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Abstract

Compressed sensing is a data acquisition technique that entails recovering estimates of sparse
and compressible signals from n linear measurements, significantly fewer than the signal ambi-
ent dimension N . In this thesis we show how we can reduce the required number of measure-
ments even further if we incorporate prior information about the signal into the reconstruction
algorithm. Specifically, we study certain weighted nonconvex `p minimization algorithms and
a weighted approximate message passing algorithm.
In Chapter 1 we describe compressed sensing as a practicable signal acquisition method in
application and introduce the generic sparse approximation problem. Then we review some
of the algorithms used in compressed sensing literature and briefly introduce the method we
used to incorporate prior support information into these problems.
In Chapter 2 we derive sufficient conditions for stable and robust recovery using weighted `p
minimization and show that these conditions are better than those for recovery by regular `p
and weighted `1. We present extensive numerical experiments, both on synthetic examples
and on audio, and seismic signals.
In Chapter 3 we derive weighted AMP algorithm which iteratively solves the weighted `1

minimization. We also introduce a reweighting scheme for weighted AMP algorithms which
enhances the recovery performance of weighted AMP. We also apply these algorithms on syn-
thetic experiments and on real audio signals.

ii



Preface

Chapter 1 is an introduction and motivation for the problems studied in this thesis. Sections
1.1 and 1.2 reviews well-known results in the field, no originality claimed. Figures 1.4 and 1.7
has been adopted from [2] and [4], respectively, by permission.
Chapter 2 is a joint work with Hassan Mansour and Özgür Yılmaz. I conducted all the
experiments. A version of this chapter will be published by the title "Recovering Compressively
Sampled Signals by non-convex optimization and using partial support information". This
chapter is based on works conducted by M. P. Friedlander, H. Mansour, R. Saab, and O.
Yılmaz [1] and R. Saab and O.Yılmaz [2].
Chapter 3 incorporates prior support information into the algorithm introduced by D. L.
Donoho, A. Maleki, and A. Montanari [3] and is based on their work in [34]. all the lemmas
and theorems in [34] has been modified by the author except for Lemma 3.1 which has been
restated. A version of this chapter will be published by the title "Weighted and reweighted
approximate message passing".
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Chapter 1

Introduction and overview

Compressed sensing is a data acquisition technique for efficiently acquiring and recovering
sparse or approximately sparse signals from seemingly incomplete and noisy linear measure-
ments. We say that a signal is sparse when the signal admits a representation in some transform
domain where most of its coefficients are zero. There are many applications where the target
signals admit a nearly sparse representation in some transform domain. In other words, most
of the underlying information of the signal can be obtained by relatively fewer coefficients. For
example, natural images are nearly sparse in discrete cosine transform domain (DCT) and in
the wavelet domain which is crucial in applications like JPEG and JPEG2000. Similarly audio
signals are approximately sparse in short time DCT domain and short time Fourier domain
which allows MP3 compression.
Exploiting this observation and using appropriate reconstruction schemes, compressive sens-
ing enables signal acquisition with fewer measurements than traditional sampling. Compressed
sensing is especially promising in applications where taking measurements is costly (e.g., hyper-
spectral imaging [6]) as well as in applications where the ambient dimension of the underlying
signal is very large, i.e., medical [7] and seismic imaging [8, 9] (seismic images are approxi-
mately sparse in the curvelet domain).
Compressed sensing utilizes the sparsity information of the signal to reduce the necessary
number of measurements in order to capture all (or most) the information of the signal. On
the other hand, several studies, e.g., [10–12] show that the necessary number of measurements
can be reduced even more if we use prior information about the signal to be recovered. Prior
information about the signal can be obtained by considering the properties of the signal which
we want to recover. For example, we know that speech signals have large low-frequency co-
efficients. Other than this, signals such as video and audio exhibit correlation over temporal
frames that can be exploited to estimate a portion of the support using previously decoded
frames. As an other example correlations between locations of significant coefficients of differ-
ent partitions of seismic data, e.g., shot records, common-offset gathers, or frequency slices of
the acquired data can be used as a prior information to interpolate seismic data sets.
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1.1. Compressed sensing and the sparse approximation problem

In this thesis we introduce modified versions of two well-known recovery algorithms when addi-
tional partial support information is available and examine the performance of these modified
algorithms. Chapter 2 focuses on weighted non-convex optimization for signal reconstruction
and Chapter 3 investigates the weighted approximate message passing (AMP) algorithm. Be-
fore summarizing our main contribution, we first provide the necessary context. Section 1.1
describes compressed sensing as a practicable signal acquisition method in applications and
introduces the generic sparse approximation problem. Section 1.2 reviews some of the algo-
rithms used in compressed sensing literature. Section 1.3 clarifies the main idea of using prior
information to enhance the recovery performance and summarizes our main contributions,
weighted `p minimization, and weighted AMP.

1.1 Compressed sensing and the sparse approximation problem

Role of sparsity

Consider the problem of acquiring a signal f 2 RN via n linear measurements:

y = �f: (1.1)

Here � is called the sensing matrix and y is the measurement vector. Recalling fundamental
theorem of linear algebra, if we want to reconstruct f from y in (1.1), the number of measure-
ments, n, should be at least equal to the number of unknowns N . In many applications, the
signal size N , is very big and it is very costly and time consuming to take that many mea-
surements. On the other hand many signals can be approximated by a sparse signal in some
convenient basis. In other words most of the information of the signal can be captured by a
relatively few nonzero coefficients if the signal is represented in an appropriate basis. Figures
1.1 illustrate this observation: In Figure 1.1.a we show a grayscale image. Figure 1.1.b shows
the magnitude of the DCT coefficients of this image in descending order. Notice how fast the
DCT coefficients tend to zero. Figure 1.1.c is a reconstruction of the original image in 1.1.a
from only the largest 10% of its DCT coefficients. As we can see in Figure 1.1.b, the smallest
90% coefficients of the image in DCT basis are very close to zero and therefore, we do not lose
much information when we throw them out.

2



1.1. Compressed sensing and the sparse approximation problem

Original image

(a)
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Reconstructed image by 10% of DCT coefficients

(c)

Figure 1.1: Image compression with discrete cosine transform (DCT). (a) Original image. (b)
DCT coefficients sorted in descending order. (c) Image, reconstructed by zeroing out all the
DCT coefficients but largest 10%.

Compressed sensing

Similar to the observation we made in Figure 1.1, for many classes of signals, such as natural
images, audio, video, seismic data and images, an appropriate basis can be found such that
signal is approximately sparse in that basis.
Assume that the signal f is sparse (or approximately sparse) in the basis	 = f 1;  2; : : : ;  Ng.
Then f can be written as a linear combination of the basis vectors  1,  2, ...,  N as

f =
NX
i=1

 ixi = 	x; (1.2)

such that x 2 RN is sparse. Notice that with slight abuse of notation we use 	 to refer to both
the matrix [ 1;  2; : : : ;  N ] and the basis generated by the columns of this matrix. Substi-
tuting (1.2) in (1.1), we get y = �	x. Defining A := �	, we have y = Ax with the additional
information that x is sparse. Exploiting this sparsity lets us reconstruct x and hence f , by
much fewer measurements than the number of unknowns N . The sampling paradigm that
is based on this observation and hence allows us to acquire sparse high dimensional signals
by making a small number of non-adaptive linear measurements is called compressed sens-
ing [13, 14]. Of course, our discussion above is sketchy in that we have not specified how to
recover the original sparse vector, i.e., how to solve the "sparse recovery problem".

3



1.2. Alternative algorithms and recovery guarantees

Sparse recovery problem

As mentioned above, sparse recovery problem is at the foundation of compressed sensing.
First we quantify what we mean by sparsity. Let k < N be two positive integers. We say that
x 2 RN is k-sparse if x 2 �N

k := fu 2 RN : kuk0 � kg (kuk0, denotes the number of non-zero
coefficients of u).
Let x 2 �N

k and assume that y 2 Rn, the vector of n linear and potentially noisy measurements
of x is acquired via y := Ax+ e. Here A is an n�N measurement matrix with n� N and e
denotes the noise in our measurements with kek2 � ". We wish to recover x from y by solving
the sparse recovery problem. This entails finding the sparsest vector, say z, that is feasible,
i.e., kAz � yk � �. In the noise-free case, i.e., when � = 0, the decoder 40 : Rn�N �Rn 7! RN

is defined as
40(A; y) := argmin

z2RN
jjzjj0 subject to Az = y: (1.3)

It has been proven, e.g., in [15], that if n > 2k, then (1.3) recovers x 2 �N
k perfectly when A

is in general position. That is, in this case 40(A; y) = x. However, (1.3) is a combinatorial
problem which becomes intractable as the dimensions of the problem increase. Therefore, one
seeks to modify the optimization problem so that it can be solved (at least approximately) with
methods that are more tractable than combinatorial search. In the next section we describe
some of the algorithms that are used to find the solution of (1.3).

1.2 Alternative algorithms and recovery guarantees

The optimization problem (1.3) is a combinatorial problem. Hence alternative algorithms has
been introduced to find its solution (or approximate it) in certain cases that can be identified
quantitatively. In this section we describe three of these algorithms.

1.2.1 Convex relaxation

The most common approach to solve (1.3) is to replace the `0 norm in (1.3) by a convex `1
norm. More precisely, 41 : Rn�N � Rn � R 7! RN is defined as

41(A; y; �) := argmin
z2RN

jjzjj1 subject to jjAz � yjj2� �: (1.4)

Figure 1.2 illustrates the idea of using `1 norm instead of `0 norm with a simple 2-D example.
The line shows a constraint determined by the measurements. The point indicated by the

4



1.2. Alternative algorithms and recovery guarantees
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1

Figure 1.2: `0, `1 and `2 recovery for a simple 2-D example. The line shows the constraint
determined by the measurements. The square shows the 1-norm ball and the dashed circle
shows the 2-norm ball.

dotted circle shows one of the solutions of the `0 minimization problem which is the intersection
of the constraint line with the x-axis. The square shows the smallest 1-norm ball that touches
the constraint line which shows that one of the solutions to the `0 problem coincides with the
unique solution of the `1 problem. On the other hand, this figure shows that an `2 minimization
problem does not find the sparsest solution on the constraint line in this example. The solution
to `2 minimization is determined by the solid circle which indicates the intersection of the
constraint line and the dashed 2-norm ball.
The `1 minimization problem (1.4) is a convex relaxation of the `0 problem and hence can
be solved in polynomial cost. However, the computational tractability of `1 minimization
comes at the cost of increasing the number of measures taken. Several works has been done to
close the gap in the required number of measurements for recovery by `0 and `1 minimization
problem, including solving a non-convex `p problem when 0 < p < 1 which is explained in the

5



1.2. Alternative algorithms and recovery guarantees

next section.

1.2.2 Nonconvex optimization

As mentioned in the previous section, the `1 minimization problem in (1.4) can be formulated
as a linear program, which can be solved in polynomial time using standard algorithms (in
contrast to combinatorial complexity of the `0 problem (1.3)). However, this advantage comes
with the cost of increasing the number of measurements that has to be taken. One idea to
close this gap is to solve a nonconvex `p minimization problem with 0 < p < 1 instead of the
`1 minimization.
Chartrand [16] and Saab, and Yılmaz [2], cf. [17], considered the `p minimization based sparse
recovery method when 0 < p < 1. They have shown that the `p minimization problem enjoys
better recovery guarantees compared to the `1 problem. Here the `1 norm in (1.4) is replaced
by the `p norm. Notice that when 0 < p < 1, this is not a norm, but a quasi-norm. However,
in what follows, we shall abuse notation and refer to the `p quasi-norm as the `p norm. The
decoder 4p : Rn�N � Rn � R 7! RN is defined as

4p(A; y; �) := argmin
z2RN

jjzjjp subject to jjAz � yjj2� �; (1.5)

where 0 < p < 1. Although this method involves solving a nonconvex minimization problem,
it can be solved, at least locally, much faster than (1.3). The algorithms used to approximate
the solution of this problem will be explained in detail in Chapter 2.
We illustrate the benefits of using such an optimization by a simple example, shown in Figure
1.3. Assume that a1; :::; a4 denotes the columns of a matrix A 2 R3�4. Figure 1.3.a shows
the convex hull generated by the columns of A. For simplicity, we ignore �a1; :::;�a4 in the
figure; note that including these does not change the outcome of our example. Assume that
x 2 �4

2 and the nonzero components of x correspond to the columns a1 and a2 with x1 > 0 and
x2 > 0. Hence, y is placed on the solid line segment connecting a1 and a2 (for simplicity, we
name this line segment a12). Assume BN

p is the unit p-norm ball in RN ; then Figures 1.3.b–d
show a cross-section of ABN

p for p = 1; 0:7; 0:5 respectively. Recall that the `p minimization
problem can recover x if the support of x corresponds to a point on the face of ABN

p . As we
can see in this figure when p = 1 the line a12 is completely inside the polytope which means
that `1 fails to recover x. As we decrease p, points on a12 gradually become points on some
face of ABN

p , making x recoverable. This example illustrates how using `p minimization with
0 < p < 1 can be advantageous.
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Figure 1.3: Convex hull generated by columns of A and the polytopes generated by different
p’s. The `p minimization can recover x if Ax corresponds to a point on the face of ABN

p .

