subsurface. Due
to monetary and geographic constraints surveys are often conducted with
fewer sources and or receivers than required, and the placement of sources
and receivers can be imprecise. This creates a situation where it is necessary
to reconstruct the measured wavefield on a regular grid, interpolating the
missing traces. Figure 1.1 shows a example of the type of under sampled
shot records typically acquired in the field and a fully sampled wavefield
required by other data processing techniques.

The distribution of missing shots —i.e. the size and location of gaps in
the shot record greatly affects the accuracy of the reconstruction processes.
It has been shown that careful survey design can give a more accurate recon-
struction from the same amount of input data (Hennenfent and Herrmann,
2008).

Currently there exist many methods of reconstructing undersampled
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Chapter 1. Introduction

seismic wavefields (Abma and Kabir, 2006; Naghizadeh and Sacchi, 2009;
Sacchi et al., 1998; Schonewille, 2000; Zwartjes, 2005; Trickett et al., 2010;
Cary, 2011; Hollander et al., 2012; Stanton and Sacchi, 2011; Naghizadeh,
2012). Among these there are several methods which use the compressible
nature of seismic wavefields in a transform domain and the emerging field
of compressed sensing to accurately reconstruct the missing traces. We will
examine one such method, and seek to improve upon it (Herrmann and Hen-
nenfent, 2007; Hennenfent et al., 2010; Liu et al., 2012).

The propagation of seismic wavefields in the earth’s interior is governed
by the elastic wave equation. This equation obeys a reciprocal relationship
between source and receiver locations (Knopoff and Gangi, 1959). Source re-
ceiver reciprocal relationships in wave equations have previously been used in
geophysics, in processing electromagnetic data, surface consistent deconvo-
lution, migrating ocean bottom node data, and interferometry (Chan et al.,
2005; van Vossen et al., 2006b; Alerini et al., 2009; Halliday and Curtis,
2010). There exists an opportunity to use source receiver reciprocity to aid
in solving the wavefield reconstruction problem. We investigate two differ-
ent methods of doing this. First, we regulate the inversion problem with
a penalty term that enforces reciprocity in the processed data. Second, we
restrict our solution to obey reciprocity explicitly. Both methods could be
adapted to work with many of the interpolation algorithms cited above,
however we adapt the previously mentioned sparsity promoting methods of
processing seismic data to enforce reciprocity (Hennenfent and Herrmann,
2008). In the following chapters we show how these additions lead to a
higher quality output of the inversion algorithm.

In our sparsity promoting interpolation scheme we use a combination of a
2D curvelet transform along source/receiver location directions and wavelets
along the time axis to sparsely represent seismic data (Candes et al., 2005).
With the seismic wavefield transformed to the curvelet domain we attempt
to solve an `1 constrained regularization problem. A recent focus on such
sparse signal recovery problems, has led to the development of many al-
gorithms to solve them. The algorithm we choose to employ is known as
SPG`1 (Berg and Friedlander, 2007).

Previous work has shown that seismic data processing problems are ami-
able to being solved by this approach and that they can lead to accurate
inversion results (Hennenfent, 2008; Herrmann et al., 2007; Lin and Her-
rmann, 2009). These methods are an application of the emerging field of
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Chapter 1. Introduction

compressed sensing (Candes, 2006).

Chapter 2 gives a more thorough explanation of the theory behind our
method. In chapter 3 we examine the problem of wavefield reconstruction
and show how our contributions affect the quality of the reconstructed wave-
field. Figure 1.2 gives an example of this. Figure 1.2 a), is the data recon-
structed from two fold regular undersampling with out taking into account
reciprocity, figure 1.2 b) ias the same decimated wavefield reconstructed us-
ing the same algorithm modified to take reciprocity into account. As the
figure shows, using reciprocity leads to a more accurate reconstruction of
the undersampled data.

3
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(a)

(b)

Figure 1.1: Example showing a) the full data b) the same data undersampled
by a factor of 1

2
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(a)

(b)

Figure 1.2: Reconstruction of the decimated data in 1.1 b, here a) is the
data reconstructed without accounting for reciprocity, and b) is the data
reconstructed using reciprocity 5



Chapter 2

Theory

We seek to improve the interpolation of undersampled seismic data onto a
regular grid. This problem requires the inversion of large systems of equa-
tions containing millions of variables, even for relatively small surveys. The
accurate solution of such large and possibly under determined problems
requires they be regularized. By this we mean the solution is forced to con-
tain a priori knowledge. We seek to do this in two ways. First we use the
emerging theory of compressed sensing to cast the problem as an sparsity
promoting optimization problem (CS- Candes, 2006). Secondly we apply our
knowledge of physics to force the recovered wavefields to obey the physical
principle of reciprocity (Knopoff and Gangi, 1959).

2.1 Principles of Compressive sensing

In noisy `1 optimization problems we seek to invert a operator A that acts
on an unknown model vector x, to give the measured data b. In compressed
sensing problems the operator A maps the larger model vector x to the
much smaller data space b. We formulate the solution of this problem as

x̃ = arg min
x

‖x‖1 subject to ‖b−Ax‖ ≤ σ. (2.1)

The parameter σ is related to the energy, of the noise present in b —i.e.
‖n‖ if b = b0 + n. The `1 norm in which we seek to minimize x is defined
as ‖x‖1 =

∑n
1 |xi|, where n is the dimension of x.

Compressed sensing assumes x to be sparse or compressible—i.e. few
non zeros or coefficients with rapidly decaying sorted magnitudes. If this is
true then we could attempt to solve the problem by minimizing the number
of nonzero entries in x, however doing so is a NP hard problem (Candes,
2006). The theory of compressed sensing states that for certain classes of
operator A, there is a very high probability that minimizing the `1 norm
of x is a convex relaxation of this otherwise intractable problem (Candes,

6



Chapter 2. Theory

2006). This formulation is known as basis pursuit denoise BPDN.

To solve problem 2.1 we need three ingredients. The first is a sparsity
promoting inversion program. The output of the inversion program should
match the given data within noise, when forward modelled. This refers to
the inequality constraint in 2.1 (‖b−Ax‖ ≤ σ). Sparsity promotion relates
to the minimization of x’s `1 norm (arg minx ‖x‖1). In recent years many
different algorithms have been developed to do just this. Throughout this
paper we use one such algorithm, SPG`1. This algorithm works by solving
a series of related lasso problems

x̃ = arg min
x

‖b−Ax‖ subject to ‖x‖1 ≤ τ. (2.2)

The solutions of these lasso problems have a minimal data misfit, Φ(τ) =
‖b−Ax‖, for a given `1-norm on x given by τ . After each lasso problem is
solved the algorithm then uses a Newton method to try and find a solution
to the equation Φ(τ) = σ (Berg and Friedlander, 2007). Ideally we would
let the algorithm run to convergence, in practise this is too computationally
expensive for problems of the size dealt with in seismic exploration. Instead
we run the algorithm for a limited number of iterations. For noisy data in
the case were we cannot run BPDN to convergence, the algorithm is typi-
cally run with σ equal to zero this formulation known as basis pursuit BP.

