MSc, Thesis Defence

Seismic Data Processing with the Parallel Windowed Curvelet Transform

Fadhel Alhashim

Outline

- Introduction
 - Motivations and goals
 - The curvelet transform
- Seismic Data processing in the curvelet domain
 - Incoherent noise removal
 - Primary multiple-separation
- Parallel windowed seismic data processing
- Parallel Seismic data processing with the parallel windowed curvelet domain
- conclusion

INTRODUCTION

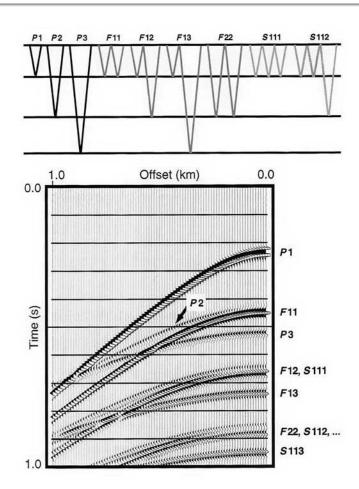
Introduction

- Today, exploration of new regions with high subsurface complexities.
- Field data contains noise and possibly is incomplete.
- For complex structures, small amount of coherent noise can result in gaining or losing millions of dollars.

Synthetic example (primaries, multiples)

Wave paths

Seismic data



Objectives

- Allow a memory demanding iterative multiple elimination method to fit in memory by dividing data into windows and distributing to processing nodes.
- Compare two ways to distribute and process windowed data:
 - Windows do not communicate edge information.
 - Windows communicate edge information.

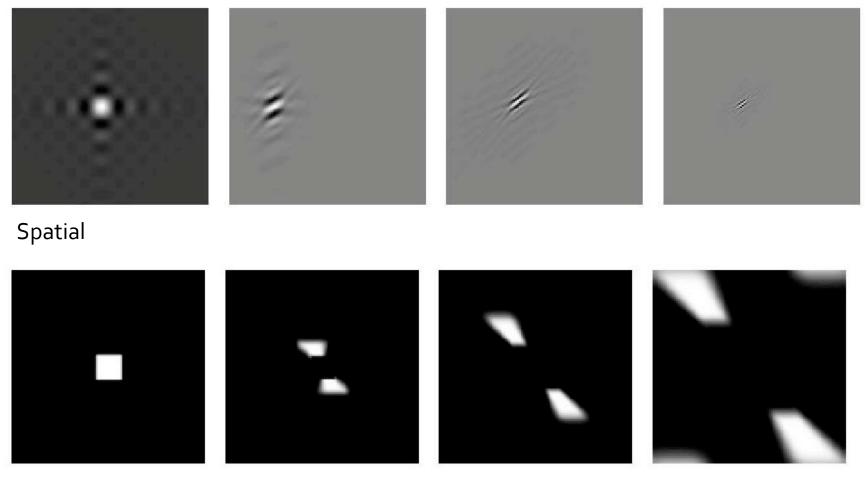
Advantages/Disadvantages

Scenario	Advantages	Disadvantages	
Α	-Speed - Ease of implementation	- Reduced accuracy	
В	- Accuracy	-Complex implementation -Slow runtime	

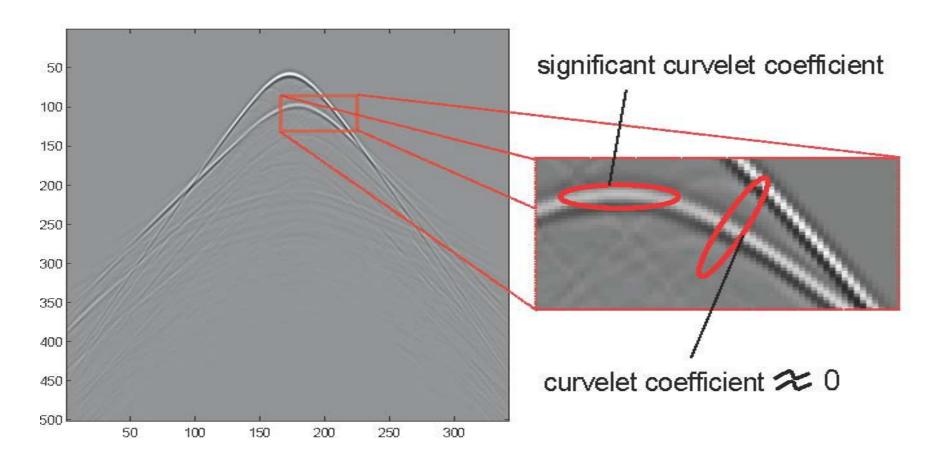
Sparsity-promoting seismic data processing

- Exploit sparsifying domains to concentrate energy in few significant coefficients.
- Ex. Wavelets, Surfacelets, Curvelets, ... Etc.
- Produce excellent performance for seismic problems solved with iterative thresholding methods, with relatively small number of iterations.

- Curvelets are localized, multi-scale and multi-directional plane-waves.
- Curvelets have an anisotropic shape.
 Necessary to detect wave fronts.
- Without prior information, they find the location and direction of a wave front. (principle of alignment)