Figure 1.4, taken from [2], illustrates the advantage of using 4p for sparse recovery. This
diagram shows the success rate of recovering S-sparse signals using `p minimization, when the
measurement matrix is a Gaussian matrix A 2 R100�300. In Figure 1.4.a the light-shaded areas
show the pairs (p,S) that we have guaranteed recovery using `p minimization to recover an
S-sparse signal. In Figure 1.4.b Saab and Yılmaz [2] show the empirical results. Again light-
shaded regions correspond to higher rates of successful recovery. This figure illustrates how
using `p minimization improves the recovery conditions. For example, empirically with 90%

probability, 20-sparse signals can be recovered by `1 minimization whereas, `p minimization
with p = 1

2 , recovers 40-sparse signal with probability greater than 90%.
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(b) Empirical results

Figure 1.4: Theoritical and empirical recovery guarantees using `p minimization to recover
an S-sparse signal, when the the measurement matrix is a Gaussian matrix A 2 R100�300:
Adapted from [2] with permission.

1.2.3 Approximate message passing

Applicability of simple linear programming algorithms to the basis pursuit problem (1.4) has
made it an appealing choice for compressed sensing problems. However, in large applications,
high computational complexity of these algorithms is a problem. Therefore, significant effort
has been made to find fast first order methods to recover signals from compressed measure-
ments in applications ranging from biology to imaging where very large dimensional signals
are involved. Iterative thresholding algorithms is one family of algorithms which has attracted
much attention in the literature [18–20]. However, until recently the iterative thresholding
algorithms introduced, had worse recovery conditions than those of convex optimization. In
other words, the required number of measurements which had to be taken for recovery by IT
algorithms were more than those needed for convex relaxation. Inspired by ideas from theory
of graphical models, message passing algorithms and statistical physics, Donoho, Maleki, and
Montanari [21] proposed a new iterative thresholding algorithm for sparse recovery, which is
referred to as approximate message passing (AMP), which was shown to have empirical perfor-
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mance matching BP while still enjoying the low complexity nature of iterative algorithms. The
performance of AMP has been justified in the large system limit for Gaussian measurement
matrices. The AMP algorithm goes as

xt+1 = �(xt + A�zt; �̂ t)

zt = y � Axt + ��1zt�1h�0(xt�1 + A�zt�1; �̂ t�1)i;
(1.6)

where � = n
N is the undersampling ratio, � is a scalar thresholding function which acts

component-wise on the vector inside, e.g., a soft thresholding function defined as �(a; b) =

sign(a)(a� b)+, and �̂ t is a small threshold number which dictates the sparsity of the signal.
Furthermore, �0(x; b) = @

@x�(x; b) and h�i is the arithmetic mean. xt is the current estimate
of the sparse signal x, zt is the current residual and A� is the Hermitian transpose of the
measurement matrix, A.

1.3 Using prior information in the recovery algorithm

The algorithms explained in the previous section do not use any prior information on the
signal to be recovered—though for successful recovery the signal needs to be sparse. However,
in many applications it is possible to use prior information on the signal to reduce the number
of measurements even further.
For example we know that speech signals have large low-frequency coefficients. Figure 1.5
shows the amplitude of coefficients of an audio signal in discrete cosine transform domain.
Notice how the largest coefficients are concentrated around low frequencies. This information
about the audio signals can be used to enhance the recovery conditions. As another example we
consider the problem of interpolating irregularly sampled and incomplete seismic data. Assume
that we have Ns sources located on earth surface which send sound waves into the earth and Nr

receivers record the reflection in Nt time samples. Hence the seismic data is organized in a 3-D
seismic line with Ns sources, Nr receivers, and Nt time samples. Rearranging the seismic line,
we have a signal f 2 RN , where N = NsNrNt. Figure 1.6.a shows an example of a shotgather
from a seismic line from the Gulf of Suez, which is extracted from the data using one source
and different receivers and times. Figure 1.6.b shows an example of a timeslice from the same
seismic line from the Gulf of Suez, which is extracted from the data using one time slice and
different sources and receivers. Seismic data is approximately sparse in curvelet domain [22,23]
and hence we can formulate the seismic data interpolation problem as an instance of recovery
from compressive samples. Assume x = Sf where x is the sparse representation of f in curvelet
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Figure 1.5: Amplitude of frequency coefficients of an audio signal in DCT domain. Most of
the large coefficients correspond to low frequencies.

domain. We want to recover a very high dimensional seismic data volume x by interpolating
between a smaller number of measurements b = RMS�, where RM is a sampling operator
composed of the product of a restriction matrix R, which specifies the sample locations that
have data in them and a measurement basis matrix M , which represents the basis in which
the measurements are taken [4]. To overcome the problem of high dimensionality, recovery is
performed by first partitioning the seismic data volumes into frequency slices, or into common
offset-azimuth gathers and then solving a sequence of individual subproblems [4]. Doing this
helps us in two ways. It reduces the size of the problem and we can also use the support set
of each partition as an estimate of the support set of the next partition. Figure 1.7 taken
from [4] is an example of the fraction of overlapping support when adjacent frequencies is used
to predict the support of the curvelet coefficients in a seismic line.
Next, we provide a brief introduction to incorporating prior support information into the
algorithms introduced in the previous section.

1.3.1 Recovery by weighted `1 minimization

Suppose that x is an arbitrary vector in RN and let xk be the best k-term approximation
of x, i.e., set T0 to be the set of indices of k largest coefficients of x in magnitude and set
xk(j) = x(j) for j 2 T0 and xk(j) = 0 for j =2 T0. Also assume that using prior information
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Figure 1.6: (a) Example of a shot gather from a seismic line from the Gulf of Suez. (b) Example
of a high resolution time slice in the source-receiver (SR) domain from a seismic line from the
Gulf of Suez.

about the signal we can estimate the locations of the largest coefficients by eT , i.e., eT is an
estimate for T0. It was noted in [1] that one can improve the recovery performance if there is
such prior information about the signal that is sufficiently accurate. Specifically, in this case,
the required number of measurements for exact or approximate recovery can be reduced by
incorporating the prior support information into the `1 minimization based recovery algorithm.
In particular [1] proposes the weighted `1 decoder 41;w : Rn�N �Rn �R�RN 7! RN defined
as

41;w(A; y; �;w) := argmin
z2RN

jjzjj1;w subject to jjAz � yjj2� �; (1.7)

where w 2 f!; 1gN is the weight vector and kzk1;w := �iwijzij is the weighted `1 norm. The
optimization problem in (1.7) uses bigger weights for coefficients which are not in the support
estimate and smaller weights for the ones in the support estimate. Therefore, the coefficients
in the support estimate are more likely to remain nonzero. Details of this algorithm has been
presented in Chapter 2.

1.3.2 Recovery by weighted `p minimization

As mentioned in Section 1.2.1, solving the `1 minimization problem (1.4) gives us the benefits
of solving a convex optimization problem but comes with the cost of increasing number of
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Figure 1.7: Example of the accuracy achieved from using adjacent frequencies to predict the
support of the curvelet coefficients in a seismic line. Adapted from [4] with permission.

measurements. So far we have reviewed two algorithms which attempted to close the gap be-
tween `0 and `1, namely, `p minimization with p < 1 and weighted `1 minimization. In Section
2 we propose combining these two algorithms to reduce the required number of measurements
even further. In particular when we have a support estimate eT , we propose to approximate x
by 4p;w(A; y; �;w) where 4p;w : Rn�N � Rn � R� RN 7! RN is defined as

4p;w(A; y; �;w) := argmin
z2RN

kzkp;w subject to kAz � yk2 � � with wi =

8<:1; if i 2 eT c

!; if i 2 eT :

(1.8)
Here w 2 f!; 1gN is the weight vector and kzkp;w := (�iw

p
i jzijp)

1
p is the weighted `p norm.

If the support estimate is sufficiently accurate, The sufficient recovery conditions for this
optimization problem are weaker than those of weighted `1—see Theorem 2.12—and also
this algorithm outperforms `p minimization if the support estimate is accurate enough. A
thorough discussion including theoretical guarantees associated with weighted `p minimization,
algorithmic issues, and numerical experiments on synthetic data, audio and seismic signals is
given in Chapter 2.
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1.3. Using prior information in the recovery algorithm

1.3.3 Recovery by weighted AMP

Incorporating prior information into `1 and `p minimization improves the recovery conditions
of sparse and approximately sparse signals. This observation motivated us to derive a weighted
AMP algorithm which benefits from the low complexity nature of the AMP algorithm and uses
the prior support information about the signal. Let x 2 RN be a sparse vector. As before we
try to recover x from n < N linear measurements acquired via y = Ax+ e with kek � �. Here
A is an n�N matrix whose coefficients are drawn from a sub-Gaussian distribution. Assume
that we have a support estimate eT of the nonzero coefficients of the signal x. We incorporate
this information into the AMP algorithm by the following iterative algorithm: At t = 0 start
from x0 = 0 and �̂ 0 = 1 and z0 = y. Assume w = [w1; w2; : : : ; wN ]

T is the weight vector
where wi = ! < 1 for i 2 eT and wi = 1 for i 2 eT c. Then the weighted AMP algorithm
proceeds as

xt+1 = �(xt + A�zt; �̂ tw)

zt = y � Axt + ��1zt�1h�0(xt�1 + A�zt�1; �̂ t�1w)i

�̂ t =
�̂ t�1

�
h�0(xt�1 + A�zt�1; �̂ t�1w)i;

(1.9)

where � is the soft thresholding function defined in (1.6).
In Chapter 3 we explain the derivation of this algorithms and show numerical results which
compare this algorithm with regular AMP and weighted `1.
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Chapter 2

Recovering compressively sampled signals by
non-convex optimization and using partial
support information

2.1 Introduction and overview

In this section we review the `1, `p and weighted `1 minimization algorithms introduced in
the previous chapter. Our setting is as before: We have a sparse signal x 2 �N

k and we want
to recover this signal from y 2 Rn, n linear and potentially noisy measurements of x which
are acquired via y := Ax + e. As before A is an n � N measurement matrix with n � N

and e denotes the noise in our measurements with kek2 � ". This entails finding the sparsest
vector x that is feasible, i.e., kAx� yk � ". Restating (1.3), in the noise-free case, the decoder
40 : Rn�N � Rn 7! RN is defined as

40(A; y) := argmin
z2RN

jjzjj0 subject to Az = y; (2.1)

and 40(A; y) recovers x if n > 2k and A is in general position (see, e.g., [15]). As mentioned
earlier, generally (2.1) is a combinatorial problem which becomes intractable as the dimensions
of the problem increase. Therefore, one seeks to modify the optimization problem so that it can
be solved (at least approximately) with methods that are more tractable than combinatorial
search. We introduced some of these algorithms in Chapter 1, namely, `1, `p and weighted
`1 minimization. In this section we review these algorithms more carefully and provide the
stability and robustness theorems of each.
In all these algorithms the restricted isometry constants, defined in [24], play a central role.
Definition 1. A matrix A satisfies restricted isometry property (RIP) of order k with con-
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stant �k if for all k-sparse vectors z 2 �N
k ,

(1� �k)jjzjj22� jjAzjj22� (1 + �k)jjzjj22: (2.2)

2.1.1 Recovery by `1 minimization

Donoho [13] and Candés, Romberg, and Tao [14] showed that if A obeys a certain restricted
isometry property, then solving (1.4) can stably and robustly recover x from seemingly incom-
plete and inaccurate measurements y = Ax+ e. The following theorem, proved in [14], shows
the error guarantees of finding the best k-sparse solution with (1.4):
Theorem 2.1. (Candés, Romberg and Tao [14] ) Let k, N be positive integers with k < N .
Suppose that x is an arbitrary vector in RN and let xk be the best k-term approximation
of x. Let y = Ax+ e with kek2 � �. If A satisfies the restricted isometry property (RIP)
with �ak + a�(a+1)k < a� 1, then

jj41(A; y; �)� xjj`2� C`1
1 � �+ C`1

2 � jjx� xkjj`1p
k

:

Remark 2.2. The constants C`1
1 and C`1

2 in Theorem 2.1 are given explicitly by

C`1
1 =

2(1 + a�
1
2 )q

1� �(a+1)k � a�
1
2
p
1 + �ak

;

C`1
2 =

2a�
1
2 (
q
1� �(a+1)k +

p
1 + �ak)q

1� �(a+1)k � a�
1
2
p
1 + �ak

:

(2.3)

Remark 2.3. Theorem 2.1 states that if �ak + a�(a+1)k < a � 1, then (1.4) can recover any
k-sparse vector x with an error proportional to the 2-norm of the measurement noise. For
example in this case if we set a = 3, k 41 (A; y; �)� xk`2 � C`1

1 �, and for reasonable values of
�4k, C`1

1 is well behaved, e.g., C`1
1 < 12:04 for �4k = 1

5 .

