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Abstract

In this work, we present a new method for seismic waveform characteriza-
tion, which is aimed at extracting detailed litho-stratigraphical information
from seismic data. We attempt to estimate the lithological attributes from
seismic data according to our parametric representation of stratigraphical
horizons, where the parameter values provide us with a direct link to na-
ture of lithological transitions. We test our method on a seismic dataset
with a strong diagenetic transition (opal-A to opal-CT transition). Given
some information from cutting samples of well, we use a percolation-based
model to construct the elastic profile of lithological transitions. Our goal
is to match parametric representation for the diagenetic transition in both
real data and synthetic data given by these elastic profiles. This match may
be interpreted as a well-seismic tie, which reveals lithological information
about stratigraphical horizons.
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Chapter 1

Introduction

In this study, we propose a novel method to identify and quantify generalized
lithological transitions, as long as their scale is above the seismic wavelength.
In this method, we link the seismic waveforms to fractional-order transitions
through a parametric waveform inversion process. By using the percolation
model proposed by Herrmann and Bernabé (2004), we show that smooth
changes (connectivity) in lithology may also give rise to a seismic reflec-
tion. Consequently, a wider range of lithological transitions in depositional
environments, which is not given by other methods, exists in our model.
The primary goals of this study are to answer two general questions: 1) is
the waveform quantification coherent with the stratigraphical structure of
seismic data; and 2) can we find a direct link between our quantification
of seismic waveforms and nature of associated lithological boundaries? A
positive answer to these question means that we have a tool, which provides
us with increased insight into litho-stratigraphy structure of the subsurface.

Seismic surveys are a valuable tool to extract geological structure of the
lithological boundaries in the subsurface. However, this method only images
seismic reflectors and does not provide precise information on the associated
lithological transitions directly. Therefore, there is a crucial step in seismic
imaging where observations are translated into models of the Earth struc-
ture that are geologically valid. Using these models, we can extract the
geological and stratigraphical features of the subsurface. Transitions in the
lithology are examples of these geological features, which are mathemati-
cally represented by zero-order discontinuities (step functions) or first-order
ramp functions in most cases. However, multiscale analysis on well and
seismic data (Muller et al., 1992; Herrmann, 1997, 1998) showed that these
representations may not be rich enough to describe the different types of
transitions present in sedimentary basins. In reality, seismically-observed
reflectors correspond to complex lithological changes typically composed of
sub-wavelength features or more gradational lithological transitions. Con-

sequently, valuable information is lost by assuming these transitions to be
given by step or ramp discontinuities. Instead, multiscale analysis on sedi-
mentary records revealed the existence of transitions with varying singular-
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Chapter 1. Introduction

ity orders (Herrmann, 1998, 2001; Herrmann et al., 2001; Herrmann, 2005).
Singularities are points in a signal at which the derivative is undefined.
This generalized type of fractional-order singularity is given by fractionally
differentiating/integrating a zero-order discontinuity (see Fig. 1.1(a) for a
schematic of fractional-order transitions). Lithological transitions have been
studied from various perspectives. However, most of available models for
lithological transitions lack a straightforward generalization to fractional-
order transitions.

Lithological perspective: Classical seismic stratigraphical models (Pay-
ton, 1977; Harms and Tackenberg, 1972) represent sub-wavelength lithology
variation by multiple zero-order and first-order discontinuities. The sim-
plicity of this assumption limits the ability of these models to constrain
the lithological structure. In that sense, fractional-order transitions pro-
vide a more accurate parametric description to describe acoustic impedance
profiles across the transitions by eliminating the superposition of multiple
reflectors. In this perspective, variations in the acoustic impedance are in-
terpreted as proxies for the lithology, e.g., observed seismic waveforms are
through complex-trace attributes related to fining upward or coarsening up-
ward sequences as shown in Herrmann et al. (2001).

Even though the above extension of transition models is proved to be
useful, two important aspects are missing, namely (i) a first principal rock-
physical model that predicts the occurrence of fractional-order transitions
as a function of a smoothly varying lithology/composition and, (ii) a robust
estimation technique, extracting information on the transition order from
bandwidth limited seismic traces. In order to make prospect towards these
two aspects, we have to include more careful considerations regarding the
rock-physical and seismological aspects of our problem.

Rock-physical perspective: In this thesis, we look at how changes in the
rock-physical properties, such as the rock’s acoustic wave speed and density,
are related to the volume fractions of a bi-compositional rock, e.g., a rock
consisting of a sand-shale or opal-A/CT mixture. From the rock-physical
perspective, transitions are described with their elastic profiles, e.g., velocity
and density.