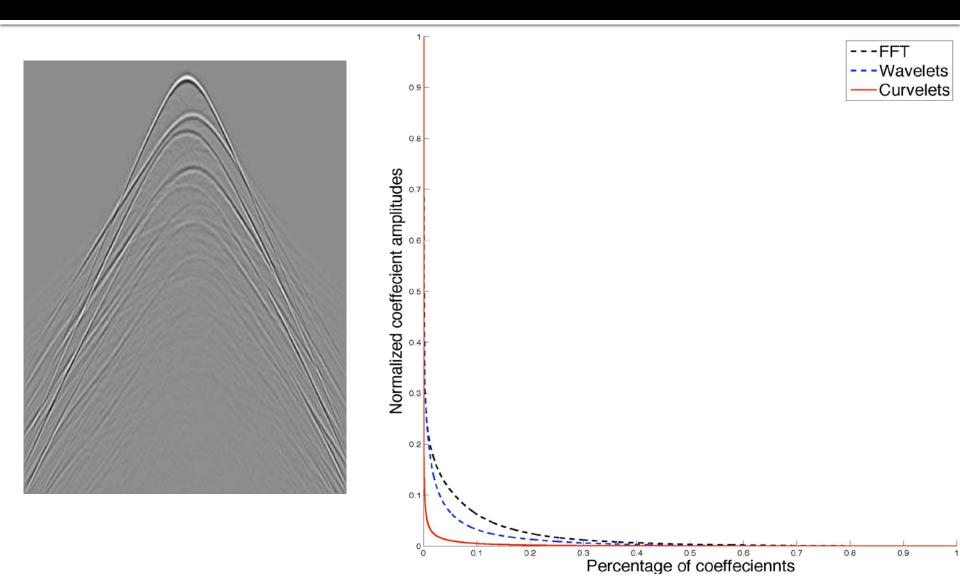


Frequency

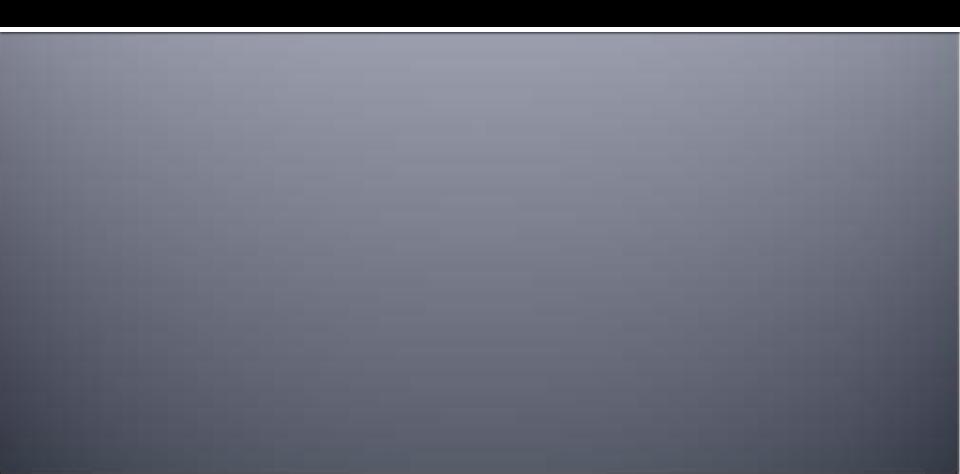


Adapted from Herrmann and Hennenfent, 2008.

- High compression rate.
- Coefficients decay faster than other transforms, ex. FFT, Wavelets.
- Computational complexity O(M log M)
- Redundant (8X for 2D 24X for 3D)



Curvelet based seismic data processing



Curvelet based seismic data processing

Incoherent noise elimination

Coherent noise elimination; surface related multiples elimination

Incoherent noise removal

Incoherent noise removal problem can be cast as the optimization problem:

$$\min \|\mathbf{x}\|_1$$
 subject to $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \le \alpha$

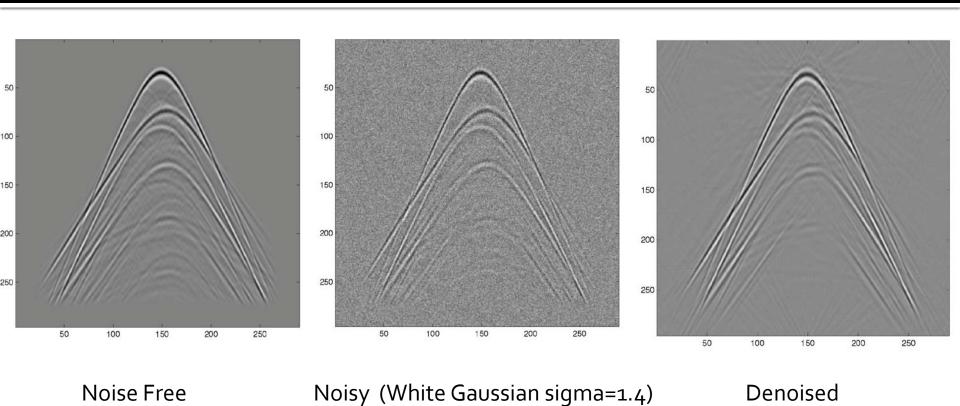
A: Sparsifying operator, we choose curvelets

b: Data with white Gaussian noise

x: The output denoised data

α: An estimate of the noise level in the data

Synthetic data (SPGL1)



SPGL1, van den Berg, E. and M. P. Friedlander

Coherent noise removal (surface related multiple elimination)

- Predictive methods, two steps:
 - prediction: multiples predicted from seismic data

 <u>separation</u>: predicted multiples and primary reflections are separated.

Bayesian primary-multiple separation (Wang et al., 2008)

$$\mathbf{b} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{n}$$

$$\mathbf{b}_{2} = \mathbf{s}_{2} + \mathbf{n}_{2}$$
 $\mathbf{b}_{1} = \mathbf{b} - \mathbf{b}_{2}$
 $= \mathbf{s}_{1} + \mathbf{n} - \mathbf{n}_{2}$
 $= \mathbf{s}_{1} + \mathbf{n}_{1}$

$$\mathbf{b}_1 = \mathbf{A}\mathbf{x}_1 + \mathbf{n}_1$$
$$\mathbf{b}_2 = \mathbf{A}\mathbf{x}_2 + \mathbf{n}_2$$

Maximize:

$$P(\mathbf{x}_1, \mathbf{x}_2 | \mathbf{b}_1, \mathbf{b}_2) =$$

$$P(\mathbf{x}_1, \mathbf{x}_2) P(\mathbf{n}) P(\mathbf{n}_2) / P(\mathbf{b}_1, \mathbf{b}_2)$$