The other two ingredients of CS are a sparse representation (x) of the
wavefield to be recovered (b), and an operator A that obeys the principles
of CS. To ensure that we have these properties we factor the operator A into
three parts A = RMSH. The operator SH is the adjoint of a sparsifying
transform that ensures the desired compressibility of x. Our choice of S will
be covered in the next section.

The final ingredients of our CS framework are R and M. The choice of
R and M is how we adapt the interpolation problem to the CS framework.
In the context of wavefield reconstruction R is a subsampling matrix that
represents data acquisition which leads to aliased measurements that need
to be interpolated. The operator M is a modelling operator the choice of
which can vary. In many cases M is an identity operator, but could equally
be a migration or multiple predication operator (Lin and Herrmann, 2012).

7



Chapter 2. Theory

2.1.1 Choice of the sparsifying transform

For an `1 recovery program to work we must be able to represent the wave-
field that we are trying to recover in a sparse or compressible fashion. This
means that we need to be able transform the wavefield to a domain where it
has few non zero coefficients, or the coefficients have rapidly decaying ampli-
tudes. Seismic wavefields have been shown to be highly compressible in the
curvelet domain, —i.e. a complex wavefield can be accurately represented
with a relatively small number of curvelets (Candes et al., 2005; Hennenfent
and Herrmann, 2008).

The curvelet transform decomposes data into multidimensional wave-
forms that are formed by a second dyadic partitioning of Fourier space (Can-
des et al., 2005). Figure 2.1 a) shows the partitioning of Fourier space and
includes examples of a few different curvelet coefficients in both the physical
and Fourier domains (Herrmann and Hennenfent, 2007). While individual
curvelets are strictly localized in Fourier space, they rapidly decay in the
physical domain. This is a function of the partitioning done in Fourier space,
which prevents individual curvelets from having all of the frequencies neces-
sary to be strictly localized in the physical domain. Figure 2.1 a) shows the
2nd dyadic partitioning of Fourier space into different scales. The coarsest
scale is comprised of the lowest frequencies, and the finest scale composed
of the highest. Each scale is further divided into angular wedges. At every
other scale the number of angular wedges doubles, while the curvelets main-
tain a parabolic scaling relationship length = width2 (Candes et al., 2005).
Because curvelets are highly anisotropic, and oscillating in one direction and
smooth in the other, the only significant coefficients will be those that are
aligned with the wavefield. Figure 2.2 illustrates this concept (Herrmann
and Hennenfent, 2007).

The above properties make curvelets efficient at representing complex
wavefields such as those encountered in seismic exploration. Figure 2.3
shows the rapid decay in the amplitude of curvelet coefficients for a ma-
rine seismic line, compared to other possible transforms (Hennenfent, 2008;
Herrmann and Hennenfent, 2007). Others have shown that curvelets behave
as localized Eigen functions for high frequency approximations of the wave
equation (Hennenfent et al., 2010), which helps explain how they parsimo-
niously represent seismic data.

As described above 2D curvelets have 8 times more coefficients than the
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Figure 2.1: Particulars of curvelet transform a) partitioning of Fourier space
b) left curvelets in physical domain, right curvelets in Fourier domain,
adapted from Hennenfent, 2008

data they represent, and 3D curvelets have approximately 24 times the num-
ber of coefficients (Herrmann et al., 2009). Seismic data volumes are already
quite large, often several Giga-bytes, and the increased redundancy makes
using 3D curvelets computationally expensive. To get around this hurdle we
use 2D curvelets (C) along the shot receiver location axis. We “Kronecker”
the 2D curvelet transform with a non-redundant wavelet transform (W) in
the time direction. We define the sparse transform as

S ≡ C⊗W. (2.3)
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Figure 2.3: Decay of seismic wavefield transform coefficient amplitudes, pink
= curvelets, red = wavelets, blue = Fourier, adapted from Hennenfent, 2008

10



Chapter 2. Theory

This choice in sparsifying transform avoids the 24 times redundancy
of 3D curvelets and can still represent seismic data with a very low num-
ber of significant coefficients. The combination of curvelets and wavelets
also leads to embarrassingly parallel implementations where individual 2D
curvelet time slices can be transformed and processed separately on different
processing units.

2.2 Source-receiver reciprocity

To aid our solution of the wavefield reconstruction problem, we seek to use
our knowledge of how waves propagate through the earth. Namely we seek
to exploit the reciprocal nature of the Green’s function when solving the
minimization problem described above.

The wave equation obeys a reciprocal relationship with respect to source
and receiver locations. In mathematical terms we define the individual
components of the Green’s function as gij(xs, xr, t). The source location
is xs and xr is the receiver location. The indexes i and j correspond to
the vector wavefield components at the source and receiver, and may be
any of the principle coordinates. The source oscillates along the ith co-
ordinate, the receiver records vibrations along the jth coordinate, and t
signifies the time dependence of the Green’s function. Reciprocity makes
gij(a, b, t) = gji(b, a, t). If we convolve (denoted by the symbol ∗) the source
signature (qi(xs, t)) and receiver (rj(xr, t)) terms with the Greens function,
then the measured trace pij(xs, xr, t) = qi(xs, t) ∗ gij(xs, xr, t) ∗ rj(xr, t) will
also obey a reciprocal relationship. The reciprocal counterpart of pij(a, b, t)
is pji(b, a, t) = qj(b, t) ∗ gji(b, a, t) ∗ ri(a, t). Reciprocity holds as long as
qi(a, t) = qj(b, t) and rj(b, t) = ri(a, t). This means that for reciprocity to
hold, the disturbance measured or created at a given location must be in
the same direction. That is at location a we are always concerned with
the perturbations along the ith coordinate, and at location b we are per-
turbing/measuring along the jth coordinate. The above relationship is true
for elastic media with arbitrary boundary conditions, inhomogeneities, and
anisotropy (Knopoff and Gangi, 1959). For the rest of this paper we will
assume single component data—i.e., we are only dealing with the vertical
coordinate. This simplifies the notation, however similar results can be de-
rived for multi-component data.
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Chapter 2. Theory

It may be difficult to expect reciprocity to hold exactly. It is an ideal-
istic assumption for real seismic surveys. However it has been shown that
reciprocity holds for reasonable departures from ideal acquisition geometries
(Fenati and Rocca, 1984). Figure 2.4 shows 3 sets of reciprocal traces taken
from a 2D survey. When the survey was conducted no specific effort was
made to obey reciprocity but the three sets of traces show a remarkable
amount of overlap (Claerbout, 2007). In practise differences of a few meters
in lateral offset between source and receiver locations along a 2D line will
not violate reciprocity, however differences on the order of station spacing
(20-30m) will (Fenati and Rocca, 1984).