In this case, the traditional Hashin-Shtrikman (HS) bounds are used to
constrain the elastic moduli (see Hashin and Shtrikman (1962) for more
details). Even though these bounds have proved to be useful in describ-
ing the overall behavior of binary mixtures, this theory does not predict
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Chapter 1. Introduction

sharp transitions in the rock properties as a function of the composition.
By including the important concept of connectivity amongst the two com-
ponents of the rock mixture, Herrmann and Bernabé (2004) have introduced
a model predicting a critical volume fraction at which the stronger of the
two mixing components connects. At that point, the overall strength of the
mixture grows with the size of the connected cluster, yielding a fractional-
order transition for the seismic velocity. This model (HB model) implies
sharp transitions even in cases where the rock’s composition and hence the
density vary smoothly. Before transgressing the critical point, the velocities
predicted by the HB model follows the lower HS-bound, followed by the
occurrence of sudden sharp increase in the velocity, which ends up at the
velocity predicted by the upper HS-bound.

Seismological perspective: Amongst reflection seismologists, the Earth
subsurface is often idealized as a stack of homogeneous layers separated by
zero-order discontinuities. This model yields a spiky reflection coefficient
sequence for which deconvolution methods have been derived, removing the
seismic source signature. Despite recent developments (Saggaf and Robin-
son, 2000), earth models consisting of a sparse set of different fractional-order
transitions render conventional deconvolution techniques ineffective.

In this thesis, we present a two-stage method that handles this more
complex situation and during which (i) reflection events are first detected
by a multiscale technique deriving from the work by Holschneider (1995),
followed by (ii) a nonlinear parametric inversion technique. During the lat-
ter, seismic attributes, including the illusive singularity orders, are estimated
from seismic waveforms extracted during the multiscale detection.

The thesis is organized as follows. First, we introduce the site perco-
lation model and discuss the seismic response of this model, which we use
as the “rock-physics” forward model. We proceed by presenting a seismic
waveform characterization method, which first extracts stratigraphical hori-
zons by locating major features in the seismic data and then processes each
event with an inversion where it is represented by only a few parameters
associated with a parametric waveform. We apply our method to a real
data and discuss the results in term of satisfying our expectations. We then
aim at recovering the geological details from seismic data by focusing on a
diagenetic transition in the data. The percolation model provides us with a
synthetic seismic reflector, which is then parametrized and matched to real
data. We describe how this tie can provide us with lithological insights from
the seismic data.
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Figure 1.1: Generalized type of seismic transitions with different singularity
orders including fractional-orders (left). Corresponding seismic waveform
(right) is given by convolving the seismic source function, which is taken
to be a Ricker wavelet.
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Chapter 2

Rock-physics model

The Earth’s subsurface consists of layers of different rock properties sepa-
rated by transitions. Transitions are regions where the acoustic impedance
of the Earth changes rapidly with respect to the seismic wavelength. These
sudden variations give rise to the reflection of seismic waves, which creates
singularities in the recorded seismic trace. As reported in the literature,
while abrupt lithofacies transition give rise to high-order (more sharp) sin-
gularities, a more gradual transition leads to low-order (less sharp) singular-
ities. Consequently, singularity orders reflect sharpness of the corresponding
lithological boundary (Herrmann et al., 2001). Rock physicists try to im-
pose these lithological constraints on the elastic properties as a function
of composition by using different models. Most of these models, however,
generally assume that homogeneous mixing of facies can only give rise to
smooth and non-singular elastic properties and the existence of the singu-
larities is related to rapid changes in composition only. In recent studies
on upper-mantle transitions (Herrmann and Bernabé, 2004), a percolation-
based model is proposed, which, unlike the previous models, unravels the
sharp changes in seismic velocities across the transitions. Herrmann and
Bernabé (2004) predict that the singularity in elastic moduli and hence
seismic velocity occurs at a critical volume fraction of end-members of the
mixture. The percolation model could explain the nature of various transi-
tions from the properties of rocks. Other than excluding the limitations of
the existing models as discussed earlier in the introduction, the model also
provides the scale invariance.