Bayesian primary-multiple separation (Wang et al., 2008)

$$\min_{\mathbf{x}_1,\mathbf{x}_2} f(\mathbf{x}_1,\mathbf{x}_2)$$

$$f(\mathbf{x}_1, \mathbf{x}_2) =$$

$$\lambda_1 \|\mathbf{x}_1\|_{1, \mathbf{w}_1} + \lambda_2 \|\mathbf{x}_2\|_{1, \mathbf{w}_2} + \|\mathbf{A}\mathbf{x}_2 - \mathbf{b}_2\|_2^2 + \eta \|\mathbf{A}(\mathbf{x}_1 + \mathbf{x}_2) - \mathbf{b}\|_2^2$$

$$\mathbf{w}_1 = \max\{|\mathbf{A}^{\mathrm{T}}\mathbf{b}_2|, \epsilon\}$$

 $\mathbf{w}_2 = \max\{|\mathbf{A}^{\mathrm{T}}\mathbf{b}_1|, \epsilon\}$

Algorithm: Bayesian iterative method for wavefield separation

input:
$$\mathbf{b}_1, \mathbf{b}_2, \lambda_1, \lambda_2, \eta$$
, niter $\tilde{\mathbf{x}}_1 = 0, \tilde{\mathbf{x}}_2 = 0$

threshold
$$\mathbf{w}_1 = \frac{\lambda_1 |\mathbf{A}^T \mathbf{b}_2|}{2\eta}$$

threshold $\mathbf{w}_2 = \frac{\lambda_2 |\mathbf{A}^T \mathbf{b}_1|}{2(\eta+1)}$

$$\hat{\mathbf{b}_1} = \mathbf{A}^T \mathbf{b}_1$$
$$\hat{\mathbf{b}_2} = \mathbf{A}^T \mathbf{b}_2$$

for i = 1: niter

$$\begin{aligned} \mathbf{x}_1 &= \hat{\mathbf{b}_2} - \mathbf{A}^T \mathbf{A} \tilde{\mathbf{x}}_2^n + \hat{\mathbf{b}_1} - \mathbf{A}^T \mathbf{A} \tilde{\mathbf{x}}_1^n + \tilde{\mathbf{x}}_1^n \\ \mathbf{x}_2 &= \hat{\mathbf{b}_2} - \mathbf{A}^T \mathbf{A} \tilde{\mathbf{x}}_2^n + \frac{\eta}{\eta + 1} \left(\hat{\mathbf{b}_1} - \mathbf{A}^T \mathbf{A} \tilde{\mathbf{x}}_1^n \right) \end{aligned}$$

$$\tilde{\mathbf{x}}_1 = \frac{x_1}{|x_1|} \cdot \max(0, |\mathbf{x}_1| - |\mathbf{w}_1|)$$

$$\tilde{\mathbf{x}}_2 = \frac{x_2}{|x_2|} \cdot \max(0, |\mathbf{x}_2| - |\mathbf{w}_2|)$$

end

$$\tilde{\mathbf{s}}_1 = \mathbf{A}\tilde{\mathbf{x}}_1$$
; $\tilde{\mathbf{s}}_2 = \mathbf{A}\tilde{\mathbf{x}}_2$

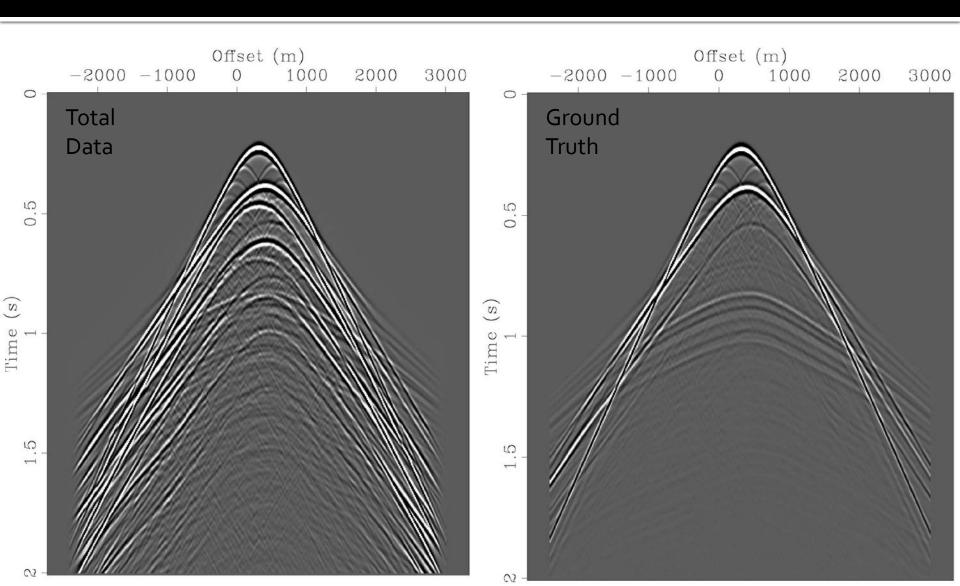
Based on the work of Daubechies et al., 2004