Remark 2.4. It is worth noting that calculating the RIP constants for an arbitrary matrix
A is computationally expensive. On the other hand it was proved in [25] that if columns
of A are independent, identically distributed (i.i.d.) random vectors with any sub-Gaussian
distribution, then A satisfies RIP property (2.2) for any 0 < � < 1 with probability greater
than 1�2e�c2k, whenever k � c1

n
logN

n

; here c1, and c2 are positive constants that only depend
on � and the distribution of A.
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As mentioned in Chapter 1, the `1 minimization problem (1.4) is a convex optimization
problem and can be solved in polynomial time. However, the computational tractability of `1
minimization comes at the cost of increasing the number of measurements taken. For example
if the columns of the measurement matrix A are independent, identically distributed random
vectors with any sub-Gaussian distribution, Theorem 2.1 together with Remark 2.4 implies
that 41 can recover any k-sparse vector x when n & k log(Nk ) rather than the n > 2k

property which is sufficient for recovery by 40. Therefore, as mentioned earlier, several works
has been done to close the gap in the required number of measurements for recovery via `0
and `1 minimization problems, including solving a non-convex `p problem when p < 1 [2, 16]
and using prior knowledge about the signal to be recovered [1].

2.1.2 Recovery by `p minimization

It was shown in [2,16,17,26] that recovery by `p minimization is stable and robust under weaker
sufficient conditions than the analogous `1 minimization conditions. Therefore, the global
minimizer of (1.5) is an approximate solution to (2.1) for a more general class of measurement
matrices A than the minimizer of (1.4). This result is made explicit by the following theorem
from [2].
Theorem 2.5. (Saab and Yılmaz [2] ) Suppose that x is an arbitrary vector in RN and let
xk be the best k-term approximation of x and let y = Ax+ e with kek2 � �. If A satisfies
�ak + a

2
p
�1
�(a+1)k < a

2
p
�1 � 1, for a 2 1

kN and k > 1 and 0 < p < 1 then

jj4p(A; y; �)� xjjp2� C
`p
1 � �p + C

`p
2 � jjx� xkjj

p
p

k1�p=2
:

Remark 2.6. It is sufficient that A satisfies

�(a+1)k < �̂`p :=
a

2
p
�1 � 1

a
2
p
�1

+ 1
(2.4)

for Theorem 2.5 to hold, i.e., to guarantee stable and robust recovery described in the theorem
with the same constants C`p

1 and C`p
2 .
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Remark 2.7. Constants C`p
1 and C`p

2 in Theorem 2.5 are given explicitly by:

C
`p
1 =

2p

0B@1 + 1�
a
2
p�1( 2

p
�1)
� p

2

1CA
(1� �(a+1)k)

p
2 � (1 + �ak)

p
2a

p
2
�1

C
`p
2 =

2

0B@(1 + �ak)
p
2a

p
2
�1 + (1��(a+1)k)

p
2�

a
2
p�1( 2

p
�1)
� p

2

1CA
(1� �(a+1)k)

p
2 � (1 + �ak)

p
2a

p
2
�1 :

(2.5)

As stated in [2] the constants C`p
1 and C`p

2 are well behaved. When p = 1 these constants
reduce to those of Theorem 2.1. If p = 1

2 and �4k = 1
5 , then C

`p
1 < 3:87 and C`p

2 < 3:18. It
was shown in [26] that smaller bounds are achievable in the noise-free case. Moreover, the
result in [2] says that given a matrix A that satisfies �(a+1)k < a�1

a+1 and suppose that k1 is the
largest k for which the inequality holds, then Theorem 2.8 guarantees that (1.4) can recover all
k1-sparse signals whereas Theorem 2.5 guarantees that (1.5) can recover all kp-sparse vectors

where kp =
�

a+1

a
p

2�p+1
k1

�
which is bigger than k1 when p < 1.

2.1.3 Recovery by weighted `1 minimization

As stated also in Chapter 1, the `1 problem (1.4) does not use any prior information about
the signal (though for successful recovery the signal needs to be sparse). However, in many
applications it is possible to estimate the support of the signal which we want to recover. It
was noted in [1] that one can improve the recovery conditions if there is prior information
about the signal. This result is demonstrated by the following theorem from [1].
Theorem 2.8. (FMSY [1] ) Suppose that x is an arbitrary vector in RN and y = Ax+e with
kek2 � �. Let xk be the best k-term approximation of x with suppfxkg = T0. Let eT be an
arbitrary subset of f1; 2; :::; Ng and define � and � such that j eT j = �k and jT0 \ eT j = ��k.
(Here j eT j denotes the cardinality of eT .) Suppose there exists an a 2 1

kZ with a � (1��)�
and a > 1 and the measurement matrix A has RIP with

�ak +
a

(! + (1� !)p1 + �� 2��)2
�(a+1)k <

a

(! + (1� !)p1 + �� 2��)2
� 1

17



2.1. Introduction and overview

for some 0 � ! � 1. Then

jj41;w(A; y; �;w)� xjj2� Cw`1
1 �+ Cw`1

2 k
�1
2 (!kx� xkk1 + (1� !)kxeT c\T c

0
k1):

Remark 2.9. Constants Cw`1
1 and Cw`1

2 in Theorem 2.8 are given explicitly by:

Cw`1
1 =

2(1 + w+(1�w)p1+��2��p
a

)q
1� �(a+1)k � w+(1�w)p1+��2��p

a

p
1 + �ak

Cw`1
2 =

2a
�1
2 (
q
1� �(a+1)k +

p
1 + �ak)q

1� �(a+1)k � w+(1�w)p1+��2��p
a

p
1 + �ak

:

(2.6)

Remark 2.10. It is sufficient that A satisfies

�(a+1)k < �̂w`1 :=
a� (! + (1� !)p1 + �� 2��)2

a+ (! + (1� !)p1 + �� 2��)2
(2.7)

for Theorem 2.8 to hold, i.e., to guarantee stable and robust recovery described in the theorem
with the same constants Cw`1

1 and Cw`1
2 .

Notice that � determines the ratio of the size of the estimated support to the size of the
actual support of xk (or the support of x if x is k-sparse) and � determines the accuracy of
the support estimate which is the ratio of the size of eT \ T , to the the size of our estimate eT .
Remark 2.11. Theorem 2.8 shows that if � > 0:5 the sufficient recovery conditions of weighted
`1 become weaker than those of regular `1. Moreover, the error bound constants become
smaller. The result also indicates that when the support estimate is accurate, i.e., � > 0:5, a
choice of the weight ! = 0 results in the weakest sufficient conditions for recovery and smallest
error bounds, whereas choosing ! = 1 achieves the weakest sufficient conditions for recovery
and smallest error bounds when the support accuracy is low (� < 0:5). However, numerical
experiments conducted in [1] have shown that weighted `1 minimization achieves the best
recovery when intermediate values of ! are used for different accuracy levels. We discuss this
issue more extensively in the next section.

Combining these two ideas, in this chapter we study the sparse recovery guarantees of the
weighted `p minimization problem (1.8). Specifically, we show that the weighted `p minimiza-
tion algorithm outperforms both `p minimization and weighted `1 minimization under certain
circumstances.
In Section 2.2, we describe the proposed weighted `p minimization algorithm, derive stability
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and robustness guarantees for this algorithm and compare it with regular `p and weighted `1.
Specifically, we prove that the recovery guarantees of the weighted `p algorithm with 0 < p < 1

are better than those of weighted `1 and regular `p when we have a prior support estimate
with accuracy better than 50%. In Section 2.3, we explain the algorithmic issues that come
with solving the proposed non-convex optimization problem and the approach we take to em-
pirically overcome them. In Section 2.4, we present numerical experiments where we apply
the weighted `p method to recover sparse and compressible signals. In Section 2.5, we show
the result of applying these algorithms to audio and seismic signals. In Section 2.6, we provide
the proof for our main theorem.

2.2 Main results

In this section we explain the recovery by weighted `p minimization. In particular when we
have a prior support estimate eT , we approximate x by 4p;w(A; y; �;w) where 4p;w : Rn�N �
Rn � R� RN 7! RN is defined as

4p;w(A; y; �;w) := argmin
z2RN

kzkp;w subject to kAz � yk2 � � with wi =

8<:1; if i 2 eT c

!; if i 2 eT :

(2.8)
Here w 2 f!; 1gN is the weight vector and kzkp;w := (�iw

p
i jzijp)

1
p is the weighted `p norm.

Next we provide the stable and robust recovery conditions of this algorithm and compare it
with weighted `1 and `p in terms of sufficient conditions for stable and robust recovery and
associated constants.

2.2.1 Weighted `p minimization with estimated support

As mentioned in the previous section, one can improve the recovery guarantees of 41 by using
4p and by incorporating prior support information into the the optimization problem. In
this section we provide the recovery conditions when we combine both these approaches. The
following theorem states the main result.
Theorem 2.12. Suppose that x is an arbitrary vector in RN and y = Ax+ e with kek2 � �.
Let xk be the best k-term approximation of x with suppfxkg = T0. Let eT be an arbitrary
subset of f1; 2; :::; Ng and define � and � such that j eT j = �k and jT0 \ eT j = ��k. Suppose
there exist an a 2 1

kZ, with a � (1 � �)� and a > 1 and the measurement matrix A has
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RIP with

�ak +
a

2
p
�1

(!p + (1� !p)(1 + �� 2��)1�
p
2 )

2
p

�(a+1)k <
a

2
p
�1

(!p + (1� !p)(1 + �� 2��)1�
p
2 )

2
p

� 1;

(2.9)

for some 0 � ! � 1 and 0 < p < 1. Then

k 4p;w (A; y; �;w)� xkp2 � C1�
p + C2k

p
2
�1(!pkx� xkkpp + (1� !p)kxeT c\T c

0
kpp): (2.10)

Remark 2.13. Note that � and � have the same definitions as in Theorem 2.8, i.e., � denotes
the ratio of the size of the estimated support to the size of the actual support of xk and �

denotes the accuracy of our estimate which is the ratio of the size of eT \ T0, to the the size of
our estimate eT .
Remark 2.14. The constants C1 and C2 are explicitly given by:

C1 =

2p

0B@1 +
�
!p+(1�!p)(1+��2��)1�

p
2

�
�
a
2
p�1( 2

p
�1)
� p

2

1CA
(1� �(a+1)k)

p
2 � (1 + �ak)

p
2a

p
2
�1
�
!p + (1� !p)(1 + �� 2��)1�

p
2

� ; (2.11)

C2 =

2

0B@(1 + �ak)
p
2a

p
2
�1 + (1��(a+1)k)

p
2�

a
2
p�1( 2

p
�1)
� p

2

1CA
(1� �(a+1)k)

p
2 � (1 + �ak)

p
2a

p
2
�1
�
!p + (1� !p)(1 + �� 2��)1�

p
2

� : (2.12)

Remark 2.15. Theorem 2.12 is consistent with the analogous theorem for `p [2], i.e., Theorem
2.5 and for weighted `1 [1], i.e., Theorem 2.8. That is, if we set ! = 1, Theorem 2.12 reduces
to Theorem 2.5 and setting p = 1, Theorem 2.12 yields Theorem 2.8 as a special case.

Remark 2.16. It is sufficient that A satisfies

�(a+1)k < �̂w`p :=
a

2
p
�1 � (!p + (1� !p)(1 + �� 2��)1�

p
2 )

2
p

a
2
p
�1

+ (!p + (1� !p)(1 + �� 2��)1�
p
2 )

2
p

(2.13)

for Theorem 2.12 to hold, i.e., to guarantee stable and robust recovery described in the theorem
with the same constants C1 and C2. Setting ! = 1 gives us sufficient conditions for recovery
by 4p and setting p = 1 yields sufficient conditions for recovery by 41;w. Notice that these
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conditions are in terms of bounds on RIP constants. In Section 2.2.2 we compare these bounds.

Remark 2.17. In [27] Candés used a slightly different approach to guarantee the stable and
robust recovery when a = 1. Candés proved that if �2k < (1 +

p
2)�1, then 41 achieves stable

and robust recovery. Using the same approach as in [27] we get the condition

�2k <
1

1 +
p
2(!p + (1� !p)(1 + �� 2��)1�

p
2 )

(2.14)

which gives us an alternative stable and robust recovery condition for 4p;w. When � > 0:5

this condition provides weaker conditions on the measurement matrices compared to 4p. We
omit the derivation of this condition as it closely mimics the respective calculations in [27].

2.2.2 Comparison to weighted `1 recovery

In this section we compare the conditions for which Theorem 2.12 holds with the correspond-
ing conditions for Theorem 2.8. The following observations are easy to verify.

Proposition 2.18. Let C1, C2, Cw`1
1 and Cw`1

2 be as defined above. If p = 1 then C1 = Cw`1
1 and

C2 = Cw`1
2 and the sufficient condition for Theorem 2.12 would be identical to Theorem

2.8.

Remark 2.19. If � = 0:5, then the sufficient condition for stable and robust recovery with

(2.8) would be �(a+1)k < a
2
p�1�1

a
2
p�1+1

and the analogous condition for stable and robust recovery

with (1.7) would be �(a+1)k < a�1
a+1 . Since a > 1 for 0 < p < 1, a

2
p
�1

> a. Therefore, the
weighted `p conditions would be much weaker than the weighted `1 conditions, for example,
when a = 3 and p = 0:5, then the sufficient condition for weighted `p is �4k < 26

28 which is
much weaker than the sufficient condition for weighted `1 which is �4k < 0:5.