2.1 The site percolation model

The site percolation model assumes a simplified bi-compositional model to
represent microscale changes along the boundaries of layers. The facies in
this binary mixture are divided into a weak lithofacies at the top and a
strong lithofacies in the deeper zone. The weak and strong materials are
denoted with WP and SP, respectively. The percolation model applies to
the co-existence region where both end-members of the binary mixture are
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Chapter 2. Rock-physics model

involved. We assume the volume fraction of strong and weak material,
given by p and q = 1− p, respectively, to depend on the vertical coordinate
only. While microscopic inclusions in the co-existence region are randomly
distributed (see Fig. 2.1(c)), percolation occurs at a threshold, at which the
∞-cluster of SP inclusions is formed. The percolation threshold pc = p(zc),
which corresponds to a critical depth zc is denoted by a vertical dashed line
in Figure 2.1. The volume fraction p∗ of the ∞-cluster is given as

p∗ =

{
0 if p < pc

p (p−pc1−pc )β if p ≥ pc
,

where β is a positive real parameter related to the percolation model (see
Herrmann and Bernabé (2004) for more details). Accordingly, the elastic
moduli given by the model contain a singularity of order β. These moduli
give rise to a linear gradient for density of the mixture as well as a wave
speed profile, which contains a switch-like singularity at pc (see Fig. 2.1(a),
2.1(b)). While other models confine the seismic wave velocity in the Hashin-
Shtrikman bounds (Hashin and Shtrikman, 1962), the percolation theory
predicts a definite velocity profile within those bounds (Mori and Tanaka,
1973; Benveniste, 1987; Luo and Weng, 1987). In our implementation, we
have equivalently replaced these bounds with Reuss and Voigt averages (see
Fig. 2.1(b)). The velocity change within these bounds is controlled by pc and
β, which are determined by the end-members of the mixture. Consequently,
the order β is considered to be independent of the random emplacement of
inclusions.

2.2 Seismic response of the percolation model

The convolution model is widely used in seismic processing as a simplified
model for the Earth response to the propagation of the seismic wave. Based
on this model, the recorded seismic trace at the surface can be written as

s(t) ∝ (ψ ∗ r)(t), (2.1)

where ψ shows the seismic source wavelet and r is the imaged travel-time re-
flectivity sequence. Figure 1.1(b) shows various seismic waveforms given by
the convolution model in presence of fractional-order transitions. Accord-
ingly, what seismic receivers records at the surface, can be thought of as the
response of the Earth filtered through the source wavelet. The convolution
model uses a simple reflectivity series for modeling the Earth (Yilmaz, 2001)
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Figure 2.1: Schematic Site percolation model. (a) The mixture density
profile, ρ = q ∗ ρWP + p ∗ ρSP , versus volume fraction in co-existence region.
(b) Corresponding compressional wave velocity (solid line) with a singularity
at pc as a function of volume fraction. It is bounded with Reuss and Voigt
averages shown in dashed lines. The singularity order was taken to be
β = 0.41. (c) Illustration of co-existence region. Black and white ellipsoids
show inclusions of SP and WP, respectively. At critical volume fraction pc
(dashed vertical lines), SP inclusions percolate and an infinite connected
cluster is formed.
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Chapter 2. Rock-physics model

in which (i) the subsurface is formed by horizontal layers of constant veloc-
ity; (ii) the compressional plane seismic wave impinges on layer boundaries
at normal incident angles.

Given elastic properties along transitions by the site percolation model,
we can compute the reflection coefficients of normal incident wave, which are
related to changes in acoustic impedance (Yilmaz, 2001). Figure 2.2 shows
how this model can be applied to a reflectivity series to generate a seismic
trace. Combination of the site percolation model and the convolution model
forms a forward model that provokes a clarified relation between transitions’
nature and waveforms in the seismic trace (events that are triggered by
transition regions).
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Figure 2.2: Seismic convolution model; (a) Reflection coefficient sequence
includes singularities with different signs and orders. (b) Seismic source
function is taken to be a Ricker wavelet. (c) The convolution of reflection
coefficients and seismic source function gives the corresponding seismic trace.
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Chapter 2. Rock-physics model

2.2.1 The seismic source function

In real world, seismic sources are not ideal spikes. Therefore, we need to
have a preliminary knowledge of the seismic source wavelet to obtain the
seismic response of the percolation model. However, in most geophysical
surveys, the seismic source function ψ is unknown. For our purpose, we
assume that the seismic source function has finite smoothness and wiggliness.
Combining both conditions can allow us to determine the details of the
frequency content of the source function. The first condition is to limit
the high-frequency content by setting the asymptotic decay rate for high
frequencies. This is imposed by∫