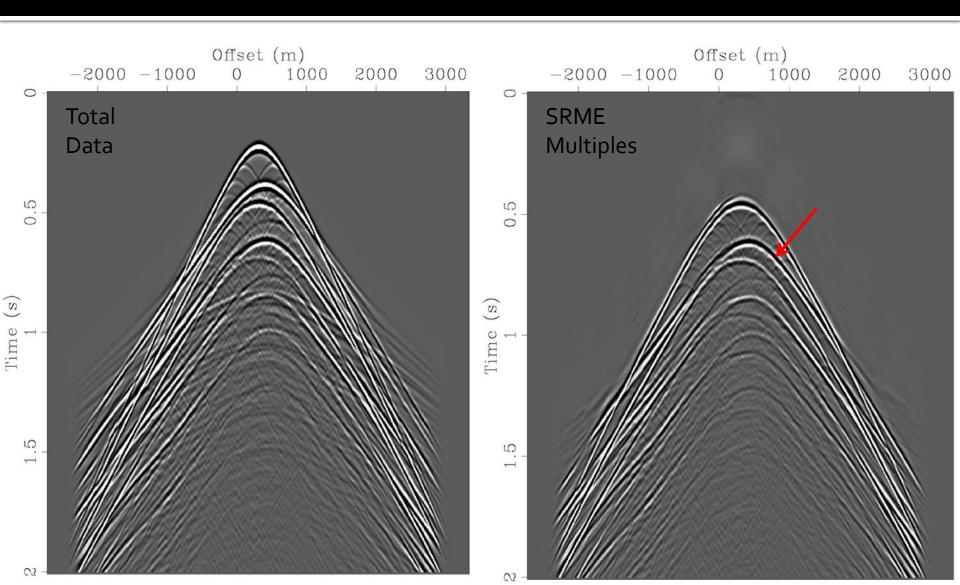
SNR

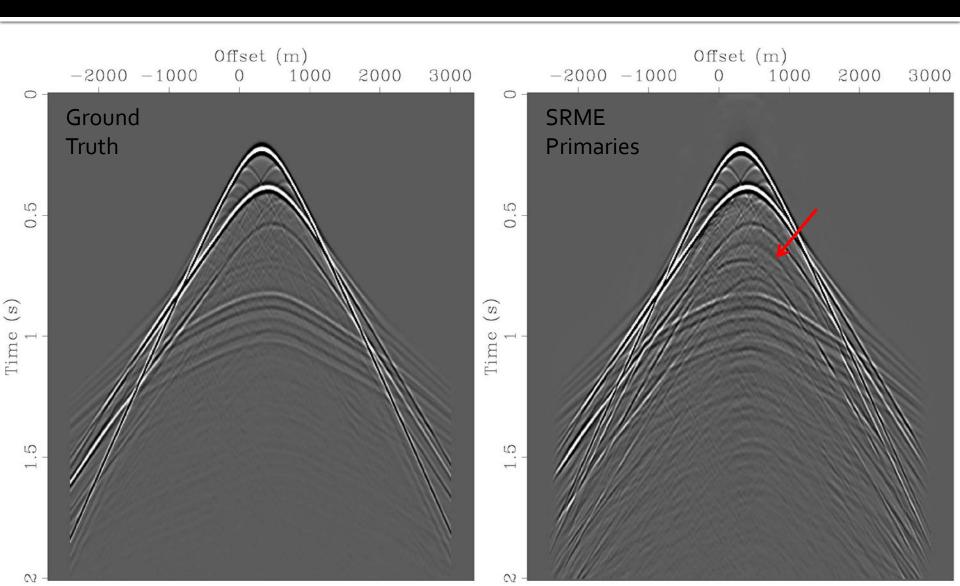
$$\{\lambda_1^* = 0.8, \lambda_2^* = 1.2, \eta^* = 1.2\}$$

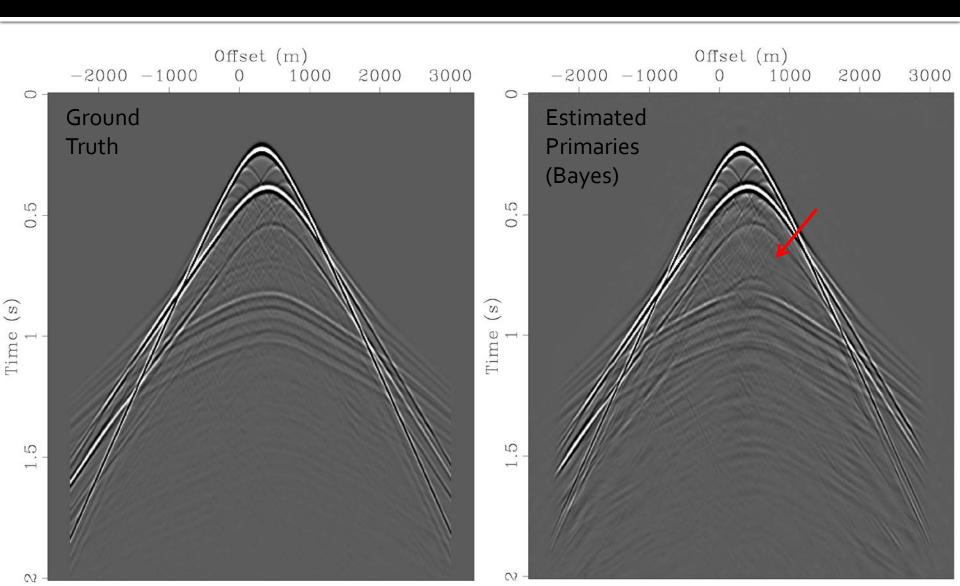
$$\text{SNR} = 20 \log_{10} \frac{\left\| \frac{\mathbf{s}_1}{\|\mathbf{s}_1\|_2} \right\|}{\left\| \frac{\tilde{\mathbf{s}}_1}{\|\tilde{\mathbf{s}}_1\|_2} - \frac{\mathbf{s}_1}{\|\mathbf{s}_1\|_2} \right\|_2}$$

