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Abstract

The ability to efficiently and sparsely represent seismic data is becoming
an increasingly important problem in geophysics. Over the last thirty years
many transforms such as wavelets, curvelets, contourlets, surfacelets, shear-
lets, and many other types of ’x-lets’ have been developed. Such transform
were leveraged to resolve this issue of sparse representations. In this work we
compare the properties of four of these commonly used transforms, namely
the shift-invariant wavelets, complex wavelets, curvelets and surfacelets. We
also explore the performance of these transforms for the problem of recov-
ering seismic wavefields from incomplete measurements.
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Chapter 1

Introduction

There are many different transforms that can be used to obtain a sparse
representations of signals (e.g., seismic images, natural images, and audio
signals). Numerous ‘sparsifying’ transforms have been invented and exten-
sively studied in the seismic processing literature (see, e.g., Holschneider
et al. (1989), Donoho and Johnstone (1994), Candès et al. (2006)). In this
work we compare some of the important properties that these transforms
possess. A sparsifying transform is an invertible linear operator, mapping a
signal (e.g., an image) to a sparse vector, i.e., a vector with few large compo-
nents. Different types of images have sparse representations under different
transforms. For example, piecewise constant images can be sparsely repre-
sented by spatial finite differences. Natural, real-life images are known to
have a sparse representation in the discrete cosine transform (DCT) and
wavelet transform domains (Dagher et al. (2003)). It has recently been ob-
served that the curvelet transform yields a sparse representation of seismic
data (the curvelet dictionary consists of atoms that locally behave like waves,
and seismic data, consisting of solutions to the wave equation, has a good
sparse representation in curvelets; see, e.g., Candès and Demanet (2005)).
Of course, in any practical setting, one does not expect to have a sparse
representation with a non-adaptive transform. Therefore, strictly speaking,
when we say “sparse” we mean that the magnitude-sorted transform coeffi-
cients decay rapidly. In this case we also say the signal is “compressible.”
More precisely, the coefficient vectors live in a bounded ball in weak `q with
0 < q < 1.

Surfacelets also try to achieve the same result, but with a much different
construction. The complex-wavelet transform (Selesnick et al. (2005)) is of
interest because it has a fixed and low redundancy factor and has the ability
to give signals a multidirectional representation. Classical shift-invariant
wavelets are of interest because computationally they provide a very fast
multiscale representation of a signal although at a price of a high redundancy
factor.

Transform design is only one of the challenges towards obtaining sparse
representations for signals. The second obstacle we need to tackle is find-
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Chapter 1. Introduction

ing the sparse coefficients for a given signal. This is easy if the transform
corresponds to an orthonormal basis expansion as there is a unique coeffi-
cient vector in this case. However, many transforms of interest correspond
to redundant expansions and therefore a given signal can be represented by
infinitely many coefficient vectors. To find a sparse vector among these is
highly non-trivial (Candès et al. (2006)). Several properties of the transform
vectors, e.g., their coherence determine whether this task can be performed
in a computationally tractable manner. Recently, our understanding in this
direction has improved by the explosion in compressed sensing literature.

Outline of this thesis

� First, we compare the construction and properties of four different
transforms: the shift-invariant wavelet, the complex wavelet, the curvelet
and the surfacelet transform. These all attempt to achieve a common
goal - a sparse representation of all signals in a given class (e.g., all
seismic datasets or all natural images). These transforms have differ-
ent localization properties in the space and frequency domains, and as
a result they all have unique and interesting properties.

� Second, we discuss how these transforms are tied into the theory of
compressed sensing (Tsaig and Donoho (2006)).

� And last, we investigate how these transforms perform in recovering
signals from incomplete measurements (see e.g., Lustig et al. (2007)).
In other words, we try to answer the question of which of the four
transforms is most appropriate to use when recovering a signal from
different types of measurements (either from the physical or the fre-
quency domains).