R
|ψ̂(ω)| |ω|γ dω <∞, (2.2)

which means the wavelet is γ-times continuously differentiable, i.e., ψ ∈ Cγ .
Here, ψ̂(ω) =

∫ +∞
−∞ ψ(t) e−jωt denotes the Fourier transform of ψ. The

second condition requires the wavelet ψ to be orthogonal with respect to
some finite-order polynomial,∫

R
tq ψ(x) dx = 0 for 0 ≤ q ≤M, (2.3)

hence describing its wiggliness. It defines the number of vanishing moments
of ψ and rules the differentiability of the Fourier transform at zero frequency.
Knowing the source wavelet makes it possible to generate the seismic data
using the convolution model.
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Chapter 3

Seismic waveform
characterization

Here, our aim is two-fold: finding the locations of the reflectors, i.e., de-
lineating the stratigraphy, and extracting information on the nature of the
transitions. For this purpose, we represent a vertical 1-D profile of the Earth
as a weighted superposition of parametrized waveforms

s(t) =
∑
i∈I

ci ψ
αi
σi (t− τi) e

jπφi , (3.1)

where t represents time, and ci and φi (0 ≤ φ < 2) are the amplitude and
the phase for the ith transition, respectively. Furthermore, ψαiσi (t− τi) shows
a translated (τi) and scaled (σi) source wavelet ψ, which is fractionally dif-
ferentiated (α < 0) or integrated (α > 0). The seismic source wavelet ψ can
be any arbitrary wavelet that satisfies the required conditions listed earlier
in the discussion on seismic source functions. The parameters of interest,
which we will hereafter refer to as attributes, in this case are the amplitude
ci, the location τi, the scale σi, the singularity order αi, and the phase φi.
Given the above representation, we present a new method, where the charac-
terization problem is divided into two subproblems, namely detection stage,
where the main events in the seismic data are located and extracted, and
estimation stage, where the attributes for each individual waveform (event)
are extracted by a nonlinear parametric inversion. Although we deal with
discretized finite signals in our implementation, we use continuous signal
notation interchangeably.

3.1 Detection by multiscale analysis

The purpose of the detection step is to find the singularities (major events)
in the seismic trace. The detection problem does not fit straightforwardly
into the classical deconvolution framework due to the existence of fractional-
order transitions in the subsurface. The variety of the singularity orders
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Chapter 3. Seismic waveform characterization

calls for a seismic-event-detection technique that does not make specific
assumptions regarding the type of the transitions, e.g., spikes as for zero-
order discontinuities. The continuous (complex) wavelet transform offers a
multiscale edge (point singularity) detection approach (Mallat, 1997) that is
robust for different waveforms, reflecting different types of transitions. Other
than detecting the main events, this technique serves as a prior estimate for
nonlinear parametric inversion.

A wavelet is a function ϕ ∈ L2(R) with zero average. The complex
wavelet transform of a seismic trace s can be written as a convolution prod-
uct

Ws(t, σ) =
(
s ∗ ϕ̄σ

)
(t), (3.2)

where ϕ̄σ(t) = 1√
σ
ϕ∗(−tσ ), and σ ≥ 0 is the scale of wavelet. Here, the

symbol ∗ denotes the complex conjugate. In the wavelet domain, the point
(t0, s0) such that |Ws(t, σ0)| is locally maximum at t = t0 is referred to as
modulus maximum. This maximum implies

∂Ws(t, σ0)
∂t

|t=t0 = 0,

and should be a strict local maximum in either half- neighborhood of t0 to
avoid having several local maxima when |Ws(t, σ0)| is constant. Following
Mallat (1997), we define Wavelet transform modulus maxima line (WT-
MML) as a connected curve, σ(t), in time-scale plane (t, σ), along which
all points are modulus maxima. Singularities (events) are detected by find-
ing the maximum point along each modulus maxima line (see Fig. 3.1(b)).
These points yield approximate estimates for the scale (= bandwidth) and
location of the reflection events. An initial approximation for the phase of
the event is also provided by the phase of the complex wavelet coefficients,
i.e., arg{Ws(t, σ)}, at these points. This information is then used to build
windowing functions used for the purpose of segmentation.