Figure 2.4: Three pairs of reciprocal traces that have been overlaid onto
each other, top near offsets, middle mid offsets, bottom far offsets adapted
from Claerbout 2007

12
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2.2.1 Using reciprocity

Maxwell’s equations also have a reciprocal relationship which has been ex-
ploited in resistivity surveys (Chan et al., 2005). Currently source receiver
reciprocity of seismic data is only used in a brute force fashion. In industry,
if a missing trace’s reciprocal counterpart is available, it will typically be
“borrowed” and used to fill in for the missing trace. This method of “bor-
rowing” traces can be seen in processes like common depth point binning
of seismic data. In many cases, reciprocity is used to generate the negative
offsets necessary to make streamer data resemble data acquired with a split
spread acquisition.

Van Vossen proposed a method of exploiting reciprocity in surface con-
sistent deconvolution. His method involves transforming data to the log-
Fourier domain to separate the source receiver and Green’s function terms
(van Vossen et al., 2006a). For this purpose Van Vossen creates an operator
that strictly enforces ideal reciprocity —i.e, it only requires Green’s func-
tions for half the shot locations. This operator is used to re-combine, by
addition, the estimated source signatures, Green’s functions, and receiver
responses before they are transformed back to the physical domain. Using
the log-Fourier transform to separate terms can lead to stability problems as
any noise in the data, or departures from true reciprocity, are exponentially
amplified when the data is transformed, despite its utility in separating the
source receiver and Green’s function terms. This method accounts for errors
in field data caused by varying near surface conditions that lead to variation
in source signature or receiver response along a seismic line.

More recently Alerini has used reciprocity in the processing of ocean
bottom node data (Alerini et al., 2009). Ocean bottom nodes are relatively
expensive to install which leads to data which is often severely under sam-
pled, 400 m spacing as opposed to a typical spacing of 25m. To get around
this problem Alerini interpolates and re-datums the source locations to coin-
cide with the receivers. Doing this allows Alerini to use the densely sampled
common receiver gathers in place of the equivalent sparsely sampled com-
mon shot gathers when performing stereo tomographic velocity estimation
(Alerini et al., 2009).

We propose two methods of exploiting reciprocity during the interpola-
tion of under sampled data. The first method is a Tykhonov regularization
of a method already proven to work on real seismic data. The second is to

13
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directly restrict the solution of the inversion problem to obey reciprocity.
Both methods rely on the decomposition of matrices into their symmetric
and skew components.

To explain these methods we will start with a single time slice taken from
a 2D seismic line. We define a single time slice as Pt, a matrix organized
with shot locations along the columns and receiver location for the rows.
Let pt be the same data arranged as single vector where each column of the
matrix has been appended to the end of the previous —i.e. pts = vec(Pt).
We define an operator T2d that is a matrix transpose on each time slice

Pt, T2dpt ≡ vec
(
vec−1

(
pt

)T )
, where the T transposes the shot and receiver

axis. To extend our transpose operator to the whole data volume p we
Kronecker it with an identity operator of dimensions equal to the number of
time samples T = T2d⊗Int. Using T, data volumes can be decomposed into
symmetric and skew components. This is done by adding or subtracting the
transposed data from the original data and dividing by a factor of two. The
symmetric component is

psym =
p + Tp

2
, (2.4)

and the asymmetric component is

pskew =
p−Tp

2
. (2.5)

Because of reciprocity, identical traces should be recorded when shot and
receivers locations are interchanged. This makes shot records symmetrical
about the shot reciever axis. Therefore psym = p and pskew = 0. This holds
true for every time slice in a shot record. Figure 2.5 shows a time slice taken
from a synthetic data set, and both its asymmetric and skew decompositions.

The first way in which we will try to use reciprocity is to use the
knowledge that a shot record’s asymmetric component should be zero —
i.e. pskew = I−T

2 p = 0, to regularize the inversion process. Going back to
the `1 recovery framework of equation 2.1,

x̃ = arg min
x

‖x‖1 subject to ‖b−Ax‖ ≤ σ, (2.6)

we build in the asymmetry term by augmenting the operator A = RMSH.

The forward problem remains RMSHx = p, with RM an as yet unspec-
ified restriction and modelling operator. The regularization term is incor-
porated into the inversion problem by vertically concatenating

√
α I−T

2 = 0
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(a) (b) (c)

Figure 2.5: Demonstration of data symmetry due to reciprocity on synthetic
data. a) A time slice taken from a synthetic data set, b) its asymmetric
decomposition, all zeros c) its symmetric decomposition, identical to a).

to the forward problem, —i.e.

A ≡
[

RM√
α
(
I−T
2

)]SH, (2.7)

The parameter α controls how much weight should be given to the asym-
metric decomposition term. For a well-designed survey, a higher value can
be used. The data vector b must also be augmented to account for the
regularization term. We do this by appending zeros of length p to the end
of the measured data, —i.e.

b ≡
[
p
0

]
(2.8)

The augmented system of equations makes 2.1 becomes

x̃ = arg min
x

‖x‖1 subject to

∥∥∥∥[p0
]
−
[

RM√
α
(
I−T
2

)]SHx

∥∥∥∥ ≤ σ. (2.9)

This method of regularization has the advantage of strongly informing the
solver to make updates that obey reciprocity. This is because updates that
do not obey reciprocity will not have an asymmetric decomposition equal to
zero and will be penalized. We will show how this can lead to more accu-
rate solutions of the inversion problem in half the iterations. We limit the
algorithm to half the iterations of the unregularized solution to account for
the increased workload in solving the augmented system of equations.