Figure 2.1 illustrates how the sufficient conditions on the RIP constants vary with � and !
in the case of weighted `1 and weighted `p. In particular these sufficient conditions are intro-
duced in Theorem 2.8 and Theorem 2.12, i.e., �̂w`1 defined in (2.7) and �̂w`p defined in (2.13)
which determine bounds on the RIP constants. In Figure 2.1, we plot �̂w`p versus ! for p = 1

and p = 2
5 , with a = 3 in both cases and different values of �. The bounds on RIP constants

get larger as � increases which means that a wider range of measurement matrices satisfy the
sufficient condition when the support estimate is more accurate. Note that when � = 0:5 the
sufficient conditions for recovery by weighted `p would be identical to sufficient conditions for
recovery by standard `p for 0 < p < 1. Comparing these results with recovery by weighted `1,
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Figure 2.1: Comparison of the sufficient conditions for recovery with weighted `p reconstruction
with various �. In all the Figures, we set a = 3 and � = 1 and p = 2

5 .

we see that in recovery by weighted `p the measurement matrix A has to satisfy much weaker
conditions than the analogous conditions in recovery by weighted `1 even when we do not have
a good support estimate. For example with a = 3 and ! = 0:2, when the support estimate is
70% accurate, we get the sufficient condition �̂wlp < 0:9897 which is so close to the best that
we can get (�̂ < 1) and it is weaker than the sufficient recovery condition for weighted `1 which
is �̂w`1 < 0:763 and regular `1 which is �̂1 < 0:5.
It is worth considering the sufficient recovery conditions for the special case of zero weight. As
seen in Figure 2.1 setting ! = 0 is beneficial when � > 0:5, however, the sufficient recovery
condition is stricter when � < 0:5. This suggests that setting the weight ! = 0 is beneficial in
the case where the support estimate is highly accurate.
Figure 2.2 compares the recovery guarantees we obtain in the zero-weight case with condi-
tions that guarantee recovery via weighted `p and weighted `1 minimization. To this end, we
present the phase diagrams of measurement matrices A with Gaussian entries that satisfy the
conditions on the restricted isometry constants �(a+1)k given in (2.7) and (2.13) with ! = 0,
� = 1, and � = 0:3; 0:6; and 0:8. The phase diagrams are calculated using the upper bounds
on the RIP constants derived in [5] and reflect the sparsity levels for which the three theorems
guarantee exact signal recovery as a function of the aspect ratio of the measurement matrix A.
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Figure 2.2: Comparison between the phase diagrams of measurement matrices with Gaussian
entries satisfying the sufficient recovery conditions of weighted `p minimization and weighted
`1 minimization with ! = 0 and � = 0:3, 0:6, and 0:8 and standard `1. The plots are calculated
using the upper bounds on the restricted isometry constants derived in [5]. Points below each
curve determine the sparsity-undersampling ratios that satisfy the sufficient bounds on the
RIP constants introduced in (2.7) and (2.13).

2.2.3 Comparison to `p recovery

In this section we compare the sufficient conditions of Theorem 2.5 and Theorem 2.12. The
following observations are easy to verify.
Proposition 2.20. Let C1, C2, C

`p
1 and C`p

2 be as defined above .
(i) If ! = 1 then C1 = C

`p
1 and C2 = C

`p
2 and the sufficient condition for Theorem 2.12

and Theorem 2.5 would be identical.
(ii) If � = 0:5 then again C1 = C

`p
1 and C2 = C

`p
2 and the sufficient condition for Theorem

2.12 would be identical to Theorem 2.5.
(iii) Suppose 0 � ! < 1 then C1 < C

`p
1 and C2 < C

`p
2 if and only if � > 0:5.
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Figure 2.3: Comparison of the recovery constants for weighted `p reconstruction with various
�. In all the figures, we set a = 3 and � = 1 and p = 2

5 .

Proposition 2.20 reflects the results shown in Figure 2.3. Figures 2.3.a and 2.3.b show how
constants C1 and C2 in (2.10) change with ! for different values of �. Notice that when we
increase � we get smaller error constants.
When � < 0:5, i.e., when our estimate is less than 50% accurate, using bigger weights would
result in more robust recovery which is useful when we do not know the estimate accuracy ex-
actly. However, numerical results—Section 2.4—show that using intermediate weights usually
results in better recovery not only when � < 0:5 but also in some cases of � > 0:5. When
! = 1, the conditions of Theorems 2.12 and 2.5 become identical. For all values of ! < 1,
having a support estimate accuracy � > 0:5 results in a weaker condition on the RIP constant
and smaller error bound constants compared with the conditions of standard `p. On the other
hand, if � < 0:5, i.e., the support estimate has low accuracy, then standard `p has weaker suf-
ficient recovery conditions and smaller error bound constants compared to weighted `p. This
behavior is similar to that derived for weighted `1 minimization in [1].

2.3 Algorithms

In this section, we study the algorithm that we have used for the weighted `p minimization
problem (2.8).
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2.3.1 Algorithmic issues

In this section, we study the performance of three different algorithms that attempt to solve the
`p minimization problem. There are a few algorithms which are commonly used to solve this
minimization problem including the projected gradient method [16], the iterative reweighted `1
method [28], and the iterative reweighted least squares method [29]. Since the `p minimization
problem is non-convex and several local minima exist, these algorithms attempt to converge
to local minima that are close to the global minimizer of the problem. To that end, the only
proofs of global convergence that currently exist assume that the global minimizer can be found
if a feasible point can be found. However, numerical experiments show that these algorithms
perform well when the measurement matrix has i.i.d. Gaussian random entries.
We describe these algorithms in the remainder of this section.

2.3.2 Projected gradient method

An approach based on the projected gradient method has been proposed in [16] and also used,
for example, in [2] to compute approximate solutions of (1.5).
An iteration of this algorithm minimizes a smoothed `p objective instead of the `p norm. The
smoothed `p cost function is given by (

P
i(x

2
i + �)p=2)1=p. The smoothing parameter � is

initialized with a large value, say 10. After taking a projected gradient step in every iteration,
the value of � is reduced. In every iteration, the new iterant is projected onto the affine space
defined by Ax = b.

Adopting to the weighted `p minimization

This method can be adopted to solve the weighted `p problem by replacing the `p-norm, k � kp,
with the weighted `p norm, k � kp;w, and making corresponding changes to the algorithm to
work for the weighted version. Algorithm 1 explains the details of this algorithm. Here r(fx)i
= p� w

p
i � (xti � (xti)

� + �2)p=2�1 � xti.

2.3.3 Iterative reweighted `p

The iterative reweighted `p method, proposed in [28], is a modification of the iterative reweighted
`1 (IRL1) algorithm of [30]. This method uses a modified version of IRL1 to solve the following
penalized likelihood signal restoration problem:

min
x2RN

kAx� bk22 + �kxkpp: (2.15)

25



2.3. Algorithms

Algorithm 1 Weighted projected gradient method
1: Input b = Ax+ e, p, A, ! 2 [0; 1], �
2: Output x(t)

3: Initialize � = 10, t = 0, x0 = A�b, [M N ] = size(A), Q = Ay � A, wi =

�
!; i 2 �

1; i 2 �
c

4: loop
5: fx =

P
i(w

2
i � ((xti)

2 + �))p=2

6: d = �r(fx)
7: pd = d�Q� d
8: t = t+ 1
9: line search

10: xt = xt�1 + l� pd
11: Indicator=

p
1�p�xt
1�pp

12: Idx=find(Indicator < w � �)
13: � = min(0:98� �;max(Indicator(Idx))
14: end loop

Here 0 < p < 1, � is a positive penalty parameter, and kxkpp = P
i jxijp. To attempt to solve

(2.15) the algorithm starts from an initial guess x1 and at each iteration k, it defines the
following weights:

wk
i =

p

(jxki j+ �)1�p
; (2.16)

and solves the following `1 minimization:

xk+1 = arg min
x2RN

kAx� bk22 + �kxk1;wk : (2.17)

2.3.4 Iterative reweighted least squares

Using iterative reweighted least squares (IRLS) to solve the `p minimization problem has been
studied in [31] and [29]. We have implemented the algorithm proposed in [29]. At each iteration
k, of this method we solve the following least squares problem:

min
u2RN

i=NX
i=1

wiu
2
i subject to Au = b; (2.18)

where wi = ((u
(k�1)
i )2 + �)

p
2
�1 and � is a regularization parameter which takes care of the

problem of having ui = 0. As stated in [29], at each iteration k, we can solve (2.18) explicitly
by solving the Euler-Lagrange equation of (2.18) and using the constraint to solve for the
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Lagrange multipliers. This yields

u(k) = QkA
T (AQkA

T )�1b; (2.19)

where Qk = diag( 1
wi
) for w as defined above. The solution at each iteration is used to generate

the weights for the next iteration. After some iterations we get close to the optimal solution
and then we make � smaller until we get to the desired "convergence level", i.e., when the norm
of the difference between consequent recovered signals is smaller than a predefined threshold.
Our implementation of the weighted versions of these three algorithms show that the the pro-
jected gradient method is more compatible with the way we do weighting and the performance
of the modified projected gradient method is better than the modified versions of the other
two. Therefore, our numerical results, presented in the next section, has been produced by
using modified projected gradient method described in Algorithm 1.

2.4 Numerical examples

In this section, we provide numerical results to show how4p;w improves the recovery conditions
of sparse and approximately sparse signals compared to 4p and 41;w. We show the results
for sparse signals and compressible signals. In these examples, we use the projected gradient
algorithm that is described in Section 2.3.2 to solve the weighted `p minimization problem
(2.8).

2.4.1 The sparse case

In this section, we generate signals x 2 RN where N = 500 and with fixed sparsity k = 40. We
compute the (noisy) compressed measurements of x using a Gaussian random measurement
matrix A with dimensions n�N where n varies between 80 and 200 with an increment of 20.
In the case of noisy measurements, we have assumed 5% noise, i.e., signal-to-noise ratio of 26
db.
Figure 2.4 shows the reconstruction signal-to-noise ratio (SNR) averaged over 10 experiments,
using weighted `p and weighted `1 minimization, versus the number of measurements, i.e., n.
In Figures 2.4.a–c, we show result in the noise-free case when � = 0:3; 0:5; 0:7 respectively.
In figures 2.4.d–f we repeat the above experiment in the noisy case. In all the experiments,
p = 0:5 and the recovery was done with the projected gradient algorithm described in Section
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2.3.2. Here the SNR is measured in db and is given by

SNR(x; x̂) = 10 log10(
kxk22

kx� x̂k22
): (2.20)

Recall that when ! = 1 weighted `p is equivalent to regular `p and weighted `1 is equivalent
to regular `1. Figures 2.4.a–c illustrate that in the noise-free case, the experimental results are
consistent with the theoretical results derived in Theorem 2.12. More precisely when � > 0:5,
the best recovery is achieved when the weights are set equal to zero and as our estimate gets
worse (� decreases), the best recovery is achieved when larger weights are used. Also we ob-
serve that weighted `p recovers significantly better than weighted `1, especially when we have
few measurements, which is consistent with our analysis in Section 2.2.

Remark 2.21. In Figures 2.1 and 2.3 we can see that when � < 0:5 both the sufficient recovery
conditions and error bound constants point towards using ! = 1 for better recovery. However,
Figure 2.4 shows that this is not always true. We attribute this behavior to the best k-term
approximation term in the error bound of Theorem 2.12. Consider the noise-free case where
the error bound becomes:

k 4p;w (A; y; 0;w)� xkp2 � C2k
p
2
�1(!pkx� xkkpp + (1� !p)kxeT c\T c

0
kpp):

As we can we can see in Figure 2.3, C2 decreases when we use bigger weights. Notice that on
T c
0 , xk = 0 so we have kxeT c\T c

0
k = k(x� xk)eT c\T c

0
k which means that kxeT c\T c

0
kpp is always less

than kx � xkkpp. When we use bigger weights kx � xkk would have more impact on the error
which results in bigger error when we use bigger weights. Hence using bigger weights decreases
the constant C2 and increases the factor !pkx�xkkpp+(1�!p)kxeT c\T c

0
kpp. Consequently when

the algorithm cannot recover the full support of x, i.e., when kx � xkk > 0, an intermediate
value of ! in [0; 1] may result in the smallest recovery error. A full mathematical analysis of
this observation needs to consider all the parameters in Theorem 2.12 including !; k; � which
is beyond the scope of this thesis.