3.2 Segmentation

The result of the detection stage is a set of locations, scales, and phases,
i.e., {(τ (n), σ(n), φ(n)) | n = 1 · · ·N}, where N is the number of detected
maxima. In order to extract the nth detected waveform, we multiply the
original seismic trace by a specific window function. The segmented events
are given by

s(n)(t) = W(τ (n), σ(n))s(t) with n = 1 · · ·N, (3.3)
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Figure 3.1: A typical example for detection stage of a synthetic seismic
trace (a) with k = 11 reflection events. Wavelet coefficients for the signal
are plotted in (b) with warm colors corresponding to large magnitudes. The
vertical and horizontal axes show scale and location, respectively. Modulus
maxima lines are shown as dark blue lines where white circles identify the
scale and the location for the corresponding events.
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Chapter 3. Seismic waveform characterization

where W(.) is the windowing operator centered at τ (n), and has a support
proportional to σ(n) (see Fig. 3.2).

The outputs of this procedure are N signals with ‘isolated’ events. Even
though this segmentation procedure is somewhat arbitrary (e.g. it depends
on a width parameter), we found this method to perform reasonably well for
cases where inter-event distances are large enough (see Dossal and Mallat
(2005) for more details). Sub-wavelength details are not extracted and are
left to the ensuing estimation stage.
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Figure 3.2: Partitioning of detected events for the synthetic seismic trace in
Figure 3.1. Each individual event (solid waveform) is extracted by using a
window function (dashed line with same color) centered at τ (n) and a width
proportional σ(n).

3.3 Nonlinear parametric inversion

In order to complete the characterization, we need to estimate attributes
for the individual windowed waveforms s(n)(t) given by the detection stage.
These isolated events are subjected to a nonlinear parametric inversion,
where prior estimates on location, scale, and phase, are provided by the
detection stage. To setup this procedure, we first need to refine our math-
ematical model for the parametrized waveforms in equation 3.1. We derive
our model from a Gaussian bell-shaped waveform.

3.3.1 Parametric representation

Each element of the parametric family, also known as a manifold, is given by
a fractional derivative/integration of the shifted and scaled Gaussian with
some phase rotation. In the time domain, these waveforms are defined by a
nonlinear function, fθ : R5 7→ R, given by

fθ(t) = Dα

(
1√

2πσ2
e(t−τ)2/2σ2

)
ejπφ, (3.4)
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Chapter 3. Seismic waveform characterization

with θ = [τ, σ, α, φ] the set of parameters and Dα the α-order integration
operator. Here, we denote location, scale, singularity order, and phase by
τ , σ, α, and φ, respectively. Motivated by the work of Wakin et al. (2005),
we can define the manifold as

M [θ] = {fθ : θ ∈ Θ},

where Θ is the feasible parameter space. We will later show that M [θ] is
a smooth manifold, i.e., it is differentiable with respect to its parameters
(θ). We also assume that the relation θ 7→ fθ is a one-to-one mapping. The
nonlinear estimation procedure for each windowed waveform s(n)(t) consists
of finding the best-matched element of the family, which is equivalent to
solving the following minimization problems

θ̃(n) = arg min
θ∈Θ

∥∥∥s(n) −M [θ]
∥∥∥2

2
with n = 1 · · ·N, (3.5)

where the objective function represents mismatch residual. Here, θ̃(n) signi-
fies the estimated attributes with ˜ symbol denoting the approximation in
values. To solve the above optimization problem, the BFGS quasi-Newton
method (Nocedal and Wright, 1999; Kelley, 1999) is employed. In quasi-
Newton methods, one does not need to compute the second derivatives of the
objective function for the Hessian matrix. Instead, the Hessian is updated
by analyzing successive gradients. Alternatively, a trust region method with
the Levenberg-Marquardt parameter (Kelley, 1999) can be used to solve the
minimization problem. As with the BFGS method, trust region methods
also require the manifold to be smooth. This requirement suggests for a
formulation in the frequency domain where the fractional derivatives are
known analytically. The elements of the Gaussian waveform family in the
frequency domain are now given by (Blu and Unser, 2003)

f̂θ(ω) = (jω)−α/2+φ (−jω)−α/2−φ e−
(σ2ω2)

2 e−jωτ , (3.6)

where ω is the frequency. f̂θ(ω) = F(fθ(t)) represents Fourier transform of
fθ(t) where F(.) is Fourier operator. One can show that the first two terms,
which are responsible for both the fractional differentiation/integration and
phase shift, are equivalent to ω−α e(jπφ). Analytical expressions for partial
derivatives of the manifold in the frequency domain are given by

∂

∂τ
f̂θ(ω) = −jω f̂θ(ω),

∂

∂σ
f̂θ(ω) = −σω2 f̂θ(ω),

and

∂

∂α
f̂θ(ω) = − ln(ω) f̂θ(ω),

∂

∂φ
f̂θ(ω) = jπ f̂θ(ω).