The second way in which we seek to exploit reciprocity is to directly re-
strict the solution to be symmetric as a part of the inversion problem, This
is done by introducing a symmetric decomposition term (I + T) into the
operator A such that A = RM (I + T) SH, and the solution in the physi-
cal domain, p̃, becomes p̃ = (I + T) SHx̃. This method can be viewed as
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projection of the data into a symmetric subspace. Due to the need for ex-
tra matrix additions and transposes imposed by this method it will also be
limited to half the iterations of the non-restricted or regularized solutions
of equation 2.1. Restricting the solution to be symmetric like this makes
equation 2.1 look like

x̃ = arg min
x

‖x‖1 subject to
∥∥p−RM (I + T) SHx

∥∥ ≤ σ. (2.10)

In the following chapter we will examine the performance of an algorithm
that does not account for reciprocity versus the regularized and restricted
methods of enforcing reciprocity. We solve the problem for multiple sampling
schemes, R, and for data that does and does not strictly obey reciprocity.
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Wavefield reconstruction

Due to a variety of factors it is rarely feasible to collect the required vol-
ume of seismic data in the field, so data is often measured on a coarse grid,
and the missing traces are reconstructed later as a part of data processing
(Hennenfent et al., 2010). Accurate wavefield reconstruction is important
for other steps in processing seismic data such as migration, interformetric
ground roll prediction and multiple estimation. These algorithms tend to be
sensitive to errors in the measured data and usually require regular sampling
above the Shannon-Nyquist rate. This makes accurate wavefield reconstruc-
tion an important and necessary component of seismic data processing. A
higher quality reconstruction will lead to a higher quality final image.

There are many different approaches to solving the wavefield reconstruc-
tion problem (Sacchi et al., 1998; Schonewille, 2000; Zwartjes, 2005). These
include F-x prediction filters (Naghizadeh and Sacchi, 2009), or projections
onto convex sets (POCS Abma and Kabir, 2006), methods based on rank re-
duction and the singular value decomposition (Trickett et al., 2010), and or-
thogonal matching pursuit (Hollander et al., 2012). One such method of solv-
ing the wavefield reconstruction problem is curvelet reconstruction through
sparse inversion (Herrmann and Hennenfent, 2007,CRSI). This method uses
the compressible nature of seismic wavefields in the curvelet domain and
advances in the theory of compressed sensing to solve the underdetermined
wavefield reconstruction inversion problem (Hennenfent, 2008).

In this chapter we show how the wavefield reconstruction problem fits
into the CS framework, and improve on previous results by using reciprocity
induced symmetry of the data as a part of the inversion process. We will
show that our contribution improves the quality of the wavefield estimate.
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3.1 Definition of the forward problem

In the previous chapter, we developed the CS framework of solving recovery
problems. We write the problem in its standard form

Ax = b (3.1)

where b is the measured data, x is the vector which we seek to recover by
inverting the operator A. As before, we factor the operator A into multiple
parts, A = RMSH. The sparsifying transform S, which was previously de-
fined, and RM is a sampling/modelling operator. In this section we further
explain the structure of RM.

To help explain the high dimensional structure of seismic wavefields, shot
records from a 2D seismic line are arranged in a data cube where one axis
is time, and the other two axises are the shot and receiver locations. We
define the fully sampled data set arranged in such a fashion as P0, and its
vectorized form as p0 = vec(P0). In the context of wavefield reconstruction
we model the measured data p by applying the restriction or sub sampling
operator, RM, to p0—i.e., p = RMp0. Our measurements also may be
contaminated with noise, n, so that

p = RMp0 + n. (3.2)

For our problem we define M as the identity operator, M = IN×N , where N
is the total number of measured data points, with N = Nt×Nr×Ns and Nt

is the number of time samples, Nr is the number of receiver locations, and
Ns is the number of shot locations. Our choice of M is a simplification and
could easily be replaced by a more complex operator (Lin and Herrmann,
2009). The operator R “sub samples” or restricts the full data set to only
those locations where traces have been recorded. To do this we define R as
R = Rs ⊗Rr ⊗Rt. The operators Rt, Rr, and Rs, represent a restriction
along the time, receiver and shot axis respectively. Modern geophones sam-
ple wavefields above the Nyquist rate so we will let Rt = INt . Additionally
we will assume full coverage of the receivers and define Rr = INr . This
means that we are dealing with sub-sampling along the shot location axis
—i.e.,

RM = Rs ⊗ INr ⊗ INt . (3.3)

Here, Rs is a Ns′×Ns matrix, with Ns′ � Ns. The operator Rs is composed
of ones and zeros. In the case of full coverage of shots, this operator would
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be the identity and Ns′ = Ns. For each shot missing from the survey the
corresponding row in Rs is removed. An example of Rs for every other shot
missing would be

Rs =


1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

. . .

 . (3.4)

Figure 3.1, shows two different realizations of R applied to a marine
data set. For the purposes of display the subsampled data is displayed on
the same Cartesian grid as the fully sampled data. Figure 3.1 a) is the total
data set for reference b) shows the same dataset regularly under sampled by
a factor of 2 —i.e., we only keep every second shot. Figure 3.1 c) contains the
same number of measured data as the regular sampling scheme but instead
of sampling on a regular grid, we use a jittered sampling scheme (Hennen-
fent and Herrmann, 2008). Jittered means we used a sampling scheme that
randomly perturbs the shot points around a regular grid. Results show that
jittered sampling leads to a higher quality recovery than regular sampling or
truly random sampling. Jittered sampling can outperform regular sampling
by breaking the coherent aliases that would be introduced by a truly regular
under sampling scheme, while limiting the maximal distance between adja-
cent shots (Hennenfent and Herrmann, 2008). Figure 3.2 shows F-k spectra
for shot gathers taken from all three data sets. In the fully sampled data
shown in figure 3.1 a) there are 128 source locations, 128 receiver locations
spaced 25 meters apart. The data is sampled at 0.04ms, and there are 256
samples on the time axises.

With RM defined we now have all the components necessary to use our
sparse recovery program

x̃ = arg min
x

‖x‖1 subject to ‖b−Ax‖ ≤ σ (3.5)

to reconstruct seismic wavefields. The vector x̃ is a set of sparsity domain
coefficients that when transformed to the physical domain p̃ = SHx̃ are fully
sampled, and have a minimal misfit to the measured data p. In the following
sections we will examine how the choice of RM determines the quality of
the recovered data p̃, and what affect augmenting the above equations to
account for reciprocity induced symmetry has on the recovery.
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(a) (b) (c)

Figure 3.1: Different sampling schemes applied to noise free synthetic data.
a) the total data for reference, b) regular sampling, c) jittered sampling.