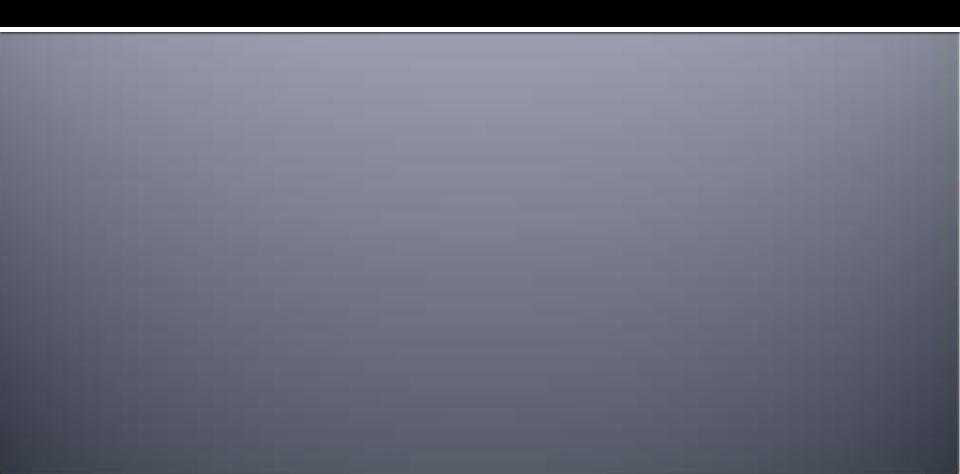
SNR (dB)	$\{\lambda_1^*,\lambda_2^*\}$	$\{2 \cdot \lambda_1^*, \lambda_2^*\}$	$\{\lambda_1^*, 2 \cdot \lambda_2^*\}$	$100 \cdot \{\lambda_1^*, \lambda_2^*\}$
η^*	11.49	11.11	11.40	-
$rac{1}{2}\cdot \eta^*$	11.29	10.38	11.15	-
$2 \cdot \eta^*$	10.90	11.38	10.81	1
$100 \cdot \eta^*$	% <u></u>) -	_	10.99











- Seismic data have large size, can reach several terabytes.
- Curvelet domain produces excellent results, but is a redundant transform (8X,24X).
- Cannot fit data in memory of a single processing unit.

Possible solution:

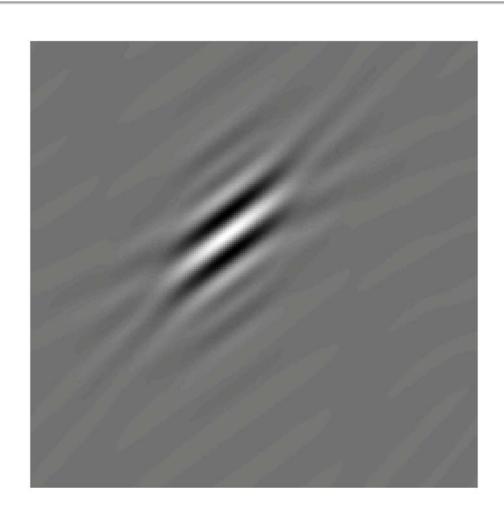
Define windowing operator that divides data into smaller manageable windows, each window is processed, and gathered in the end.

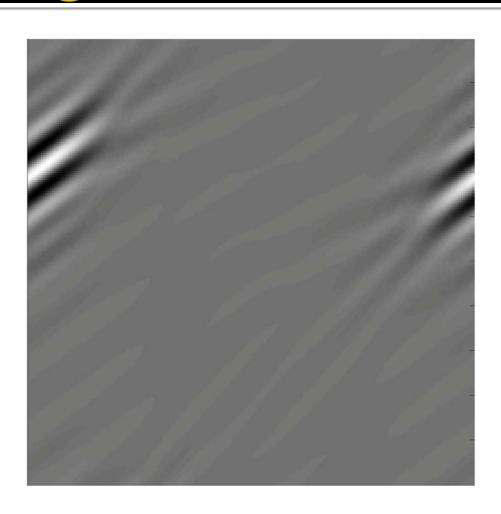
Windowing issues:

Artifacts, dimming and other issues at the windows borders.

Curvelets near borders wrap to opposite border.

Inherit FFT problems



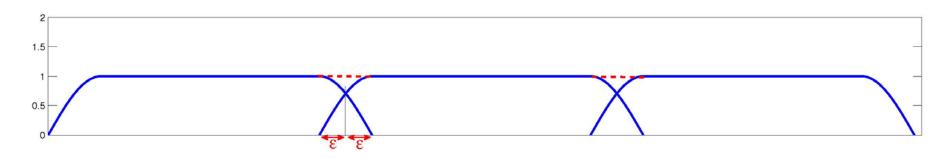


Solution:

Introduce overlaps and tapering

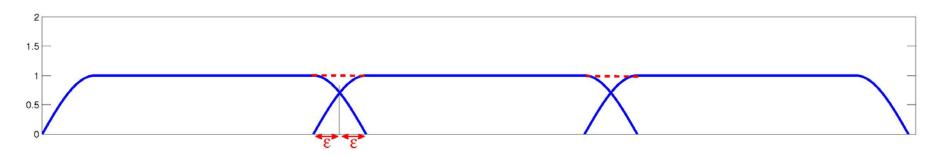
ex:

$$\mathbf{T}_n = \sin(\frac{(N-n)\pi}{2(2\epsilon-1)}), \qquad n = \{N, N-1, ..., N-2\epsilon+1\}$$



Tapering

$$\mathbf{T}_1^2 + \mathbf{T}_2^2 = 1$$



- Partition of unity
- Preserve system energy
- Smooth transition between windows

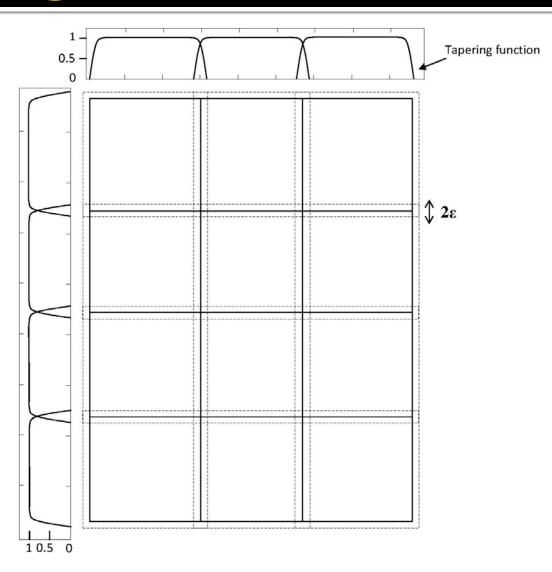
$$\mathbf{W}^*\mathbf{T}^*\mathbf{TW} = \mathbf{I}$$