(3.7)
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Chapter 3. Seismic waveform characterization

The gradients for the mismatch error e(n) are then given by

J
(n)
i =

∂e(n)

∂θi
= 2

〈
s(n) −M [θ], γθi

〉
with θi ∈ θ, (3.8)

where γθi = ∂fθ
∂θi

, and 〈., .〉 denotes inner product of two signals. One can

also think of J (n)
i as the projected estimation error for each parameter. The

Jacobian matrix is given by J(n) = {J (n)
i : i = 1 · · · 4}.

Figure 3.3 shows the parameter estimation results for a single isolated
event, where the BFGS method provides an acceptable solution to the min-
imization problem after only a few iterations. Figure 3.4 compares the es-
timated values of the singularity order with actual values. It also shows
the fairly small mismatch between the original trace and the reconstructed
trace by superposition of the estimated waveforms. We found the inversion
results for the isolated events to be independent of noise below a reasonable
level.
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Figure 3.3: Parameter estimation for an individual event in Fig. 3.2. (a)
Initial iteration of parameter estimation for the isolated event where dashed
blue line shows windowed event and solid red line shows our guess. (b) Final
iteration of parameter estimation for the isolated event where the estimated
waveform matches the actual event.
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Figure 3.4: Characterization results for the synthetic trace in Figure 3.1.
(a) Estimated seismic trace is formed by superposition of all characterized
events and compared with the original seismic trace. (b) The estimated
attributes of events (τ, α) are compared to their actual values.
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Chapter 4

Attribute analysis

To characterize the major singularities in our marine data-set from west
Shetlands, the detection-estimation method is applied to each trace of the
time-migrated 2-D seismic image individually. The results are summarized
in Figures 4.1, 4.2, and 4.3, where the vertical axis corresponds to the two-
way travel time and horizontal axis shows lateral position. Although there
are trace-to-trace variations, major features in the original image are cap-
tured and reconstructed quite accurately (see Fig. 4.1). Figure 4.2(a) shows
the modulus of the detected events, which is directly related to correspond-
ing reflectors’ strength. Despite the existence of a relatively strong reflection
at approximately t = 2.9s (see Fig. 4.2(a)), there is only a slightly difference
in the amplitudes of the reconstructed waveforms when compared to the real
ones (cf. Fig. 4.1(a) and 4.1(b)).

Aside from localized estimates of the reflector strength, our characteriza-
tion also provides localized estimates for scale, singularity order, and phase
attributes (see Figures 4.2(b) and 4.3). The estimated values of the differ-
ent attributes (color code) are plotted in Figures 4.2 and 4.3, overlaying the
original seismic image (gray scale). The singularity order predicts the local
regularity of the imaged reflectors; the sharper the transition, the more neg-
ative the order of singularity. As reported in the literature, the estimated
singularity orders only express relative changes in the abruptness of the re-
flectors since they contain a contribution of the seismic source wavelet. The
contribution is given by α = αsrc + αabs, where αsrc shows the singularity
order for the seismic source wavelet and αabs is the absolute singularity or-
der associated with the imaged reflectors. As opposed to singularity orders
which are relatively insensitive to dispersion (Herrmann and Stark, 2000),
estimates for the scale increase for deeper reflections. This observation is
consistent with dispersion, which leads to smaller values for scale, i.e., the
ratio bandwidth over central frequency (∆ω

ω0
). Aside from dispersion effects,

changes in the estimated scale also depend on the characteristic scale of the
transitions. Finally, the phase attributes correspond to localized estimates
for the instantaneous phase. As reported in the literature, this attribute
allows us to distinguish between causal (coarsening upwards), anti-causal
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Chapter 4. Attribute analysis

(fining upwards), and lobe-shaped transitions (Dessing, 1997), while esti-
mates for the singularity orders help us to discriminate between “thin layer
sequences” (−1 ≤ αabs < 0), caused by acoustic impedance variations that
return to their initial value and step-like variations (0 ≤ αabs < 1) where
the initial and transition values differ. The difference for the corresponding
singularity orders can be explained in terms of the well-known bright spots
and local phase rotations associated with tuning of sub-wavelength layer
thicknesses. In that case, the opposite sign reflectors act as a differentiator
effectively, reducing the order of the transition by one.