(a) (b) (c)

Figure 3.2: F-K spectra for shot gathers taken from a) the total data for
reference, b) regular sampling, c) jittered sampling.
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3.2 Recovery with perfect reciprocity

To understand the effect of different sampling schemes on the reconstructed
wavefield, we solve the recovery problem for both sampling schemes shown
in figure 3.1. To make it a fair comparison, both sampling schemes provide
the same amount of data to the optimization program. The data set we use
was acquired with a towed streamer array in the Gulf of Suez. The data
has already had several pre-processing steps applied to it and reciprocity
was used to turn the one sided data into the full data cube seen with a split
spread acquisition (van Groenestijn and Verschuur, 2009).

3.2.1 Recovery from undersampled data

We apply the unmodified algorithm described above to the Gulf of Suez data
as a baseline for our experiments. In this case we are solving the problem
defined as

x̃ = arg min
x

‖x‖1 subject to
∥∥p−RMSHx

∥∥ ≤ σ. (3.6)

Figure 3.1 shows a) the full wavefield, and b) the same wavefield when it has
been undersampled with one out of every two traces missing in a regular pat-
tern. Figure 3.3 a) shows the results of CRSI, after 500 hundred iterations
in SGP`1, b) the difference between a) and the true data. Figure 3.5 a) and
b) show F-k spectra for shots gathers taken from the recovered data, and
the F-k spectra of difference between the recovered and the true data. The

reconstructed wavefield has a signal to noise ratio, SNR = 20 log10

(
p0

p0−p̃

)
,

of 7.01 db. Figure 3.1 c) shows the data two fold jitter undersampled. Figure
3.4 show the same plots as figure 3.3 when the wavefield is reconstructed
from said jittered undesampling instead of regular spaced samples. Figure
3.5 c) and d) show the F-k spectra of shot gathers taken from the data in
3.4. Using this sampling scheme increases the recovered SNR to 9.24dB for
the unmodified CRSI recovery with 500 iterations.
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(a)

(b)

Figure 3.3: Recovery from two fold regular undersampling, a) without using
reciprocity, SNR 7.01 dB, b) difference between the recovery and true data.
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(a)

(b)

Figure 3.4: Recovery from two fold jittered undersampling, a) without using
reciprocity, SNR 9.24 dB, b) difference between the recovery and true data.
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(a) (b)

(c) (d)

Figure 3.5: F-k spectra for shot gathers taken from a) interpolated data,
from regular undersampling, b) its difference from the true data, c) inter-
polated data from jittered undersampling, d) its difference from the true
data.
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3.2.2 Recovery with symmetric regularization

In the following section we show the results using the recovery program
when it has been modified to include a Tykhonov regularization scheme
that penalizes any asymmetry in the solution, i.e.–

x̃ = arg min
x

‖x‖1 subject to

∥∥∥∥[p0
]
−
[

RM√
α
(
I−T
2

)]SHx

∥∥∥∥ ≤ σ (3.7)

.

Our regularization term introduces a new control parameter α which
must be optimized. To do this we apply the algorithm repeatedly to indi-
vidual time slices taken from the data, over a wide range of control param-
eter values. From these experiments we select the value of α that produces
the highest SNR. We use individual time slices to reduce the computational
cost. Chapter 5 contains the tables of results generated from individual
times slices.

Due to the need for additional matrix-vec operations we limit SPG`1
to 250 iterations as opposed to the 500 used in the non-regularized results.
Figure 3.6 shows the reconstructed wavefield using this approach, and its
difference from the true data. Figure 3.8 a) and b) show the F-k plots of
common shot gathers taken from both. The recovered wavefield has a SNR
of 19.57 dB. This is a 12.56 dB improvement over the non-regularized results.
Figure 3.7 show the results of the regularized recovery, and its differnce plots
when using jittered sampling. The jittered results have a SNR of 20.09 dB,
which is 10.85 more than the non-regularized results.
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(a)

(b)

Figure 3.6: Recovery from two fold regular undersampling, a) using sym-
metric regulariztion, SNR 19.57 dB, b) difference between the recovery and
true data. 26
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(a)

(b)

Figure 3.7: Recovery from two fold jittered undersampling, a) using sym-
metric regularization, SNR 20.09 dB, b) difference between the recovery and
true data. 27
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(a) (b)

(c) (d)

Figure 3.8: F-k spectra for shot gathers taken from a) interpolated data,
from regular undersampling, using symmetric regularization, b) its difference
from the true data, c) interpolated data from jittered undersampling, using
symmetric regularization, d) its difference from the true data.
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3.2.3 Projection to a symmetric subspace

As a final approach we cause the solution to be symmetric by including a
symmetric projection in our recovery algorithm given below

x̃ = arg min
x

‖x‖1 subject to
∥∥p−RM (I + T) SHx

∥∥ ≤ σ, (3.8)

and the recovered data becomes p̃ = (I + T) SHx̃. Once again we limit
SPG`1 to 250 iterations. Figure 3.9 shows the reconstructed wavefield when
the solution is restricted to be symmetric in the physical domain and the
difference between the original data and the interpolated data. The re-
constructed wavefield using this method has a SNR of 20.45 dB, a 0.88
improvement over the regularized results and 13.44 dB better than the orig-
inal algorithm given twice the number of iterations. Figure 3.10 shows the
results of the restricted algorithm when applied to jitter undersampled data.
The recovered data has a SNR 20.86 dB, 0.77 dB higher then the regularized
results, and 11.62 dB the non-regularized results. The combination of jit-
tered sampling and restriction to a symmetric subspace leads to the highest
quality reconstructed wavefield. Figure 3.11 shows the F-K spectra of all
the data shown in figures 3.9 and 3.10. Tables 3.1-3.2 summarize all of the
results shown in this section.
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(a)

(b)

Figure 3.9: Recovery from two fold regular undersampling, a) with the so-
lution restricted to be symmetric, SNR 20.45 dB, b) difference between the
recovery and true data. 30
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(a)

(b)

Figure 3.10: Recovery from two fold jittered undersampling, a) with the
solution restricted to be symmetric, SNR 20.86dB, b) difference between
the recovery and true data. 31
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(a) (b)

(c) (d)

Figure 3.11: F-k spectra for shot gathers taken from a) interpolated data,
from regular undersampling, using symmetric projection, b) its difference
from the true data, c) interpolated data from jittered undersampling, using
symmetric projection, d) its difference from the true data.
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3.3 Recovery with deviations from reciprocity