Figures 2.4.d–f show results for the noisy case. As we can see using intermediate weights
results in best recovery and we can see that weighted `p is outperforming weighted `1 espe-
cially when the number of measurements is small. It is also evident that when we have a better
support estimate, we reach the best possible recovery with fewer number of measurements n.
Next, we investigate the effect of the choice of weights and p on the approximation error, when
we have support estimates with various accuracy levels. Figure 2.5 shows the average SNR
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over 10 experiments with � = 1 and n = 100 for different values of p, !, and � when we
have 5% noise and when we have no noise. Figures 2.5.a–c show the no-noise case. As we
can see using smaller p is beneficial when we do not have a good support estimate. However,
Notice that using smaller p results in slower recovery and dealing with the non-convexity of `p
norm is more challenging when p is small. It is also worth noting that we again observe better
performance with intermediate weights when � < 0:5.
Figures 2.5.d, 2.5.e, and 2.5.f show the recovery for different values of p when we have 5%

noise. As we observe generally using smaller p results in better recovery and again intermedi-
ate weights are recovering better. One important thing to observe here is how using smaller p
improves the results when we do not have a good support estimate, which is a result of weaker
sufficient recovery conditions when p is smaller.
Figure 2.6 shows the averaged SNR for recovering a 40-sparse signal using weighted `p with
different support estimate sizes. Figures 2.6.a–c show the results when we do not have any
noise and Figures 2.6.d–f show the results when we have 5% noise. We can see that generally
using weighted solvers is useful especially in the non-convex case where we get better results
even when � = 0:3. Note that having a larger support estimate size usually results in better
recovery, but the results are more sensitive to the accuracy of the support estimate than its
size. Another important point here is that when we are in the noisy case or when we do not
have a good support estimate, using intermediate weights results in better recovery which is
very important for applications. Also this figure emphasizes the benefit of using weighted `p
when we do not have a good support estimate.

2.4.2 The compressible case

In this section we generate signals x 2 RN , sorted coefficients of which decay like j�d where
j 2 f1; 2; :::; Ng and d > 1. Figure 2.7 illustrates the results when d = 1:1. Here, we attempt
to estimate the support of the best k-term approximation of the signal when n = 100. Ac-
cordingly, we find � with respect to the best 40-term approximation. Figures 2.7.a–c show
the no-noise case where Figures 2.7.d–f have 5% noise. As we can see when we have a good
support estimate, having a larger support estimate ends in better recovery and like the sparse
case when we do not have a good support estimate, i.e., �<0.5, using intermediate weights
results in better reconstruction. When �=0.7 using zero weights is giving us the best recovery.
Generally in this figure we see that unlike the sparse case using weighted `p for recovering
compressible signals does not give us much better results compared to weighted `1, specifically
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in Figure 2.7.d we see that weighted `1 with zero weight is recovering better than weighted `p.
We believe that this is an artifact of the algorithm we are using. As we said before we do not
have any proof for global convergence of the algorithm and the projected gradient algorithm
handles the local minima by a smoothing parameter �. In the noisy compressible case we have
a large number of these local minima which may be a reason that in some of the compressible
noisy cases we see that weighted `1 is recovering better than weighted `p. However, an exact
explanation of why this happens is beyond the scope of this thesis.
Figure 2.8 shows the case when d = 1:5. Here the decay of coefficients of the signal is much
faster so we have used fewer coefficients as our support. As we can see the results are similar
to the case with d = 1:1 and generally when we have larger support estimate we get better
recovery. Here we find � using the best 20-sparse approximation. Again in the noisy com-
pressible case we see that weighted `1 is recovering better than weighted `p when we have a
good support estimate.
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Figure 2.4: Comparison of performance of weighted `p and weighted `1 recovery in terms of
SNR averaged over 10 experiments for sparse signals with variable weights and measurements
and � = 1 and p = 0:5.

31



2.4. Numerical examples

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

50

100

150

200

250

p

S
N

R

 

 

regular L
p

weighted L
p
, ω = 0

weighted L
p
, ω= 0.1

weighted L
p
, ω = 0.3

weighted L
p
, ω= 0.5

weighted L
p
, ω = 0.7

weighted L
p
, ω= 0.9

(a) � = 0:7 with no noise

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

50

100

150

200

250

p

S
N

R

 

 
regular L

p

weighted L
p
, ω = 0

weighted L
p
, ω= 0.1

weighted L
p
, ω = 0.3

weighted L
p
, ω= 0.5

weighted L
p
, ω = 0.7

weighted L
p
, ω= 0.9

(b) � = 0:5 with no noise

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

20

40

60

80

100

120

140

160

180

200

p

S
N

R

 

 

regular L
p

weighted L
p
, ω = 0

weighted L
p
, ω= 0.1

weighted L
p
, ω = 0.3

weighted L
p
, ω= 0.5

weighted L
p
, ω = 0.7

weighted L
p
, ω= 0.9

(c) � = 0:3 with no noise

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
10

15

20

25

p

S
N

R

 

 

regular L
p

weighted L
p
, ω = 0

weighted L
p
, ω= 0.1

weighted L
p
, ω = 0.3

weighted L
p
, ω= 0.5

weighted L
p
, ω = 0.7

weighted L
p
, ω= 0.9

(d) � = 0:7 with 5% noise

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
6

8

10

12

14

16

18

20

22

p

S
N

R

 

 

regular L
p

weighted L
p
, ω = 0

weighted L
p
, ω= 0.1

weighted L
p
, ω = 0.3

weighted L
p
, ω= 0.5

weighted L
p
, ω = 0.7

weighted L
p
, ω= 0.9

(e) � = 0:5 with 5% noise

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
2

4

6

8

10

12

14

16

18

p

S
N

R

 

 

regular L
p

weighted L
p
, ω = 0

weighted L
p
, ω= 0.1

weighted L
p
, ω = 0.3

weighted L
p
, ω= 0.5

weighted L
p
, ω = 0.7

weighted L
p
, ω= 0.9

(f) � = 0:3 with 5% noise

Figure 2.5: Comparison of SNR for variable weights and p for � = 1, k = 40 and n = 100.
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Figure 2.6: Comparison of performance of weighted `p and weighted `1 recovery in terms of
SNR averaged over 20 experiments for sparse signals x with n = 100; N = 500 with variable
support size and variable � and !
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Figure 2.7: Comparison of performance of weighted `p and weighted `1 recovery in terms of
SNR averaged over 20 experiments for compressible signals x with n = 100; N = 500. The
coefficients decay with a power d = 1:1. The accuracy of the support estimate � is calculated
with respect to the best k = 40 term approximation.
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Figure 2.8: Comparison of performance of weighted `p and weighted `1 recovery in terms of
SNR averaged over 20 experiments for compressible signals x with n = 100; N = 500. The
coefficients decay with a power d = 1:5. The accuracy of the support estimate � is calculated
with respect to the best k = 20 term approximation.

35



2.5. Stylized application

2.5 Stylized application

In this section, we apply standard and weighted `p minimization to recover real audio and
seismic signals that are compressively sampled.

2.5.1 Audio signals

In this section we examine the performance of weighted `p minimization for the recovery of
compressed sensing measurements of speech signals. Here the speech signals are sampled at
44.1 kHz and we randomly choose only 1

4th of the samples (their indices chosen randomly
from uniform distribution). Assuming that s is the speech signal we have the measurements
y = Rs where R is a restriction operator. We divide our measurements y into 21 blocks, i.e.,
y = [yT1 ; y

T
2 ; : : : ; y

T
21]

T . Assuming the speech signal to be compressible in DCT domain (for
example a version of standard DCT is used to compress audio signals in standard MP3), we
try to recover the speech signal using each block measurement.
This helps us in two ways:

� It reduces the size of the problem

� Considering the fact that the support set corresponding to the largest coefficients does not
change much from one block to another, we can use the indices of the largest coefficients
of each block as a support estimate for the next one.

So for each block, we find the speech signal by solving yj = Rjsj , where Rj 2 Rnj�N is
the associated restriction matrix. We also know that speech signals have large low-frequency
coefficients, so we use this fact and the recovered signal at previous block to build our support
estimate and find the speech signal at each block by weighted `p. We choose the support
estimate to be eT = eT 1 [ eT 2. Here eT 1 is the set corresponding to frequencies up to 4 kHz andeT 2 is the set corresponding to the largest nj

16 recovered coefficients of the previous block (for the
first block eT 2 is empty). The results of using weighted `p and weighted `1 for reconstruction
of two audio signals (one male and one female) are illustrated in Figure 2.9. Here N = 2048 ,
and ! 2 f0; 1

6 ;
2
6 ; : : : ; 1g. Weighted `p gives about 1 db improvement in reconstruction.

2.5.2 Seismic signals

The problem of interpolating irregularly sampled and incomplete seismic data to a regular
periodic grid often occurs in 2D and 3D seismic settings [4].
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Figure 2.9: SNRs of reconstructed signal from compressed sensing measurements plotted
against !. An intermediate value of ! yields the best performance.

Our setting is as explained in Section 1.3.1. We have a seismic line with Ns sources, Nr

receivers, and Nt time samples. We are dealing with a signal f 2 RN , where N = NsNrNt.
We want to recover a very high dimensional seismic data volume f = S�x by interpolating
between a smaller number of measurements b = RMS�x, where R is a restriction matrix, M
represents the basis in which the measurements are taken, and S is the 2D curvelet transform.
Seismic data is approximately sparse in curvelet domain and hence we can formulate the
seismic data interpolation problem as an instance of recovery from compressive samples [22,
23]. We partition the seismic data volume into frequency slices and approximate x(1) by
4p(R

(1)MS�; b(1); �) where � is a small number (estimate of the noise level) and R(1) is the
subsampling operator restricted to the first partition and b(1) is the subsampled measurements
of the data f (1) in the first partition. After this we use the support of each recovered partition
as a support estimate for next partition. In particular for j � 1 we approximate x(j+1) by
4p;w(R

(j)MSH ; b(j); �;w) where w is the weight vector which puts smaller weights on the
coefficients that correspond to the support of the previous recovered partition. In [4] the
performance of weighted `1 minimization has been tested for recovering a seismic line using
50% randomly subsampled receivers. Exploiting the ideas in [4] we test the weighted `p

minimization algorithm to recover a test seismic problem when we subsample 50% of the the
receivers using the mask shown in Figure 2.10.b. We omit the details of this algorithm as it
mimics the steps taken in [4] when weighted `1 is replaced by weighted `p.
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Figure 2.10: (a) Example of a high resolution time slice at t = 0:32 s in the source-receiver (SR)
domain, (b) the random subsampling mask where the black lines correspond to the locations
of inactive receivers, and (c) the subsampled time slice. The subsampling ratio is 50%.

The Seismic line at full resolution has Ns = 64 sources, Nr = 64 receivers with a sample
distance of 12.5 meters, and Nt = 256 time samples acquired with a sampling interval of
4 milliseconds. Consequently, the seismic line contains samples collected in a 1s temporal
window with a maximum frequency of 125 Hz. To access frequency slices, we take the one
dimensional discrete Fourier transform (DFT) of the data along the time axis. We solve the
`p and weighted `p minimization problems. In each of the weighted `p problems, the support
estimate set of a partition is derived from the analysis coefficients of the previously recovered
partition. Moreover, p is set to be 0:5 and the weight is set to 0.3.
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Figure 2.11: (a) Shot gather number 32 from a seismic line from the Gulf of Suez. (b)
Subsampled shot gather using column 32 from the mask in Figure 2.10.b.

L
p
 minimization in SR

Distance (m)

T
im

e
(s

e
c
)

100 200 300 400 500 600 700 800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

Weighted L
p
 minimization in SR

Distance (m)

T
im

e
(s

e
c
)

100 200 300 400 500 600 700 800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 2.12: (a) Recovered shot gather using `p minimization in the SR domain. (b) Recovered
shot gather using weighted `p minimization in the SR domain.

Figures 2.11.a and 2.11.b show a fully sampled and the corresponding subsampled shot gather,
respectively. The shot gather corresponds to shot number 32 of the seismic line. Figures
2.12.a and 2.12.b show the reconstructed shot gathers using `p minimization and weighted
`p minimization, respectively. The error plots of both reconstructions are shown in Figures
2.13.a and 2.13.b. The error plots show that the magnitude of the reconstruction error of
weighted `p minimization is smaller than that of standard `p. Figure 2.14 shows the SNRs
of all shot gathers recovered by using regular and weighted `p and `1 minimization problems.
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Figure 2.13: (a) Error plots showing the difference between the original shot gather and the
reconstruction from `p minimization in the source-receiver domain. (b) Error plots show-
ing the difference between the original shot gather and the reconstruction from weighted `p
minimization in the SR domain.