Successful recovery of a signal (modeled as a vector in RN with poten-
tially very large N) from incomplete measurements depends mainly on three
factors: (i) how sampling is done (e.g., uniform or non-uniform, in the spa-
tial domain or in the frequency domain), (ii) how compressible the signal is
with respect to some prescribed transform (e.g., Fourier, wavelet, curvelet,
etc.) and (iii) how mutually incoherent the measurement and sparsity do-
mains are. In recent years the interplay between these three key factors and
their effect on successful sparse recovery is being investigated extensively.
Recent results from compressive sampling give us a better understanding
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Chapter 1. Introduction

in this direction. However, these results do not necessarily apply to cases
where we deal with structured and heavily redundant transforms such as
shift-invariant wavelet, complex wavelet, curvelet or surfacelet transforms.
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Chapter 2

The four transforms

In this chapter we investigate the construction and properties of four dif-
ferent transforms. We start with two separable transforms - shift-invariant
and complex wavelets, and conclude with two non-separable transforms -
curvelets and surfacelets.

2.1 Motivation

As mentioned in the previous chapter, many different transforms were de-
veloped for a wide variety of applications. In this work we focus on one
particular type of data - seismic wave fields. Some typical seismic wave
fields are shown in Figure 2.1. Figure 2.1(a) shows a real seismic wavefield
while Figure 2.1(b) shows a synthetic seismic wavefield.

(a) (b)

Figure 2.1: Examples of seismic data sets. (a) real data (b) synthetic data.

One can see that these datasets have a distinct structure. The wavefronts
consist of hyperbolic and linear events, in some places with overlapping
cusps. Furthermore, there are many singularities present in the data.

An effective transform for this type of data should have the following
useful properties:

4



Chapter 2. The four transforms

Directional selectivity. Typical seismic data (shown in Figure 2.1)
consists of wavefronts with a clear orientation. Thus the basis func-
tions of our transform should be able to align to these events.

Sparsity. The transform should be able to capture most energy of
the signal with only a few coefficients.

Small redundancy. Real seismic datasets can be up to several giga-
bytes large, and even a moderate redundancy factor could significantly
slow down the processing flow.

Incoherence. As suggested by the theory of compressive sampling,
the basis functions of the transform should be as incoherent as possible
with the domain from which our measurement are acquired (Candès
and Wakin (2007)).

2.2 Separable transforms

A separable transform is constructed with separable products of a scaling
function φ and a wavelet ψ. In this section we explore two transforms that
are separable: shift-invariant wavelets and complex wavelets.

2.2.1 The shift-invariant wavelet transform

Numerous variations of the wavelet transforms have been extensively stud-
ied and have appeared in literature as early as 1994 (Donoho and Johnstone
(1994)), even though a mature mathematical theory of wavelets, as well as
practical constructions of orthonormal wavelet bases was developed a decade
later. Their ability to efficiently represent data that has multiscale struc-
ture has made the wavelet transform (WT) a powerful tool for researchers to
use in all areas of signal processing. Perhaps the most widely implemented
variation of the WT is the decimated bi-orthogonal wavelet transform (Ma-
sud and McCanny (1999)), which is utilized in the JPEG2000 compression
algorithm (Dagher et al. (2003)). For other applications, such as edge detec-
tion and texture analysis, researchers continue to employ wavelet transforms
with an arbitrary number of scales. This essentially means that the signal
is modeled as a continuous function in some infinite dimensional function
space, and one uses a wavelet basis or frame for this space. Because of
computational constraints, this type of transform would only be practical
for relatively small datasets. Usually these applications do not involve a
reconstruction step.

5



Chapter 2. The four transforms

In other applications, where a reconstruction from modified coefficients
is required, researchers choose to use the undecimated wavelet transform
(UDWT), which consists of a filter-bank construction but eliminates the
decimation step in the orthogonal wavelet transform. These types of al-
gorithms are very fast and efficient in terms of computational complexity.
Starck et al. (2007) have shown that utilizing an undecimated wavelet trans-
form for image denoising can lead to an improvement of up-to 2.5dB when
compared to denoising via a decimated wavelet transform. The coefficients of
the UDWT are computed using the same filter-bank as in the standard dec-
imated bi-orthogonal WT. This construction leads to three different bands
of coefficients (vertical, horizontal and diagonal) for every scale.