 ${f W}$: Windowing operator (scattering)

 \mathbf{W}^* : Adjoint windowing operator (gathering)

T: Tapering operator

 \mathbf{T}^* : Adjoint tapering operator



Parallel windowed seismic data processing

We can redefine our sparsifying operators in previous problems as follows:

$$\mathbf{A}^{\mathrm{T}} = [\mathbf{C}]\mathbf{T}\mathbf{W}$$

 $\mathbf{A} = \mathbf{W}^{*}\mathbf{T}^{*}[\mathbf{C}^{*}]$

Parallel windowed seismic data processing

Two Scenarios:

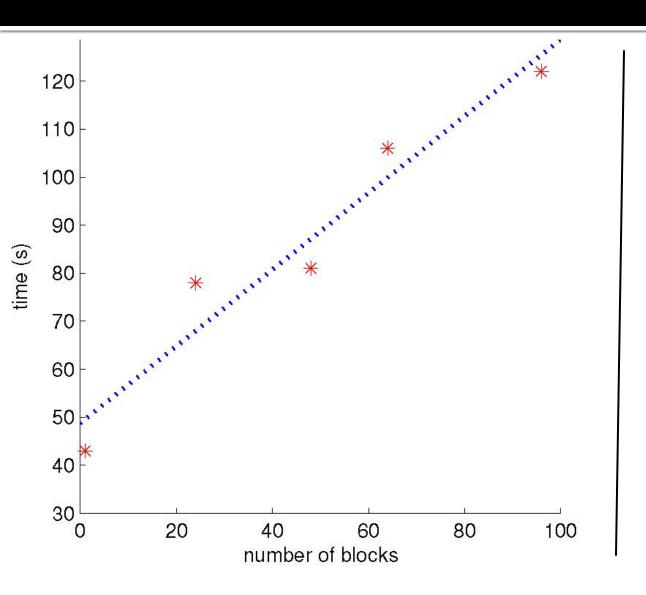
Scenario A:

Window data with overlaps and tapering, then process each window independently, and at the final stage unwindow (gather data).

Scenario B:

Window data with overlaps and tapering, then process each window independently, but allow windows edges to communicate, and at the final stage unwindow (gather data)

Scalability



- Single forward transform
- Block size:128X128X128
- -A block of 1536X512X256: 422 seconds single block 123 seconds in parallel

Parallel windowed seismic data processing

Experiments and Results

Parallel seismic data processing with windowed curvelets

- Run previous seismic data processing problems using parallel windowed curvelet transform
- Run and compare scenarios A and B
- Start with denoising, then primary multiple separation

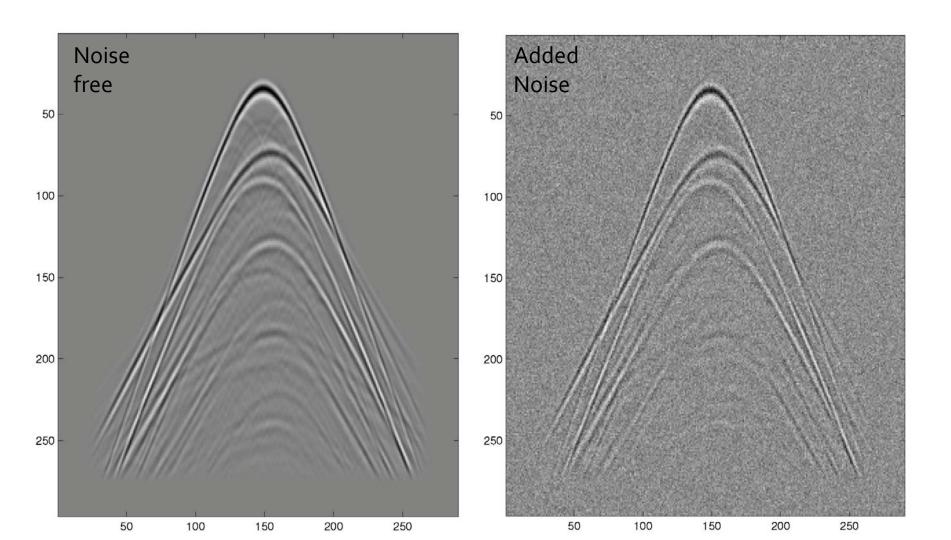
Denoising with the parallel curvelet transform

Scenario A

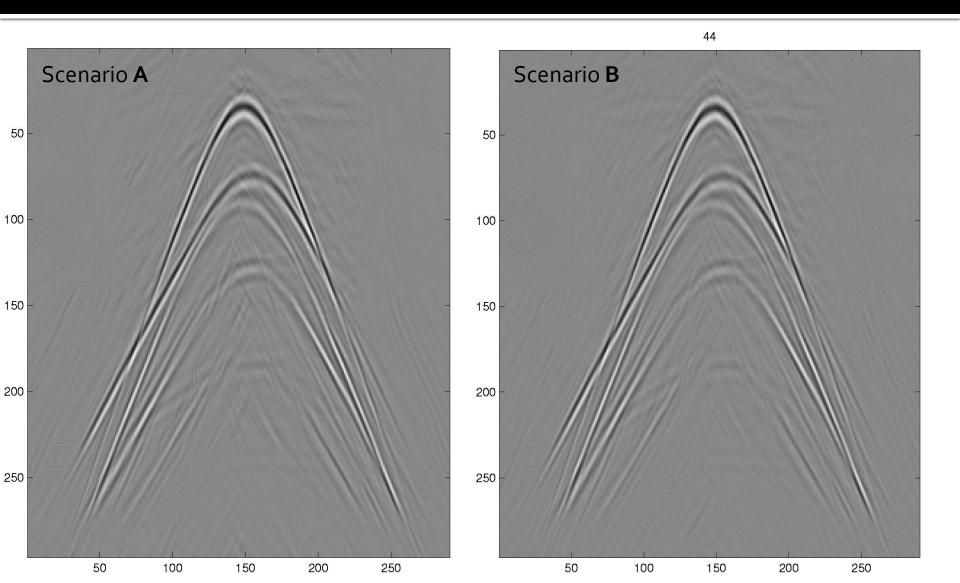
Window	SNR
1X2	6.89
2X2	6.97
1X4	8.11
4X4	7.02

Window	SNR
1X2	7.26
2X2	7.38
1X4	10.34
4X4	7.50

Denoising with the parallel curvelet transform



Denoising with the parallel curvelet transform



Bayesian based primary-multiple separation with the parallel curvelet transform

Synthetic Data:

361 shots

361 traces/shot

501 time samples with sample interval $\Delta t=4$ ms

For 2D, used one shot record.