The plots demonstrate that recovery by weighted `p in the frequency-source-receiver domain
is always better than recovery by regular `p. In this plot we also see that although recovery
by weighted `p minimization is better than regular `1 minimization but recovery by weighted
`1 minimization is still about 1 db better than recovery by weighted `p minimization. We
believe that similar to the case we see in the noisy compressible case this is an artifact of the
algorithm we are using.
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Figure 2.14: Comparison of the SNRs achieved by `1, `p, weighted `1, and weighted `p mini-
mization in recovering shot gathers applied to source-receiver domain

2.6 Proof of Theorem 2.12

Recall that eT , an arbitrary subset of f1; 2; :::; Ng, is of size �k where 0 � � � a and a is some
number larger than 1. Let the set eT� = T0 \ eT and eT� = T c

0 \ eT where, j eT�j = � eT = ��k and
�+ � = 1.
Let x� = x+ h be a minimizer of the weighted `p problem. Then:

kx+ hkp;w � kxkp;w ) kx+ hkpp;w � kxkpp;w:

Using the weights we have:

!pkxeT + heT kpp + kxeT c + heT ckpp � !pkxeT kpp + kxeT ckpp:
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Figure 2.15: Illustration of the signal x and weight vector w emphasizing the relationship
between the sets T0 and eT .
Consequently,

!pkxeT\T0 + heT\T0kpp + !pkxeT\T c
0
+ heT\T c

0
kpp + kxeT c\T0 + heT c\T0k

p
p + kxeT c\T c

0
+ heT c\T c

0
kpp

� !pkxeT\T0kpp + !pkxeT\T c
0
kpp + kxeT c\T0k

p
p + kxeT c\T c

0
kpp:

We use the forward and reverse triangle inequalities to get:

!pkheT\T c
0
kpp + kheT c\T c

0
kpp � !pkheT\T0kpp + kheT c\T0k

p
p + 2(!pkxeT\T c

0
kpp + kxeT c\T c

0
kpp):

Adding and subtracting !pkheT c\T c
0
kpp to the left hand side and adding and subtracting !pkheT c\T0k

p
p+

!pkxeT c\T c
0
kpp to the right hand side we get:

!pkheT\T c
0
kpp + !pkheT c\T c

0
kpp + kheT c\T c

0
kpp � !pkheT c\T c

0
kpp

� !pkheT\T0kpp + !pkheT c\T0k
p
p + kheT c\T0k

p
p � !pkheT c\T0k

p
p

+2(!pkxeT\T c
0
kpp + !pkxeT c\T c

0
kpp + kxeT c\T c

0
kpp � !pkxeT c\T c

0
kpp):

Since khT c
o
kpp = kheT\T c

0
kpp + kheT c\T c

0
kpp we get:

!pkhT c
0
kpp + (1� !p)kheT c\T c

0
kpp � !pkhT0k+ 2(!pkxT c

0
kpp + (1� !p)kxeT c\T c

0
kpp): (2.21)
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We also have khT c
o
kpp = !pkhT c

o
kpp + (1 � !p)kheT\T c

0
kpp + (1 � !p)kheT c\T c

0
kpp: Combining this

with (2.21) we get:

khT c
0
kpp � !pkhT0kpp + (1� !p)(kheT c\T0k

p
p + kheT\T c

0
kpp)

+2(!pkxT c
0
kpp + (1� !p)(kxeT c\T c

0
kpp):

(2.22)

eT� = T0 \ eT ) kheT c\T0k
p
p + kheT\T c

0
kpp = kh

T0[eTneT�kpp:
khT c

0
kpp � !pkhT0kpp + (1� !p)kh

T0[eTneT�kpp + 2(!pkxT c
0
kpp + (1� !p)(kxeT c\T c

0
kpp): (2.23)

Now partition T c
0 into sets of T1; T2; :::; jTj j = ak for j � 1, such that T1 is the set of indices

of the ak largest (in magnitude) coefficients of hT c
0
and so on. Finally let T01 := T0 [ T1. Now

we can find a lower bound for kAhkp2 using the RIP constants of the matrix A. We have:

kAhkp2 = kAhT01 +
X
j�2

AhTjkp2 � kAhT01kp2 �
X
j�2

kAhTjkp2

� (1� �ak+jT0j)
p
2 khT01kp2 � (1 + �ak)

p
2

X
j�2

khTjkp2:
(2.24)

Here we also use the fact that k:kp2 satisfies the triangle inequality for 0 < p < 1.
Now we should note that jhTj+1(l)jp � jhTj (l0)jp for all l 2 Tj+1 and l0 2 Tj , and thus

jhTj+1(l)jp �
khTj k

p
p

ak . It follows that khTjk22 � (ak)
1� 2

p khTjk2p and consequently :

X
j�2

khTjkp2 � (ak)
p
2
�1X

j�1
khTjkpp = (ak)

p
2
�1khT c

0
kpp: (2.25)

Using (2.25)in (2.24) we get:

kAhkp2 � (1� �ak+jT0j)
p
2 khT01kp2 � (1 + �ak)

p
2 (ak)

p
2
�1khT c

0
kpp: (2.26)

Next, consider the feasibility of x� and x. Both vectors are feasible, so we have kAhk2 � 2".
Also note that jT0 [ eT n eT�j = (1 + � � 2��)k and khT0kpp � jT0j1�

p
2 khT0kp2. Using these and
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(2.23) in (2.26) we get:

(1� �ak+jT0j)
p
2 khT01kp2 � (2")p + 2(1 + �ak)

p
2 (ak)

p
2
�1
�
!pkxT c

0
kpp + (1� !p)kxeT c\T c

0
kpp
�

+(1 + �ak)
p
2 (ak)

p
2
�1
�
!pjT0j1�

p
2 khT0kp2 + (1� !p) ((1 + �� 2��)k)1�

p
2 kh

T0[eTneT�kp2� :
(2.27)

T1 contains the largest ak coefficients of hT c
0
with a > 1 so j eT n eT�j = (1 � �)�k � ak then

kh
T0[eTneT�k2 � khT01k2, also we have khT0k2 � khT01k2 so we get:

khT01kp2 �
(2")p + 2(1 + �ak)

p
2 (ak)

p
2
�1
�
!pkxT c

0
kpp + (1� !p)kxeT c\T c

0
kpp
�

(1� �ak+jT0j)
p
2 � (1 + �ak)

p
2 (ak)

p
2
�1
�
!pjT0j1�

p
2 + (1� !p) ((1 + �� 2��)k)1�

p
2

� :
(2.28)

To complete the proof denote by hT c
0
[m] the m-th largest coefficient of hT c

0
and observe that

jhT c
0
[m]jp � khTc

0
kpp

m . As hT c
01
[m] = hT c

0
[m+ ak] we have:

khT c
01
k22 =

X
m�ak+1

jhT c
0
[m]j2 �

X
m�ak+1

(
khT c

0
kpp

m
)
2
p � khT c

0
k2p

(ak)
2
p
�1
( 2p � 1)

: (2.29)

Here the last inequality follows because for 0 < p < 1:

X
m�ak+1

m
� 2

p �
Z 1

ak
t
� 2

p dt =
1

(ak)
2
p
�1
( 2p � 1)

:

Combining (2.29) with (2.23) we get:

khT c
01
kp2 �

�
(ak)

2
p
�1
(
2

p
� 1)

�� p
2 ��

!pkhT0kpp + (1� !p)kh
T0[eTneT�kpp + 2

�
!pkxT c

0
kpp + (1� !p)(kxeT c\T c

0
kpp)
��
:

(2.30)

We showed that kh
T0[eTneT�k2 � khT01k2 and khT0k2 � khT01k2:

Using these in (2.30) we get:

khT c
01
kp2 �

�
(ak)

2
p
�1
(
2

p
� 1)

�� p
2 ���

!pjT0j1�
p
2 + (1� !p) ((1 + �� 2��)k)1�

p
2

�
khT01kp2 + 2

�
!pkxT c

0
kpp + (1� !p)(kxeT c\T c

0
kpp)
��
:

(2.31)
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Now we can find a bound for khk2 using (2.28) and (2.31):

khk22 = (khT01kp2)
2
p + (khT c

01
kp2)

2
p �

�
khT01kp2 + khT c

01
kp2
� 2
p : (2.32)

khkp2 �

0B@1 +
�
!pjT0j1�

p
2+(1�!p)((1+��2��)k)1�

p
2

�
�
(ak)

2
p�1( 2

p
�1)
� p

2

1CA (2")p

(1� �ak+jT0j)
p
2 � (1 + �ak)

p
2 (ak)

p
2
�1
�
!pjT0j1�

p
2 + (1� !p) ((1 + �� 2��)k)1�

p
2

�

+

2

0B@(1 + �a)
p
2a

p
2
�1 + (1��(a+1)k)

p
2�

a
2
p�1( 2

p
�1)
� p

2

1CA�!pkxT c
0
kpp + (1� !p)kxeT c\T c

0
kpp
�

(1� �ak+jT0j)
p
2 � (1 + �ak)

p
2 (ak)

p
2
�1
�
!pjT0j1�

p
2 + (1� !p) ((1 + �� 2��)k)1�

p
2

� ;
(2.33)

with the condition that the denominator is positive, equivalently:

�ak +
a

2
p
�1

(!p + (1� !p)(1 + �� 2��)1�
p
2 )

2
p

�(a+1)k <
a

2
p
�1

(!p + (1� !p)(1 + �� 2��)1�
p
2 )

2
p

� 1:

(2.34)
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Chapter 3

Weighted AMP

3.1 Introduction

Significant effort has been made recently to find fast algorithms for recovering sparse signals
from a small number of linear measurements. Our setting is as before: Let x 2 RN be a
sparse vector. We try to recover x from n < N linear and potentially noisy measurements
acquired via y = Ax + e. Here A is an n � N matrix whose coefficients are drawn from a
sub-Gaussian distribution and kek � �. As mentioned before the BP problem (1.4) is perhaps
the most common approach to recover x and can be solved by linear programming algorithms.
Relatively high computational complexity of these algorithms has made them difficult to use
in applications where the signals are very high dimensional. On the other hand, the low
computational complexity of iterative algorithms has made them an appealing alternative for
BP [18–20]. A general form of these algorithms is as

xt+1 = �(xt + A�zt; �̂ t)

zt = y � Axt;
(3.1)

where as before xt is the current estimate of x, zt is the current residual, A� is the Hermitian
of the measurement matrix and � is a non-linear thresholding function which acts component-
wise on its vector-valued argument. Two popular examples are the soft thresholding function
�(a; b) = sign(a)(a � b)+, and the hard thresholding function where �H(a; b) = aI(jaj� b)+.
More precisely these functions act on the coefficients of the signal a and zero out any value
which is less than the scalar b in magnitude.
Recently an extensive numerical study [32] found that even under optimal tunings, the recovery
conditions achieved by IT is worse than those of BP. As mentioned in the introduction Donoho,
Maleki and Montanari proposed a new iterative thresholding algorithm which is referred to
as approximate message passing [21] that was shown to enjoy both the low complexity of IT
algorithms and the superior recovery conditions of BP. As stated also in Section 1.2.3, the
AMP algorithm starts from an initial x0 and an initial threshold �̂ 0 = 1 and iteratively goes
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by
xt+1 = �(xt + A�zt; � t);

zt = y � Axt + ��1zt�1h�0(xt�1 + A�zt�1; � t�1)i:
(3.2)

Notice that the only difference between AMP (3.2) and generic IT algorithm (3.1) is the
extra term ��1zt�1h�0(xt�1 + A�zt�1; � t�1)i in the calculation of the residual. This term has
been derived in [21] using the theory of belief propagation in graphical models and has been
empirically shown to improve the recovery conditions. Statistical physicists call this term the
Onsager reaction term [33].
In this section we design a weighted approximate message passing algorithm for recovering
sparse signals when there exists prior information about the support of the signal. We build
up the weighted AMP algorithm by following [34] step by step and empirically show that
when the support estimate is accurate enough, weighting results in faster recovery and better
sparsity-undersampling tradeoff. In particular we derive a "weighted AMP" algorithm to
solve the weighted `1 minimization

argmin
s2RN

jjsjj1;w subject to y = As; (3.3)

where w 2 f!; 1gN is the weight vector and ksk1;w := �iwijsij is the weighted `1 norm. Note
that in (3.3) we have restated the weighted `1 minimization (1.7) when � = 0. As before given
a support estimate eT � f1; :::; Ng, wj = ! < 1 for j 2 eT and wj = 1 for j =2 eT .
3.2 Construction of the graphical model for weighted BP

Estimating marginals

Assume [w1;w2; :::;wN]
T are the weights we use for the coefficients of the signal s. Consider

the following distribution over variables s1; s2; : : : ; sN :

�(ds) =
1

Z

NY
i=1

exp(��wijsij)
nY

a=1

�fya=(As)ag; (3.4)

where �fya=(As)ag denotes a Dirac distribution on the hyperplane ya = (As)a. As � !1 the
mass of this distribution concentrates around the solutions of y = As which has more zero
coefficients and hence the solution of (3.3)—the maximum of exp(�jtj) is achieved when t = 0.
If the solution of (3.3) is unique, then finding the marginals of (3.4) gives us the solution.
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1 a n

1 i N

Figure 3.1: Factor graph associated to the probability distribution 3.4. Circles correspond to
variables si, i 2 [n] and squares correspond to measurements ya, a 2 [m].