The results in the previous section show that our contribution improves the
SNR of the recovered wavefield when the input data is perfectly reciprocal.
In practise, field data acquired with split spreads will never be acquired
on a perfectly regular grid, and for land data differences in near surface
conditions can lead to differences in the source/receiver signature in the
data along a line (van Vossen et al., 2006a). For ocean bottom node data
the sources and receivers are at different datums. To this end, we test our
algorithm by artificially degrading the data set used in the previous section.
First both sources and receivers were convolved with a damped harmonic
oscillator to model differences in the ”coupling” of the sources and receivers.
The damped harmonic coupling terms frequency response can be written as

C(f) =
−
[
1 + ( f

fc
)ηc

]
[
1− ( f

fs
)2 + i( f

fc
)ηc

] , (3.9)

where C(f) is the coupling term, ηc is the damping factor, and fc is the
resonant frequency. The values of fc, and ηc were chosen from a random
distribution with mean and standard deviation given below:

fc (Hz) ηc
µ 150 1
σ 35 0.2

A different value of fc, and ηc where chosen for each source and receiver
location, and the resulting damped harmonic term convolved with each trace
corresponding to that source or receiver. Gaussian white random noise with
zero mean and a standard deviation equal to 0.05 the data’s standard devi-
ation, was also generated, this noise had a 100 Hz low pass filter applied to
it before it was added to the degraded data. This results in a SNR of 11.81
for the noisy degraded data. Figure 3.12 shows the original data, the data
after it has been noised, the degraded data’s skew decomposition and its
F-k spectra. For a visual comparison of the differnces caused by degrading
the data, Figure ?? a) shows the same trace from the original data overlane
with the degraded version. Figure 3.13 b) shows a comparison of the same
noisy trace and its reciprocal counterpart. Figure 3.14 shows the degraded
data after being two fold undersampled using both a regular and jittered
sampling scheme, and the corresponding F-k spectrum’s.
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(a) (b)

(c) (d)

Figure 3.12: Marine data a) as originally acquired and processed b) after
being degraded to a SNR of 11.81 c) Skew component of b). d) F-k spectra
of b)’s central shot gather.
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(b)

Figure 3.13: Comparison of a trace from a) the original data, and the same
trace after being degraded, and b) the degraded trace and its reciprocal
counter part.
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(a) (b)

(c) (d)

Figure 3.14: Degraded data from previous figure after a) two fold regular
undersampling and c) jittered undersampling. Plots b) and d) show the
corresponding F-k spectra.
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3.3.1 Recovery from undersampled data

As in the previous section we start by solving the unregularized recovery
problem for 500 iterations in SPG`1 to set a baseline for our recovery. Fig-
ure 3.15 a) shows the results of the unregularized inversion, and b) the
difference between the recovered and true data for regularly undersampled
and degraded data. The reconstructed wavefield has a SNR of 5.92 dB. We
also tested the unregularized recovery on jittered sampled data. The results
are shown in Figure 3.16. The interpolated data has a SNR of 7.68 dB. The
regularly sampled data has a SNR that is 1.09 dB lower then the recovery
when we used noise free data, while the recovery from jittered sampling is
1.56 dB lower then the noise free data. Figure 3.23 shows F-k spectra plots
of shot gathers taken from the data in figures 3.21 and 3.22.

3.3.2 Recovery with symmetric regularization

We applied the algorithm given in section 3.2.2 to the degraded data. Figure
3.18 a) shows the data that was recovered after 250 iterations in SPG`1,
figure 3.18 b) shows the difference between the recovered data in a) and
the noise free data . The interpolated data has a SNR of 12.13 dB. Our
algorithm has simultaneously interpolated the missing traces and removed
some of the noise that was introduced. However the recovery is still 7.44 dB
lower then the noise-free ideal recovery. Using our regularization term in the
recovery leads to results that have a 6.21 dB higher SNR than not using it.
The regularized results for jittered sampling are shown in figure 3.19 a), and
the difference with the true data is shown in figure 3.19 b). The recovered
SNR is 11.78 dB, almost back to the noise level, and 4.1 dB higher than the
non-regularized results. Figure 3.17 shows F-k spectra plots of shot gathers
taken from the data in figures 3.18 and 3.19.

3.3.3 Projection to a symmetric subspace

As a final test we used the algorithm described in 3.2.3, on the degraded
noisy data. Figure 3.21 a) shows the regularly undersampled data that has
been interpolated with a symmetric restriction and b) its difference to the
true data. The recovered data has a SNR of 12.03 dB. This is 0.1 dB lower
then the regularized results. Figure 3.22 a) shows the restricted interpolation
of noisy jitter sampled data and b) its difference from the true data. The
recovered data has a SNR of 11.77 dB, 0.01 dB lower than the regularized
results. Figure 3.23 shows F-k spectra plots of shot gathers taken from the
data in figures 3.21 and 3.22.
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(a)

(b)

Figure 3.15: Recovery from two fold regular undersampling of degraded
data, a) without using reciprocity, SNR 5.92 dB, b) difference between the
recovery and true data. 38
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(a)

(b)

Figure 3.16: Recovery from two fold jittered undersampling of degraded, a)
without using reciprocity, SNR 7.68 dB, b) difference between the recovery
and true data. 39
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(a) (b)

(c) (d)

Figure 3.17: F-k spectra for shot gathers taken from a) interpolated data,
from regular undersampling of degraded data, b) its difference from the true
data, c) interpolated data from jittered undersampling of the same degraded
data, d) its difference from the true data.

40



Chapter 3. Wavefield reconstruction

(a)

(b)

Figure 3.18: Recovery from two fold regular undersampling of degraded
data, a) with symmetric regularization, SNR 12.13 dB, b) difference between
the recovery and true data. 41
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(a)

(b)

Figure 3.19: Recovery from two fold jittered undersampling of degraded,
a) with symmetric regularization, SNR 11.78 dB, b) difference between the
recovery and true data. 42
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(a) (b)

(c) (d)

Figure 3.20: F-k spectra for shot gathers taken from a) interpolated data,
from regular undersampling of degraded data using symmetric regulariza-
tion, b) its difference from the true data, c) interpolated data from jittered
undersampling of the same degraded data using symmetric regularization,
d) its difference from the true data.
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(a)

(b)

Figure 3.21: Recovery from two fold regular undersampling of degraded
data, a) using symmetric projection, SNR 12.03 dB, b) difference between
the recovery and true data. 44
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(a)

(b)

Figure 3.22: Recovery from two fold jittered undersampling of degraded,
a) using symmetric projection, SNR 11.77 dB, b) difference between the
recovery and true data. 45
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(a) (b)

(c) (d)

Figure 3.23: F-k spectra for shot gathers taken from a) interpolated data,
from regular undersampling of degraded data, using symmetric projection,
b) its difference from the true data, c) interpolated data from jittered un-
dersampling of the same degraded data, using symmetric projection, d) its
difference from the true data.
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3.4 Summary of results

Tables 3.1-4 summarize the results of our experiments. The first data col-
umn shows the number of iterations that SPG`1 was allowed to run for, the
second the signal to noise ratio of the recovery, and the third column shows
the 2-norm of the skew component of the recovered results, as a fraction of
the true data’s 2-norm.