One-dimensional discrete wavelet transform

The undecimated discrete wavelet transform UDWT (also called the shift-
invariant wavelet transform) was independently discovered by several au-
thors, see for example Shensa (1992). Next, we outline how the coefficients
associated with UDWT are computed. We adopt the usual notation and
denote the scaling and wavelet functions by φ and ψ, respectively:

φ(x/2) =
∑

k

h[k]φ(x− k), (2.1)

ψ(x/2) =
∑

k

g[k]ψ(x− k). (2.2)

Here k ∈ Z, x ∈ R, and h[k] and g[k] are the analysis filters. Using the filter
bank (h, g), the undecimated wavelet transform of a 1-D signal returns a
set of coefficients W = {w1, ..., wJ , cJ} where wj are the wavelet coefficients
at scale j and cJ are the coefficients at the coarsest scale. One can obtain
the coefficients at the next finest scale from the ones at the previous scale
using Mallat’s à trous algorithm (Holschneider et al. (1989), Shensa (1992),
Starck et al. (2007)):

cj+1[l] = (h(j) ∗ cj)[l] =
∑

k

h[k]ck[l + 2jk], (2.3)

wj+1[l] = (g(j) ∗ cj)[l] =
∑

k

g[k]ck[l + 2jk], (2.4)

with

h(j) =
{
h[l] if l/2j ∈ Z,
0 otherwise,

(2.5)
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Chapter 2. The four transforms

where h[n] = h[−n] and g[n] = g[−n]. The reconstruction is obtained by

cj [l] =
1
2
[h̃(j) ∗ cj+1[l] + h̃(j) ∗ wj+1[l]]. (2.6)

In the above equation, the filters h̃ and g̃ refer to the synthesis of h and
g, respectively. The filters are designed in such a way that the filter bank
(h, g, h̃, g̃) satisfies the perfect reconstruction condition:

H(z−1)H̃(z) +G(z−1)G̃(z) = 1, (2.7)

where H,G, H̃ and G̃ are the z-transforms of h, g, h̃ and g̃ respectively.

Two dimensional discrete wavelet transform

The 2-D version of UDWT is obtained by extending the à trous algorithm
as follows:

cj+1[k, l] = (h(j)
h

(j) ∗ cj)[k, l], (2.8)

w1
j+1[k, l] = (g(j)h

(j) ∗ cj)[k, l], (2.9)

w2
j+1[k, l] = (h(j)

g(j) ∗ cj)[k, l], (2.10)

w3
j+1[k, l] = (g(j)g(j) ∗ cj)[k, l], (2.11)

where hg∗c is the convolution of c by the separable filter hg, i.e., convolution
first along the columns by h and then convolution along the rows by g (Starck
et al. (2007)). The algorithm produces three wavelet images at each scale,
w1, w2, w3 with each wavelet image being the same size of the original image.
Consequently the redundancy factor of UDWT depends on the number of
scales we choose to have in the decomposition, and is computed by is easy
to compute; it is 3(L− 1) + 1 where L is the number of scales.

The key properties of the UDWT are:

1. The UDWT is shift-invariant, i.e., a small shift in the signal does not
perturb UDWT’s coefficient oscillation pattern around singularities.

2. In 2-D the UDWT has a redundancy factor of 3(L− 1) + 1 where L is
the number of scales in the decomposition.

It is important to note that although computational complexity of UDWT
is O(LN), the redundancy factor of UDWT is exceedingly high for prac-
tical applications. If we are dealing with a moderately-sized dataset that
we wish to analyze, perhaps with 6 scales, this already amounts to a redun-
dancy factor of 3(6−1)+1 = 16, which is unpractical for a lot of applications.
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Chapter 2. The four transforms

2.2.2 The dual-tree complex wavelet transform ( CWT)

The complex dual-tree framework proposed by Selesnick et al. (2005) ex-
tends the work of Kingsbury (1999) by utilizing a filter bank implemen-
tation in conjunction with two real discrete wavelet transforms (DWTs).
These DWTs use different sets of filters and satisfy the perfect reconstruc-
tion conditions, i.e., the analysis operation followed by synthesis operation
would produce the original signal. One of the DWTs gives the real part of
the CWT’s coefficients while the other DWT gives the imaginary part of the
coefficients.

If we let h0(n) and h1(n) be the lowpass/highpass pair for one of the
filterbanks and g0(n) and g1(n) be the lowpass/highpass pair for the other
filter-bank than we can display the analysis/synthesis for the CWT in a
schematic format, as shown in Figure 2.2.

Figure 2.2: CWT filter bank (adapted from Selesnick et al. (2005)). Left:
two levels of the analysis filter bank. Right: synthesis filter bank.