Belief propagation

Belief propagation provides a low complexity tool to estimate the marginals of (3.4). This
method has been introduced in [34]. In this section we review this method and make the
corresponding changes for the weighted version. For any d 2 N define [d] := f1; 2; : : : ; dg.
Consider the bipartite factor graph G = (V; F;E), shown in Figure 3.1, which includes a
variable node i 2 V = [N ] for each variable si and a factor node a 2 F = [n] for each term
�fya=(As)ag. E = [N ] � [n] = f(i; a) : i 2 [N ]; a 2 [n]g where variable i and factor a are
connected by an edge if �fya=(As)ag depends non-trivially on si, i.e., if Aai 6= 0. As in our case
A is a dense matrix, G is a complete bipartite matrix [34]. The state variables of this belief
propagation are the messages f�i!agi2V;a2F and f�̂a!igi2V;a2F which are associated to each
edge of the factor graph G. The update rules for these densities are:

�t+1i!a(si)
�= e��wijsij Y

b 6=a
�̂tb!i(si);

�̂ta!i(si)
�=

Z Y
j 6=i

�tj!a(si) �fya=(As)agds:
(3.5)

Here and below the subscripts denote the iteration number and �= means identity between
distributions up to a normalization constant.
This message passing has two challenges in implementation. First the messages are den-
sity functions over the real line and keeping track of them is difficult unless they have some
structure. Furthermore at each iteration, 2nN messages should be calculated which is com-
putationally expensive. In Sections 3.3 and 3.4 we show that in the large system limit and
as � !1 this message passing algorithm is equivalent to the following simple iterative algo-
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rithm:
As mentioned in (3.2) at t = 0 we start from x0 = 0 and �̂ 0 = 1 and z0 = y. Assume
w = [w1; w2; : : : ; wN ]

T is the weight vector. Then the algorithm proceeds as follows:

xt+1 = �(xt + A�zt; �̂ tw)

zt = y � Axt + ��1zt�1h�0(xt�1 + A�zt�1; �̂ t�1w)i

�̂ t =
�̂ t�1

�
h�0(xt�1 + A�zt�1; �̂ t�1w)i:

(3.6)

In each iteration, xti is the mean value of the message �ti!a, �̂
t is the variance of �ti!a, and the

residual zta corresponds to the mean of �̂ta!i. An analysis of these terms—following the steps
in Section 3 of [34]—is given in the next section.

3.3 Large system limit

In this section we explain the derivation of (3.6) which is a straight-forward adaptation to
the weighted case of the derivation of Section 3 of Donoho et al. in [34]. We restate some
of lemmas and theorems in that paper without providing the proofs and justify the simple
changes which should be done to solve the weighted `1 problem (1.7) by weighted AMP.
The following lemma in [34, Lemma 3.1] approximates �̂ta!i by a Gaussian distribution. We
restate this lemma without making any changes.
Lemma 3.1. Let xtj!a and

� t
j!a

� be, respectively, the mean and variance of the distribution
�̂tj!a. Further assume

R js� jj3d�tj!a(sj) � Ct uniformly in N and n. Then there exist a
constant C 0

t such that

jj�̂ta!i � �̂ta!ijjK � C 0
t

N
1
2 (�̂ ta!i)

3
2

;

�̂ta!i(dsi) :=

s
�A2

ai

2��̂ ta!i

expf �

2�̂ ta!i

(Aaisi � zta!i)
2gdsi;

(3.7)

where the distribution parameters are given by

zta!i := ya �
X
j 6=i

Aajx
t
j!a;

�̂ ta!i :=
X
j 6=i

A2
aj�

t
j!a:

(3.8)
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Here jj�jjK is Kolmogorov distance, which for two distributions �1 and �2 is defined as

jj�1 � �2jjK := sup
a2R

j
Z a

�1
�1(dx)�

Z a

�1
�1(dx)j: (3.9)

Notice that �̂ ta!i =
P
j 6=i
A2
aj�

t
j!a = Ca � A2

ai�
t
i!a, where Ca =

P
j
A2
aj�

t
j!a. Assuming that

matrix A is drawn from a random Gaussian distribution with mean 0 and variance 1
n we can

approximate �̂ ta!i by an edge independent quantity �̂ t.
Motivated by this lemma we find the mean and variance of the messages � t+1i!a(si). Consider
the following family of densities introduced in [34]

f�(s;x; b) :=
1

z�(x; b)
expf��jsj� �

2b
(s� x)2g; (3.10)

where z�(x; b) is a normalization constant.
Also denote the mean and variance of these distributions as

F�(x; b) := Ef�(�;x;b)(Z); G�(x; b) := Varf�(�;x;b)(Z); (3.11)

where Z has density f�(�;x; b) [34]. Simple modification of the Lemma 3.2 in [34] gives us the
mean and variance of � t+1i!a(si). Notice that in our case, f� is replaced by f�wi and similarly
we replace F� and G� by F�wi and G�wi respectively.
Lemma 3.2. Suppose at iteration t, the messages from factor nodes to the variable nodes
are set to be �̂ ta!i(si) = �̂ta!i(si), with �̂

t
a!i as defined in (3.7) with parameters zta!i and

�̂ ta!i = �̂ t. Then at the next iteration we have

�t+1i!a(si) = �t+1i!a(si)f1 +O(
s2i
n
)g; �t+1i!a(si) = f�wi

(si;
X
b 6=a

Abiz
t
b!i; �̂

t): (3.12)

Combining this lemma with Lemma 3.1, the mean and variance is given by

xt+1i!a = F�wi
(
X
b 6=a

Abiz
t
b!i; �̂

t); � ti!a = �G�wi
(
X
b 6=a

Abiz
t
b!i; �̂

t): (3.13)
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Proof. Combining (3.7) and (3.5) we have:

�t+1i!a(si)
�= e��wijsij Y

b 6=a
�̂tb!i(si) = expf��w � ijsij�

X
b6=a

�

2�̂ t
(Aaisi � ztb!i)

2g �=

expf��wijsij� �

2�̂ t
(
n� 1

n
s2i � 2si

X
b 6=a

Abiz
t
b!i)

2g

�= expf�(�wi)jsij� (�wi)

2(wi�̂ t)
(
n� 1

n
s2i � 2si

X
b 6=a

Abiz
t
b!i)

2g;

(3.14)

which coincides with �t+1i!a(si) up to terms of s2
i

n . Notice that here we have used the fact that
A2
ai � 1p

n
and �= means identity between distributions up to a normalization constant. And

finally the formulae for xt+1i!a and � ti!a follows from (3.11).

xt+1i!a = F�wi
(
X
b 6=a

Abiz
t
b!i; wi�̂

t);

zta!i = ya �
X
j 6=i
Aajz

t
j!a;

�̂ t+1i =
�

n
G�wi

(
NX
i=1

Abiz
t
b!i; wi�̂

t):

(3.15)

3.4 Large � limit

As explained in Section 3.2 we are interested in the case where � ! 1. In this section we
simplify the belief propagation formulas (3.15). In Section 3.3 of [34] the functions F� and G�

have been studied in the large � limit. Here we follow the same argument. Consider the soft
thresholding function:

�(x; b) =

8>>>><>>>>:
x� b; if x > b

0; if �b � x � b

x+ b; if x < �b
: (3.16)

We can easily confirm that

�(x; wib) = argmin
s2R

fjsj+ 1

2wib
(s� x)2g = argmin

s2R
fwijsj+ 1

2b
(s� x)2g: (3.17)

In the � ! 1 limit, the integral that defines F�wi
(x; wib) is dominated by its maximum

value which is s� = �(x; wib). Therefore F�wi
(x; wib) ! �(x; wib). The variance can be
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estimated by approximating f�wi
(s;x;wib) near s�. If s� = 0 then f�wi

(s;x;wib) can be
approximated by a Laplace distribution which leads to G�wi

(x; wib) = �( 1
(�wi)2

) and if s� 6= 0

then f�wi
(s;x;wib) can be approximated by a Gaussian distribution distribution which leads

to G�wi
(x; wib) = �( 1

�wi
). Hence using Lemma 3.3 of [34] we get the following lemma:

Lemma 3.3.

lim
�wi!1

F�wi
(x; wib) = �(x; wib);

lim
�wi!1

�G�wi
(x; wib) =

lim
�wi!1

�wiG�wi
(x; wib)

wi
=

wib �0(x; wib)

wi
= b�0(x; wib):

(3.18)

Accordingly, we are led to the following simplified message passing algorithm:

xt+1i!a = �(
X
b 6=a

Abiz
t
b!i; wi�̂

t);

zta!i = ya �
X
j 6=i
Aajz

t
j!a;

�̂ t+1 =
�̂ t

N�

NX
i=1

�0(
X
b

Abiz
t
b!i; wi�̂

t):

(3.19)

3.5 From message passing to AMP

The simplified message passing algorithm (3.19), still needs 2nN updates at each iteration
which is computationally intractable for large problems. In Section 3.4 of [34] the regular
message passing algorithm has been approximated by AMP with approximations xti!a =

xti + �xti!a + O( 1
N ) and zti!a = zti + �zti!a + O( 1

N ) which leads to the algorithm (3.2). An
identical approach can be applied to (3.19) which approximates this message passing algorithm
by the following algorithm. As calculations are the same as calculations in Section 3.4 of [34]
once we include the weighting, we omit them.

xt+1 = �(xt + A�zt; �̂ tw)

zt = y � Axt + ��1zt�1h�0(xt�1 + A�zt�1; �̂ t�1w)i

�̂ t =
�̂ t�1

�
h�0(xt�1 + A�zt�1; �̂ t�1w)i:

(3.20)

As mentioned earlier the main advantage of weighted AMP over weighted `1 minimization is
the low computational complexity of this algorithm. Figures 3.2 and Figure 3.3 illustrate this
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Figure 3.2: Histograms of the recovery time of weighted `1 and weighted AMP. Plots show
the times it takes for (a) weighted `1, and (b) weighted AMP to recover 1000 k-sparse signals
x 2 R4000 with k = 400 and n = 1500 measurements when we have a support estimate with
50% accuracy.

advantage. Here we use weighted AMP and weighted `1 to recover 1000 400-sparse signals
x 2 R4000 by n = 1500 linear measurements obtained via y = Ax where A 2 R1500�4000

is a Gaussian random measurement matrix. For each instance of the experiment, assuming
that the signal x is supported on the set T—with jT j = 400—we have a support estimate eT
with 50% accuracy, i.e., jT\eT j

jT j = 0:5. Our goal is to compare the recovery time of weighted
AMP and weighted `1. To do this we compute the time it takes for each algorithm to find
an approximation x� such that kx � x�k � 10�8, i.e., 80-db SNR. Figure 3.2.a shows the
histogram of the time it takes for weighted `1 to recover the signals and Figure 3.2.b shows
the histogram for weighted AMP. Notice the difference in the horizontal axes. As we can see
in this figure, more than 98% of the signals was recovered with weighted AMP in less than 2.5
seconds, whereas, the fastest recovery with weighted `1 minimization is 2.5 seconds.
Figure 3.3 shows the recovery times of each one of the 1000 signals sorted with respect to the
recovery time of weighted `1. In this figure we can see that weighted AMP is always—and in
some cases, up to 10 times—faster than weighted `1.
In Section 3.6 we introduce a reweighted AMP algorithm to recover sparse signals and in
Section 3.7 we present extensive numerical results comparing weighted `1, weighted AMP, and
reweighted AMP.
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Figure 3.3: Comparison of recovery time of each one of the 1000 signals by weighted `1 and
weighted AMP. The experiments are sorted with respect to the time it takes for weighted `1
to recover the signal. Specifically, the first experiments is one that weighted `1 minimization
recovers it faster than all the others and experiment number 1000 is the one which is recovered
slowest by weighted `1.

3.6 Reweighted AMP and reweighted W-AMP

In this section we introduce the reweighted AMP and reweighted W-AMP algorithms for re-
covering sparse and compressible signals and show preliminary results to justify the advantages
of reweighting.

3.6.1 Reweighted AMP

Figure 3.4 shows the percentage of the true support recovered versus the iteration number
when using regular AMP to recover a 100-sparse signal in R1000 and taking 250, 300, 350 and
400 measurements. The measurement matrix is a Gaussian normalized random matrix.
As we see in this figure even when the number of measurements is not enough (when AMP
does not reach full recovery), more than 50% of the support is recovered after a few iterations.
This observation motivates us to design a reweighted AMP algorithm which finds the support
of the current estimate every 20 iterations and uses that as an approximation for the true
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Figure 3.4: Percentage of the support recovered by AMP versus iteration number when the
signal x 2 R1000 is 100-sparse.

support and recovers the signal by solving a weighted AMP after that. Algorithm 2 explains
the details of this algorithm.
Reweighted AMP increases the convergence speed and gives us better sparsity-undersampling
trade-off. In other words there are cases that the number of measurements are not enough
to recover the signal using regular AMP (and hence `1) but reweighted AMP can recover the
signal using the same number of measurements. Figure 3.5 compares reweighted and regular
AMP. Here we recover a 100-sparse signal in R1000 using an 250� 1000 Gaussian matrix (left)
and an 350 � 1000 Gaussian matrix (right). Both figures show the misfit error kxtrec�xk

kxk ( t
is the current iteration) versus the iteration number. The left figure shows the case that the
number of measurements is not enough in order to get full recovery by regular AMP and the
right figure shows the case that regular AMP achieves full recovery.
To test our reweighted AMP algorithm, we compare the recovery performance of this algorithm
with two well known algorithms that use reweighting to enhance the recovery conditions, i.e.,
iterative reweighted `1 minimization (IRL1) [30], and support driven reweighted `1 minimiza-
tion (SDRL1) [35] in recovering signals x 2 RN with N = 1000. First we compare the results
when we use these algorithms to recover 100 k-sparse signals using compressed measurements
obtained by Gaussian matrices A 2 Rn�N where n 2 fN10 ; N

4 ;
N
2 g. In Figure 3.6 we compare
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Algorithm 2 Reweighted AMP
1: Input b = Ax, tmax, !
2: Output x(t)

3: Initialize p̂ = 0:98, k̂ =
nlog(N

n
)

2 , wi = 1 for all i 2 f1; : : : ; Ng, � = n
N , 
 = ;, t = 0, x0 = 0,

z0 = y, �̂ 0 = 1
4: while t < tmax do
5: t=t+1
6: xt = �(xt�1 + A�zt�1; �̂ t�1w)
7: zt = y � Axt + ��1zt�1h�0(xt�1 + A�zt�1; �̂ t�1w)i
8: �̂ t = �̂ t�1

� h�0(xt�1 + A�zt�1; �̂ t�1w)i
9: if mod(t; 20) = 10 then

10: l = min
�
j�j s.t. kxt�k � p̂kxtk

11: s = min(l; k̂)
12: 
 = supp(xtjs)
13: Set the weights equal to wi =

(
1; if i 2 
c

!; if i 2 

14: end if
15: end while
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Figure 3.5: Comparison between regular AMP and reweighted AMP when m=250 and m=350,
recovering a 100-sparse signal in R1000.

full recovery success rate when k
n 2 f 1

10 ;
2
10 ;

3
10 ;

4
10 ;

5
10g. For the sake of comparison we

also include the recovery results of regular AMP and WSPGL1 algorithm introduced in [36].
The figure shows that our proposed reweighted AMP has comparable performance with IRL1
and SDRL1 (in some cases reweighted AMP outperforms the other two). Notice that both
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Figure 3.6: Comparison of percentage of exact recovery by reweighted AMP, IRL1, SDRL1,
WSPGL1, and regular AMP recovering 100 sparse signals x 2 R1000 with different number of
measurement, n, and different levels of sparsity.