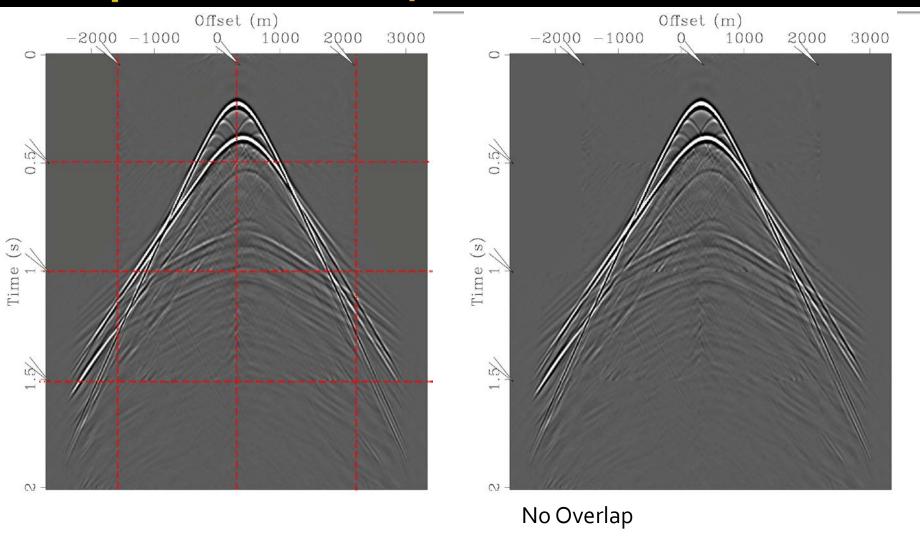
Bayesian based primary-multiple separation (2D SNR)

Scenario A

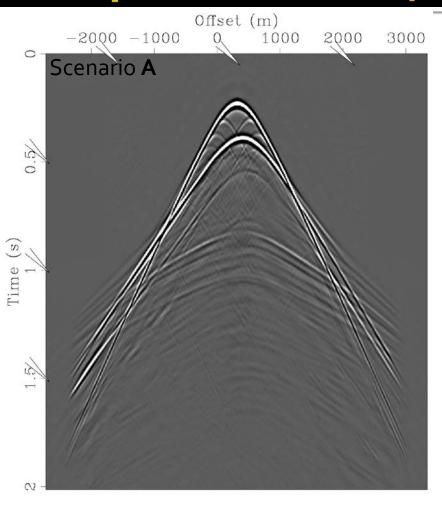
Window	SNR
2X2	11.44
2X3	11.43
1X4	11.42
4X4	11.41

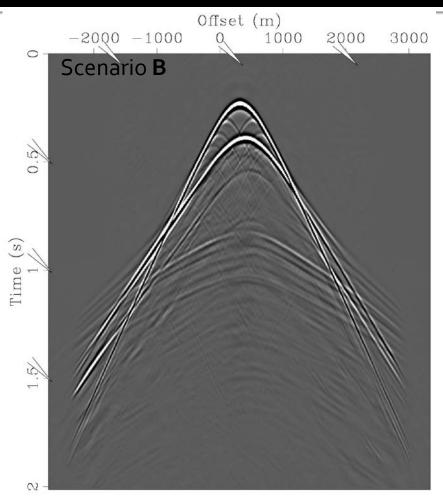
Window	SNR
2X2	11.46
2X3	11.46
1X4	11.43
4X4	11.43

Bayesian based primary-multiple separation (2D)

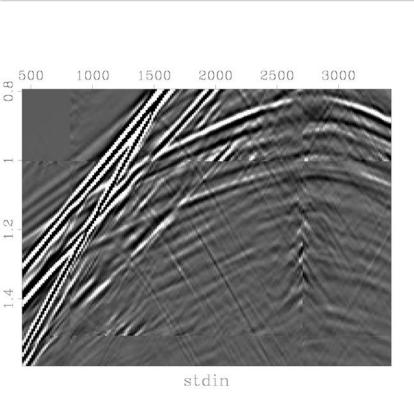


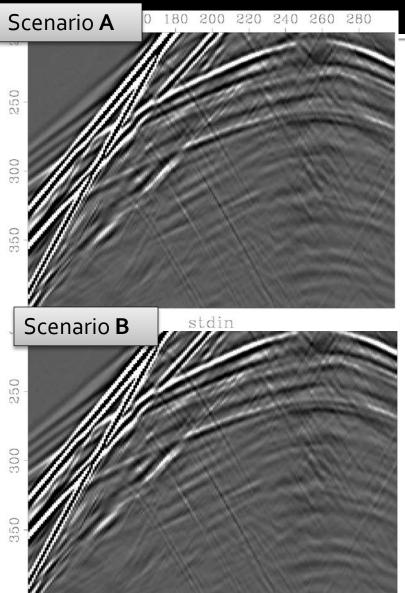
Bayesian based primary-multiple separation (2D)





Bayesian based primary-multiple separation (2D)