Other than giving us a trust in our characterization method, lateral
consistency of attributes along reflectors, as in Figure 4.2(b) and 4.3(a),
has also important consequences for the interpretation of geological bound-
aries. Variety of estimated singularity orders for different stratigraphical
horizons suggests that there exist an aggregation of varying order transitions
other than zero-order steps and first-order ramp functions in the sedimentary
basin. Additionally, it admits the existence of a link between the attribute
values and type of the corresponding transitions. Accordingly, layer bound-
aries can no longer be considered as strictly local, as in the case for jump
discontinuities. In the next section, we attempt to provide further lithology
insights by zooming into the strong reflection event, where the estimated
attributes show interesting behavior along the reflector.
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Figure 4.1: Reconstruction of real marine data recorded in west of Shetlands.
(a) Imaged reflection amplitudes. (b) Trace-by-trace reconstruction of real
data through superposition of all matched elements of the manifold.
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Figure 4.2: Estimated attributes for real data given in 4.1(a). The scat-
ter plot of (a) amplitudes of reconstructed events, (b) estimated scale at-
tributes overlays the gray scale imaged section. Warm colors in (a) and
(b) show higher amplitudes and larger scales, respectively. The structure of
detected events is nicely aligned with reflectors.

20



Chapter 4. Attribute analysis

0 500 1000 1500
Lateral direction (sample)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

T
im

e
 (

s)

Characterization of real data (Singularity orders)

-8.0

-7.2

-6.4

-5.6

-4.8

-4.0

-3.2

-2.4

-1.6

-0.8

0.0

(a)

0 500 1000 1500
Lateral direction (sample)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

T
im

e
 (

s)

Characterization of real data (Phase)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(b)

Figure 4.3: Estimated attributes for real data given in 4.1(a). The scatter
plot of estimated (a) singularity order, and (b) instantaneous phase at-
tributes overlays the gray scale imaged section. Warm colors in (a) show
less sharp transitions.
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Chapter 5

Opal-A to opal-CT transition
and well-seismic tie

The seismically imaged region in Figure 4.1(a) represents a subsection of the
Faeroe-Shetland basin, where a commercial exploration well was drilled for
direct lithological calibration in 1999. Analysis of samples taken from the
borehole revealed that the strong high-amplitude event, at t = 2.9s in the
seismic section, represents a diagenetic event corresponding to the opal-A
(Amorphous) to opal-CT (Cristobalite/Tridymite) transition (Davies et al.,
2001; Davies and Cartwright, 2002). The primary deposition of opals is
largely due to biogenic processes during which minute marine organisms
with siliceous skeletons, including sponges, settle to the bottom of sea after
dying. The remains of these animals form non-crystalline opal (opal-A). In-
terestingly, this form of opal is reported to gradually transform to opal-CT
as a result of silica diagenesis, which is due to the increasing overburden
pressure in sedimentary rocks. In the second part of our study on the west
Shetlands dataset, we are concerned with extracting more information on
the lithological characteristics of stratigraphy that we know to exist. In
this section, we zoom into the strong reflection present in the seismic im-
age that corresponds to the diagenetic transition of opal-A to opal-CT. We
will present an example of how these attributes can help us to interpret
microscale transitions.

The diagenetic reflector starts at approximately t = 2.9s (left) and pro-
gresses to t = 2.7s (right). The estimated attributes remain relatively
constant along this reflector although the seismic amplitudes vary signifi-
cantly. Studies on the cuttings of the well have revealed that the volume
fraction of opal-CT changes from 10% to 76% along the boundary (Davies
and Cartwright, 2002). Assuming a linear gradient of the volume fraction,
we use our site percolation model to build an elastic profile as a function of
the volume fraction. For this purpose, elastic properties of opal-A and opal-
CT are required as inputs for the percolation model. Since there are no well
measurements (sonic and density) available near the diagenetic transition,
representative values of elastic moduli for both opal types are taken from
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the literature (Guerin, 2000, logs measured in hole 904A).
In Figure 5.1, elastic profiles for the transition according to the percola-

tion model are depicted, where the modeled singularity is clearly visible in
the velocity difference and hence the corresponding reflection coefficient se-
quence. Next, a synthetic seismic trace is generated according to the convo-
lution model. Because the seismic source signature is unknown, we estimate
the seismic source function with an average of sea bottom waveforms.