IRL1 and SDRL1 algorithms solve a series of weighted `1 minimizations to recover the signal
and our proposed reweighted AMP is much faster than both these algorithms. On the other
hand the recovery results of reweighted AMP are significantly better than algorithms which
has comparable complexities, i.e., regular AMP and WSPGL1.
Next, we generate compressible signals x 2 RN , sorted coefficients of which decay like j�p

where j 2 f1; 2; : : : ; Ng with dimension N = 1000. We consider the case where n
N = 0:3 and

decay power p 2 f1:1; 1:5; 2g. Figure 3.7 shows the histogram of ratio of the reconstruction
error of reweighted AMP over that of IRL1 for 100 experiments. Notice that a ratio smaller
than one means that reweighted AMP has smaller reconstruction error than IRL1 and a ratio
greater than one that the the reconstruction error of IRL1 is smaller than that of reweighted
AMP.

3.6.2 Reweighted W-AMP

Applying the same reweighting idea, explained in Section 3.6.1, to the weighted AMP algorithm
(3.20), we derive the reweighted W-AMP algorithm when we have prior support information
about the signal which is explained in Algorithm 3. Notice that here the only difference is in
the way we do reweighting, i.e., as before we use small weights for the coefficients which are in
the support estimates and also every 20 iterations we estimate the support set of the current
estimate and use smaller weights for those coefficients.
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Figure 3.7: Histogram of ratio of mean squared error (MSE) between reweighted AMP and
IRL1 for recovering compressible signals x 2 R1000, sorted coefficients of which decay like j�p

with j 2 f1; 2; : : : ; 100g and with different decay rates p.

Algorithm 3 Reweighted W-AMP

1: Input b = Ax, tmax, eT , !
2: Output x(t)

3: Initialize p̂ = 0:98, k̂ =
nlog(N

n
)

2 , wi = 1 for i 2 eT c and wi = ! for i 2 eT , � = n
N , 
 = ;,

t = 0, x0 = 0, z0 = y, �̂ 0 = 1
4: while t < tmax do
5: t=t+1
6: xt = �(xt�1 + A�zt�1; �̂ t�1w)
7: zt = y � Axt + ��1zt�1h�0(xt�1 + A�zt�1; �̂ t�1w)i
8: �̂ t = �̂ t�1

� h�0(xt�1 + A�zt�1; �̂ t�1w)i
9: if mod(t; 20) = 10 then

10: l = min
�
j�j s.t. kxt�k � p̂kxtk

11: s = min(l; k̂)
12: 
 = supp(xtjs)

13: Set the weights equal to wi =

8>><>>:
1; if i 2 eT c \ 
c

!; if i 2 eT \ 
c

!
5 ; if i 2 


14: end if
15: end while
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3.7. Numerical results

3.7 Numerical results

In this section we provide numerical examples to compare regular, weighted and reweighted
AMP with `1 and weighted `1 algorithms (we use the SPGL1 software to solve the weighted
`1 minimization problem [37]).
Table 3.1 compares the time it takes for AMP, reweighted AMP, and `1 minimization to recover
a 100-sparse signal in R1000 with maximum SNR of 40 db. Here we take the average recovery
time over 20 experiments when the number of measurements changes from 300 to 500 with an
increment of 50. 1 means that the method fails full recovery in at least one of the examples.
Notice that in Table 1 we see that reweighted AMP can recover 100-sparse signals with fewer
measurements compared to regular AMP and `1 minimization.
To examine this observation more carefully we consider the case that we have prior support
information (Notice that in these experiments we also include the cases that the recovery
algorithm does not use any prior support information). We generate signals x 2 RN where
N = 500 and with fixed sparsity k = 40. We compute the (noisy) compressed measurements
of x using a Gaussian random measurement matrix A with dimensions n�N where n varies
between 80 and 200 with an increment of 20. In the case of noisy measurements, we have
assumed 5% noise, i.e., 26 db SNR. Figure 3.8 shows the reconstruction signal-to-noise ratio
averaged over 20 experiments, using weighted AMP and reweighted W-AMP to recover sparse
signals x 2 RN in the noise-free case and for � = 0:3; 0:5; 0:7 (� determines the accuracy of
the support estimate). The SNR is measured in dB, as defined in (2.20). In these figures we
also include the results of weighted `1, IRL1, SDRL1, and WSPGL1. Notice that when ! = 1,
weighted AMP reduces to regular AMP, reweighted W-AMP reduces to reweighted AMP, and
weighted `1 reduces to regular `1. Figures 3.8.a, 3.8.c, and 3.8.e show the results for weighted
AMP and weighted `1 when � = 0:7; 0:5; and 0:3 respectively. Notice that although weighted
AMP is much faster than weighted `1,its recovery performance is slightly better than weighted
`1. Similarly Figures 3.8.b, 3.8.d, and 3.8.f show the results for reweighted W-AMP, IRL1,
SDRL1, and WSPGL1.

Remark 3.1. As � increases—support estimate is more accurate—both weighted and reweighted
W-AMP achieve full recovery with fewer measurements. Also notice that intermediate value
of ! gives us the best recovery when � > 0:5. This behavior is similar to what we see with
weighted `1 and weighted `p minimization.

Remark 3.2. We can use Figure 3.8 to compare weighted AMP and weighted `1 minimiza-
tion with reweighted W-AMP empirically. In all the cases, reweighted W-AMP outperforms
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3.7. Numerical results

methodnm 300 350 400 450 500
41 1 1 0.3367 0.2071 0.1538
regular AMP 1 1 0.1111 0.0823 0.0727
reweighted AMP 2.1029 0.2481 0.1102 0.0783 0.0724

Table 3.1: Comparison of recovery time of AMP, reweighted AMP, and `1 minimization in
seconds.

weighted AMP and weighted `1 significantly. For example when � = 0:5, n = 100, and
! = 0:5 reweighted W-AMP reaches full recovery for all the 40-sparse signals (average SNR of
180 db), whereas both weighted AMP and weighted `1 recover with average SNR of less than
10 db. As another example when � = 0:3 reweighted W-AMP achieves full recovery with 120

measurements whereas weighted AMP needs 160 measurement for full recovery.

Remark 3.3. In all the experiments reweighted W-AMP outperforms IRL1 and SDRL1 (while
it is still much faster than both). For example when n = 100 reweighted W-AMP recovers the
signals with an average SNR of 75 db, whereas both IRL1 and SDRL1 recover the signals with
an average SNR of less than 15 db. Also notice that in this case when ! = 0:3 or 0:5 we reach
full recovery for all the signals when we have a 50% accurate support estimate.

Remark 3.4. Notice the results of reweighted W-AMP when we have a 70% accurate support
estimate (Figure 3.8.b). In this experiment when ! = 0:3 reweighted W-AMP has recovered
all the signals when the number of measurements is as small as twice the number of non-zero
coefficients of the signal.

Next we repeat the above experiment except this time the measurements have 5% noise,
i.e., 26 db SNR. The results are shown in Figure 3.9. Figures 3.9.a, 3.9.c, and 3.9.e show the
weighted AMP and weighted `1 reconstruction signal-to-noise ratio averaged over 20 experi-
ments and Figures 3.9.b, 3.9.d, 3.9.f show the results when we use reweighted W-AMP, IRL1,
SDRL1, and WSPGL1. Reweighted W-AMP outperforms weighted AMP again. As mentioned
earlier when ! = 1 weighted AMP reduces to regular AMP and reweighted W-AMP reduces
to reweighted AMP. Similar to the noise-free case reweighted W-AMP always outperforms all
the other algorithms. Notice that using intermediate weights is always beneficial in the noisy
case even when the support estimate is inaccurate, i.e., � < 0:5. For example when � = 0:3

and n = 120 with weighted AMP and ! = 0 we get SNR�6 db and with regular AMP we get
SNR�10 db whereas with weighted AMP and ! = 0:5 we get SNR�12 db.

Remark 3.5. Notice the improvement in recovery performance of weighted W-AMP when we
have an accurate prior support information (� = 0:7). For example when n = 80, on average,
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(d) Reweighted W-AMP, � = 0:5
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(e) Weighted AMP, � = 0:3
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Figure 3.8: (Noise-free case) Comparison of performance of (a, c, e) weighted AMP and
weighted `1 and (b, d, f) reweighted W-AMP, IRL1, SDRL1, and WSPGL1 in terms of SNR
averaged over 20 experiments for sparse signals with variable weights and measurements when
there is no noise.
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using reweighted W-AMP with ! = 0:3 improves the recovery SNR of reweighted AMP by
about 15 db.

The interesting advantage of reweighted AMP over regular AMP and `1 minimization is
that the sufficient number of measurements for recovery by reweighted AMP seems to be less
than those of AMP and `1 minimization. Figure 3.10 empirically compares the recovery success
percentage of these algorithms recovering signals x 2 R200 with different levels of sparsity and
different number of measurements. Horizontal axis determines the undersampling fraction,
� = m

n , and the vertical axis represents the sparsity fraction, � = k
m . Figures 3.10.a–c show the

results for recovery by41, regular AMP, and reweighted AMP respectively. In this figures each
point indicates the fraction of realizations with successful recovery, when we use that method
to recover signals with corresponding � and �. This figure empirically shows the advantage of
reweighted AMP over the other two, for example, when m=100, 41 and AMP has recovered
all the 25-sparse signals, where reweighted AMP has recovered all 30-sparse signals.
Figure 3.11 summarizes the empirical results of Figure 3.10. At the points below each curve,
we empirically get more than 80% successful recovery and at the points above the curve, we get
less than 80% successful recovery when the corresponding method is used to recover signals in
R200. Notice that if we use 100% successful recovery the results of 41 and AMP are essentially
similar to each other. However in our experiments we see that in the cases that these algorithms
do not recover all the signals, AMP reaches full recovery for more signals compared to 41.
Therefore in this experiment we show the result when we use 80% full recovery threshold.
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(d) Reweighted W-AMP, � = 0:5
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Figure 3.9: (Noisy case) Comparison of performance of (a, c, e) weighted AMP and weighted
`1 and (b, d, f) reweighted W-AMP, IRL1, SDRL1, and WSPGL1 in terms of SNR averaged
over 20 experiments for sparse signals with variable weights and measurements when there is
5% noise.
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Figure 3.10: Empirical phase transition of 41, regular AMP and reweighted AMP recovering
sparse signals in R200. Figures show the percentage of successful recovery over 20 experiments
when the measurement matrix is Gaussian.
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Figure 3.11: Illustration of the phasediagrams of AMP, reweighted AMP, and 41 presented in
Figure 3.10.

3.8 Stylized applications

In this section, we apply weighted AMP and reweighted W-AMP to recover real speech signals
that are compressively sampled. The speech signals are the same speech signals used in Chapter
2 and we choose the weights the same way. We break the measurements into 21 blocks and
use smaller weights on the low frequencies. We also use the large coefficients in each block
as an approximation for the large coefficients in the next block. For the reweighted AMP we
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Figure 3.12: SNRs of reconstructed audio signals from compressed sensing measurements
plotted against !. Figure shows the result for reconstruction via weighted `1 minimization,
weighted `p minimization, weighted AMP, and reweighted W-AMP.

start with with these weights for each block and renew the weights every 20 iterations.
Figure 3.12 shows the results when we apply weighted AMP, reweighted W-AMP, weighted
`1, and weighted `p to recover two compressively sampled speech signals (one male and one
female). The results are presented for ! 2 [0; 1

6 ;
2
6 ; : : : ; 1]. Generally, using intermediate

weights results in better recovery and the results of reweighted W-AMP is slightly better than
the results of weighted AMP and weighted `1 minimization.
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