For data that perfectly obeys reciprocity, restricting the data so that it
must be perfectly symmetrical, as required by reciprocity, leads to the high-
est quality results. When the quality of the input data, was degraded to
match what might be acquired with a real split spread acquisition the reg-
ularization method leads to the highest quality results. By penalizing any
asymmetry, rather then strictly requiring symmetry of the output data this
algorithm is able to strike a balance between honouring the input data and
enforcing reciprocity. We believe this makes the regularization method more
robust than the restricted algorithm with respect to interpolating noisy data.
However further tests on real data acquired in the field with split spreads
would be required to verify this fact.

By using the reciprocity induced structure of the data as a priori infor-
mation during the reconstruction of missing traces, either through a penalty
term, or restricting the data to be truly symmetric we have increased the
signal to noise ratio of the interpolated data by as much as 13.44 dB over
existing methods.
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Table 3.1: Regularly undersamped marine data wavefield reconstruction
results

Reciprocity iterations SNR (dB)
‖ p̃−T p̃

2
‖2

‖p0‖2
None 500 7.01 0.2313
Restriction 250 20.45 0
Regularization 250 19.57 0.0098

Table 3.2: Jitter sampled marine data wavefield reconstruction results

Reciprocity iterations SNR (dB)
‖ p̃−T p̃

2
‖2

‖p0‖2
None 500 9.24 0.1866
Restriction 250 20.86 0
Regularization 250 20.09 0.0088

Table 3.3: Regularly undersampled noisy marine data wavefield reconstruc-
tion results

Reciprocity iterations SNR (dB)
‖ p̃−T p̃

2
‖2

‖p0‖2
None 500 5.92 02848
Restriction 250 12.03 0
Regularization 250 12.13 0.0166

Table 3.4: Jitter sampled noisy marine data wavefield reconstruction results

Reciprocity iterations SNR (dB)
‖ p̃−T p̃

2
‖2

‖p0‖2
None 500 7.68 0.2374
Restriction 250 11.77 0
Regularization 250 11.78 0.0190
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Conclusions

The main purpose of this thesis is to improve upon an existing algorithm
for interpolating seismic data. Recognizing that reciprocity makes pre-stack
2D seismic data symmetric about the shot and receiver location axis, we de-
veloped two methods of exploiting this reciprocity induced symmetry. The
first method we use is a Tykhonov regularization term that penalizes any
asymmetry in the data. The other method is to strictly enforce the reci-
procity induced symmetry of the data.

We applied these methods to two different data sets, using two different
sampling schemes, and found that both methods lead to a higher SNR of the
recovered wavefield. Our work is based on recent advances in using curvelet
frames and the theory of compressed sensing to process seismic data (Can-
des et al., 2005; Candes, 2006; Herrmann and Hennenfent, 2007; Hennenfent,
2008).

4.1 Using reciprocity during wavefield
reconstruction

Previous work on the reconstruction of missing seismic traces has been im-
proved upon by exploiting the physics of wave propagation through the
earth. Namely reciprocity induced symmetry of the data has been used to
increase the quality of the inversion results. Two methods of doing so were
investigated. The first is a Tykhonov regularization of an existing method,
the second is to strictly enforce reciprocity induced symmetry of the data
as a part of the same method.

For two-fold under sampled data that is truly symmetric both methods
increase the SNR of the reconstructed wavefield by more then 10 dB, in half
the iterations of the solver. In these tests not accounting for reciprocity
resulted in a SNR of 7.01 dB, for regular under sampling and 9.24 for jit-
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tered spacing of source locations. The regularization method results in a
SNR of 19.57 and 20.09 dB respectively for the different sampling schemes.
The restriction method led to results of 20.45 and 20.86 dB for each of the
sampling methods.

The same data set was then degraded by convolving randomized source
and receiver terms that vary along the line and adding filtered gaussian
white noise. This new dataset has a SNR of 11.63 compared to the true
dataset. For this dataset not using reciprocity during the inversion resulted
in a recovery of 5.92 dB for regularly under sampled data and 7.68 dB for
jitter sampled data. The regularization method resulted in a SNR of 12.13
dB for the regularly sampled data, and 11.78 dB for the jitter sampling.
The restriction method has a SNR of 12.03 dB for regularly missing shots,
and 11.77 for jitter sampled data. Tables 3.2-5 in the previous chapter sum-
marize these results.

While both methods improve the quality of the results, the regularization
method appears to be more robust with respect to any variations from true
reciprocity in the data. We believe that the higher SNR of the recovered
wavefield for both regularization and restriction, of the regularly sampled
noisy data set compared to the jitter sampled data set is due to the inter-
action of the symmetry terms with the noise and the slightly larger gaps in
the data caused by the jitter sampling scheme.

4.2 Open and future research

We have shown how our contributions lead to a higher quality inversion re-
sults when reconstructing seismic wavefields however there are still further
areas of enquiry which could be investigated. A study of the control pa-
rameter sensitivity in the regularization method would be beneficial. Also
our choice of sparsifying transform could be further examined. A combined
2D curvelet Kroneckered with a wavelet transform, is less memory inten-
sive than 3D curvelets and easier to implement. However the use of 3D
curvelet’s transform has been shown to provide a uplift in SNR of the recov-
ered wavefield (Hennenfent, 2008). This is because 3D curvelets can make
better use of the higher dimensional structure of seismic wavefields. Our
method could also be adapted to other interpolation algorithms. Further-
more the work of van Vossen to account for variations in source signature
and receiver characteristics could be included in the interpolation scheme,
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along with enforcement of reciprocity (van Vossen et al., 2006a). This ap-
proach could even be combined with recent advances in primary multiple
separation which solve directly for the Green’s function, namely estimation
of primaries via sparse inversion(van Groenestijn and Verschuur, 2009; Lin
and Herrmann, 2009). This would result in a combined designature, inter-
polation, and multiple removal algorithm.
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Appendix A

Control parameter selection

α = 0 means no regularization of the inversion problem —i.e. not taking
into account the symmetry that reciprocity imposes on the data. SNR =