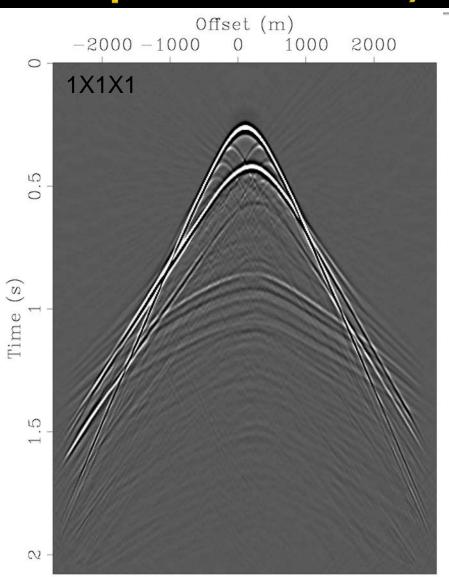
Bayesian based primary-multiple separation (3D)

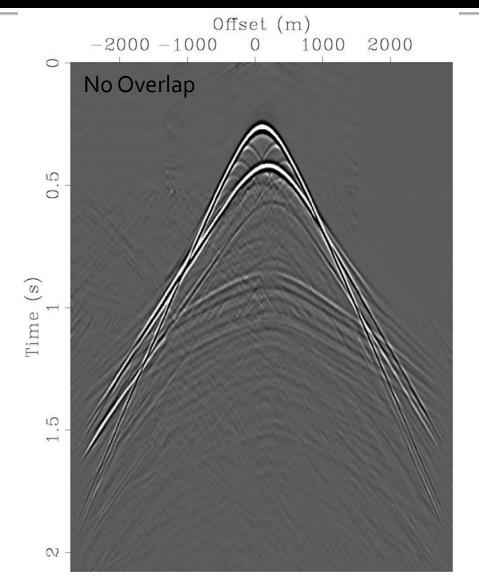
Scenario A

Window	SNR
2X2X2	11.50
2X4X4	11.50
4X4X2	11.46

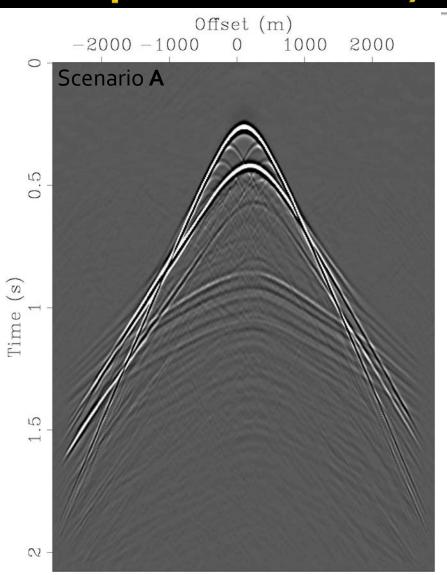
Window	SNR
2X2X2	11.51
2X4X4	11.51
4X4X2	11.47

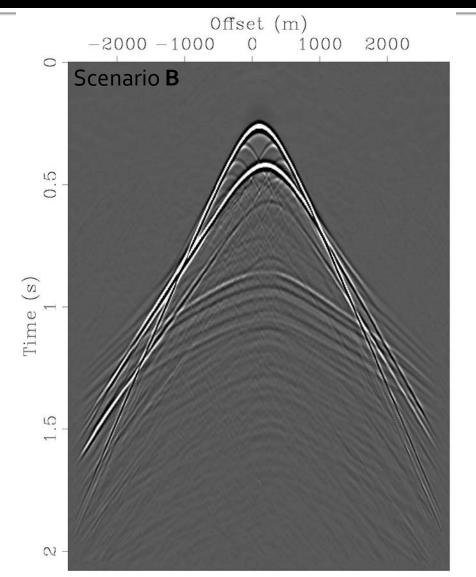
Bayesian based primary-multiple separation (3D)





Bayesian based primary-multiple separation (3D)





Conclusion

- Introduced windowing method to process large data in parallel using the curvelet transform.
- Scenario B performed better in the denoising problem than scenario A due to communicating edges.
- A considerably big advantage of the Bayesian separation, is the ability to use the faster scenario, A, without losing significant data quality.

THANKYOU

References

- Herrmann, F. J., 2006, A primer on sparsity transforms: curvelets and wave atoms:
 Presented at the SINBAD 2006.
- 2008, Curvelet-domain matched filtering: SEG Technical Program Expanded Abstracts, 3643–3647, SEG.
- Herrmann, F. J., U. Boeniger, and D. J. Verschuur, 2007a, Non-linear primary-multiple separation with directional curvelet frames: Geophysical Journal International, 170, no. 2, 781–799.
- Herrmann, F. J., G. Hennenfent, and P. P. Moghaddam, 2007b, Seismic imaging and processing with curvelets: Presented at the EAGE Technical Program Expanded Abstracts, EAGE.
- Herrmann, F. J., D. Wang, and G. Hennenfent, 2007c, Multiple prediction from incomplete data with the focused curvelet transform: SEG Technical Program Expanded Abstracts, 2505–2509, SEG.
- van den Berg, E. and M. P. Friedlander, 2008, Probing the Pareto frontier for basis pursuit solutions: Technical Report TR-2008-01, UBC Computer Science Department.

References

- Verschuur, D. J., 2006, Seismic multiple removal techniques: past, present and future: EAGE publications b.v. ed.
- Verschuur, D. J. and A. J. Berkhout, 1997, Estimation of multiple scattering by iterative inversion, part II: Practical aspects and examples: Geophysics, 62, no. 5, 1596–1611.
- Verschuur, D. J., A. J. Berkhout, and C. P. A. Wapenaar, 1992, Adaptive surfacerelated multiple elimination: Geophysics, 57.
- Wang, D., R. Saab, O. Yilmaz, and F. J. Herrmann, 2008, Bayesian-signal separation by sparsity promotion: application to primary-multiple separation: Technical Report TR-2008-1, UBC Earth and Ocean Sciences Department.
- Ikelle, L. T. and L. Amundsen, 2005, Introduction to petroleum seismology (investigations in geophysics, no. 12): Society of Exploration Geophysicists.