As stated earlier, the seismic source function is modeled by a Gaussian
waveform parametrized by [σ, αsrc, φ] = [2.21,−3.78, 1.55] (cf. Eq. 3.6).
The location and shape of the modeled seismic event (Fig. 5.2), given by
convolution of the reflection coefficients with the source function, is con-
trolled by the critical volume fraction pc and singularity order β parameters
of the percolation model. This will enable us to make a well-seismic tie,
where we associate the singularity order αabs with the β model by applying
the detection-estimation method to the semi-synthetic seismic section (see
Fig. 5.3(a)). For this purpose, we will try to find the best fit of the at-
tributes for the real and synthetic part of the seismic reflector for varying
β values. Figure 5.3(a) shows the results with matched orders, which corre-
spond to β = 0.81 in the percolation model. The singularity order for the
synthetic event (in the middle of section) is perfectly matched to an aver-
age value of orders for adjacent real traces. Since αabs and β represent the
same attribute from different perspectives, we expect αabs for the diagenetic
reflector to have the same value as β. However, there is a slight difference
in the values of αabs = α − αsrc = 0.79 and β = 0.81 due to the averaging
approximation. Aside from a good match, The values of estimated phase
attributes (see Fig. 5.3(a)) for the diagenetic event, which is about zero or
2π, show the causality of waveform associated with the event.
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Figure 5.1: The site percolation model for the diagenetic transition of opal-
A to opal-CT. Properties for opal-A are taken to be ρ = 1713.90 kg/m3 and
Vp = 1889.65 m/s. For opal-CT, density and P-wave velocity are assumed
to be ρ = 2006.06 kg/m3 and Vp = 2237.71 m/s, respectively. Density (top
left) and P-wave velocity (top right) profile of the transition is determined
as a function of volume fraction of opal-CT. The velocity, bounded by Reuss
and Voigt averages, is showing a switch-like behavior at a critical point. The
singularity is clearly visible from derivative of velocity (bottom left), and
also preserved in reflection coefficients (bottom right).
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Figure 5.2: Synthetic data generation by convolution model; We estimate
seismic source signature from sea bottom by using seismic waveform char-
acterization. By taking an average over reconstructed waveforms for sea
bottom seismic reflector, we estimate the seismic source function by a
parametrized Gaussian waveform where [σ, α, φ] = [2.21,−3.78, 1.55] (top).
(bottom) Synthetic trace is generated by convolution of reflection coeffi-
cients given in Figure 5.1 with the seismic source. Location and shape of
the synthetic trace is a function of parameters of the site percolation model.
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Figure 5.3: Well-seismic tie. By choosing the appropriate pc value, diage-
netic event is aligned in both synthetic traces (in the middle of section) and
neighboring real traces. The detection-estimation method is applied to this
semi-synthetic section in order to see how constraints from seismic wave-
forms fit with the ones from lithology. Estimated (a) singularity orders and
(b) phase attributes are matched along the diagenetic event when β = 0.81.
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Chapter 6

Discussion and Conclusions

In this thesis, we proposed a new approach to obtain lithological insights
from seismic data in which we model a wider class of transitions from both
lithological perspective (e.g. transitions from smooth connectivity in com-
position) and mathematical representation perspective, i.e., fractional-order
discontinuities. This generalization provides us with more accurate and im-
proved understanding of the subsurface geology.

The waveform characterization implies a representation for the geological
record; where the detection stage extracts basic stratigraphy and estimation
stage reveals the lithology of the subsurface. The singularity order and
phase attributes especially, provide useful information on lithofacies. The
former measures the transition sharpness and the latter can be used as a tool
to distinguish between fining/coarsening upwards or lobe-shaped sequences.
The characterization results on real data show a good alignment between the
location of detected waveforms and seismic reflectors. As discussed earlier,
the observed type of variations of attributes suggests that our parametric
representation can provide us with constraints on the lithological boundaries.
We have also answered the second question posed in the introduction part
by finding the link between characterization attributes and corresponding
lithological transition for the known diagenetic transition.

Finally, the bottleneck of our seismic characterization method is the seg-
mentation, which is somewhat arbitrary. Although we choose a smooth
window function, segmentation step can still cause some edge distortion for
individual waveforms. Despite the fact that the estimation step assumes
an accurate detection and windowing, the parametric inversion is able to
reconstruct the distorted waveforms correctly in most cases. The segmenta-
tion problem is more probable when the events are very close to each other.
Some studies are in progress to show that a specific minimum distance be-
tween different events is required in order to have an accurate recovery, i.e.,
precise separation of the two events. Consequently, very close events are
not distinguishable and may be interpreted as one event with more negative
(smaller) singularity order.
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