20 ∗ log10
(
‖P0‖
‖P0−P̃‖

)
. All problems were run with 5000 maximum iterations

and σ = ‖p0‖ ∗ 10−4
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A.1 Marine data regular sampling

Table A.1: Time slice from marine data, regular sampling

α iterations
∥∥P̃−Po

∥∥ ∥∥ P̃−TP̃
2

∥∥ SNR (db)

0 5,000 1,805 928.9 5.35
0.10 5,000 442.1 1.04 17.57
0.12 5,000 433.8 0.76 17.75
0.15 5,000 366.3 0.45 19.21
0.18 5,000 369.8 0.12 19.13
0.22 5,000 350.3 0.08 19.60
0.26 5,000 335.9 0.02 19.97
0.32 5,000 331.6 0.00 20.08
0.38 5,000 328.9 0.00 20.15
0.46 5,000 329.8 0.00 20.13
0.56 4,327 329.3 0.00 20.14
0.68 3,285 327.8 0.00 20.18
0.83 3,199 328.1 0.00 20.17
1.00 3,307 327.1 0.00 20.20
1.21 2,973 326.1 0.00 20.22
1.47 5,000 327.0 0.27 20.20
1.78 4,228 328.3 0.00 20.16
2.15 5,000 330.0 0.06 20.11
2.61 5,000 326.3 0.08 20.22
3.16 5,000 328.1 0.00 20.17
3.83 4,954 329.4 0.00 20.14
4.64 5,000 329.9 0.00 20.12
5.62 5,000 328.5 0.03 20.16
6.81 5,000 334.5 0.02 20.00
8.25 5,000 340.4 0.03 19.85
10.00 5,000 351.9 0.00 19.56
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A.2 Marine data jittered sampling

Table A.2: Time slice from marine data, jittered sampling

α iterations
∥∥P̃−Po

∥∥ ∥∥ P̃−TP̃
2

∥∥ SNR (db)

0.00 1,792.00 1,604.00 855.86 6.39
0.10 5,000.00 446.45 1.81 17.50
0.12 5,000.00 437.58 0.18 17.67
0.15 5,000.00 385.11 0.10 18.78
0.18 5,000.00 371.42 0.15 19.09
0.22 5,000.00 359.05 0.06 19.39
0.26 5,000.00 357.05 0.01 19.44
0.32 5,000.00 358.38 0.01 19.40
0.38 5,000.00 353.04 0.00 19.53
0.46 4,987.00 351.36 0.00 19.58
0.56 4,883.00 350.50 0.00 19.60
0.68 3,811.00 350.30 0.00 19.60
0.83 3,463.00 348.30 0.00 19.65
1.00 3,522.00 347.45 0.00 19.67
1.21 2,922.00 350.80 0.00 19.59
1.47 5,000.00 350.27 0.10 19.60
1.78 4,499.00 352.47 0.00 19.55
2.15 5,000.00 353.00 0.01 19.54
2.61 5,000.00 355.29 0.02 19.48
3.16 5,000.00 357.84 0.00 19.42
3.83 5,000.00 358.07 0.00 19.41
4.64 5,000.00 360.94 0.00 19.34
5.62 5,000.00 360.71 0.04 19.35
6.81 5,000.00 371.70 0.01 19.09
8.25 5,000.00 373.95 0.03 19.03
10.00 5,000.00 383.17 0.01 18.82
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A.3 Noisy marine data regular sampling

Table A.3: Time slice from noisy data, regular sampling

α iterations
∥∥P̃−Po

∥∥ ∥∥ P̃−TP̃
2

∥∥ SNR (db)

0.00 2,499.00 2,050.51 1,126.68 4.38
0.10 2,188.00 993.97 117.96 10.54
0.12 1,869.00 953.93 117.42 10.90
0.15 1,518.00 933.01 116.63 11.09
0.18 1,423.00 915.63 115.49 11.26
0.22 816.00 923.33 113.86 11.18
0.26 855.00 913.10 111.54 11.28
0.32 492.00 913.88 108.31 11.27
0.38 389.00 912.48 103.89 11.29
0.46 394.00 910.43 98.02 11.31
0.56 273.00 909.58 90.52 11.31
0.68 249.00 908.89 81.37 11.32
0.83 251.00 908.03 70.86 11.33
1.00 233.00 906.77 59.57 11.34
1.21 275.00 906.75 48.28 11.34
1.47 289.00 904.87 37.77 11.36
1.78 426.00 906.38 28.62 11.34
2.15 423.00 904.94 21.12 11.36
2.61 414.00 903.48 15.25 11.37
3.16 437.00 902.20 10.83 11.38
3.83 558.00 904.55 7.60 11.36
4.64 753.00 901.73 5.28 11.39
5.62 1,947.00 900.66 3.65 11.40
6.81 1,867.00 901.85 2.51 11.39
8.25 2,417.00 903.37 1.72 11.37
10.00 2,040.00 908.70 1.18 11.32
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A.4 Noisy marine data jittered sampling

Table A.4: Time slice from noisy data, jittered sampling

α iterations
∥∥P̃−Po

∥∥ ∥∥ P̃−TP̃
2

∥∥ SNR (db)

0.00 2,284.00 1,843.62 1,062.45 5.18
0.10 2,152.00 1,008.27 141.39 10.42
0.12 1,804.00 975.45 140.74 10.71
0.15 1,527.00 961.16 139.79 10.83
0.18 1,230.00 957.99 138.42 10.86
0.22 926.00 957.58 136.47 10.87
0.26 877.00 955.36 133.69 10.89
0.32 485.00 957.91 129.82 10.86
0.38 462.00 951.65 124.52 10.92
0.46 325.00 950.86 117.49 10.93
0.56 345.00 950.48 108.49 10.93
0.68 296.00 948.57 97.53 10.95
0.83 311.00 946.75 84.94 10.97
1.00 227.00 946.28 71.40 10.97
1.21 244.00 945.67 57.87 10.98
1.47 253.00 943.42 45.27 11.00
1.78 249.00 943.98 34.31 10.99
2.15 449.00 944.87 25.31 10.98
2.61 412.00 944.81 18.28 10.98
3.16 499.00 944.19 12.98 10.99
3.83 663.00 943.64 9.11 10.99
4.64 746.00 942.66 6.33 11.00
5.62 1,945.00 945.82 4.38 10.97
6.81 1,719.00 947.00 3.01 10.96
8.25 2,218.00 947.90 2.07 10.96
10.00 2,361.00 949.05 1.41 10.95
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