These filters are designed in such a way so that the wavelet ψ(t) :=
ψh(t) + iψg(t), where ψg(t) and ψh(t) are real wavelet functions associated
with the two real wavelet transforms, are approximately analytic (see Lilly
and Olhede (2008)). In this context, approximately analytic means that
ψ(t) can be locally approximated by a convergent power series.

The implementation of CWT is simple: the filter pair h0(n), h1(n) is
used to implement one separable 2-D wavelet transform and the filter pair
g0(n), g1(n) is used to implement the other 2-D wavelet transform. Applying
both transforms to the same 2-D image gives a total of 6 sub-bands: 2 HL,
2 LH and 2 HH sub-bands.

The key properties of the CWT are outlined below;

1. The CWT is nearly shift invariant, i.e., a small shift in the signal does
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Chapter 2. The four transforms

not alter the coefficients’ oscillation pattern around singularities.

2. The CWT is a multiscale transform with six directionally-selective
subbands in 2-D.

3. A complex wavelet is strictly localized in the spatial domain.

4. Regardless of the number of scales used in the decomposition, the
redundancy factor of CWT is always 2n for n dimensions.

2.3 Non-separable transforms

The shift-invariant and complex wavelet transforms both provide multiscale
representations of signals. In addition, the CWT provides a limited number
of directions in the representation. Next we explore two non-separable trans-
forms which provide more flexibility in choosing the number of directions at
any given scale.

2.3.1 The curvelet transform

From a conceptual point of view a curvelet (Candès and Donoho (2004))
is a scaled, shifted, and dilated copy of a basis element ϕa with width ap-
proximately equal to a and length approximately equal to

√
a. A family of

curvelets at scale a, location b, and orientation θ are defined by

ϕa,b,θ(x) = ϕa(Rθ(x− b)), (2.12)

where Rθ is a rotation by θ radians. In the continuous version of the curvelet
transform, the parameter a ∈ (0, 1), indicates the scale, θ is the orientation,
and b ∈ R2 is the spatial location. In the discrete version of the curvelet
transform the parameters a and θ are given by

aj = 2−j , and θj,l = 2πl · 2−bj/2c. (2.13)

At any given scale a curvelet is defined by applying translations and
rotations to a “mother curvelet”. In the frequency domain it is defined by

ϕ̂j,0,0 = 2−3j/4W (2−j |ξ|)V (2bj/2cθ), (2.14)

where W and V are smooth windows with compact support. Since W and
V are compactly supported, one can see directly from Equation 2.14 that a
curvelet will be strictly localized in the frequency domain. It turns out that
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Chapter 2. The four transforms

in the spatial domain curvelets are also well localized with fast decay. Once
can see this idea demonstrated in Figure 4.16.

The 2-D discrete curvelet transform, proposed by Candès and Donoho
(2004), takes a 2-D signal of the form f(n1, n2), 0 ≤ n1, n2 < n as input
and outputs a collection of coefficients that are obtained by computing inner
products of the signal with curvelet window functions at different scales and
directions (Candès et al. (2006)). The curvelet coefficients c(j, l, k) at scale
j, orientation l and spatial location k are defined by

c(j, l, k) =
∑
n1,n2

ϕj,l,k(n1, n2)f(n1, n2), (2.15)

where ϕj,l,k(n1, n2) is the complex conjugate of the curvelet function
ϕj,l,k(n1, n2). The outline of the curvelet transform algorithm is as follows:
A 2-D fast Fourier transform is applied to f(n1, n2) to get f̂(ω1, ω2) with
−n/2 ≤ ω1, ω2 < n/2. Next the Fourier samples of the input image are
multiplied with the curvelet window functions Ũj,l(ω1, ω2) at different scales
and directions to obtain the product sj,l = Ũj,l(ω1, ω2)f̂(ω1, ω2). This prod-
uct is wrapped around the origin to produce W (sj,l)(ω1, ω2). No wrapping
is required at coarsest and finest scales. Lastly, a windowed 2-D inverse fast
Fourier transform is applied to sj,l, and the curvelet coefficients c(j, l, k) are
collected.

The resulting collection of curvelet coefficients ϕa,θ,b is a tight Parseval
frame (see, e.g., Mallat (1999)) for a Hilbert space:

f =
∑
a,θ,b

〈f, ϕa,θ,b〉ϕa,θ,b,
∥∥f∥∥2

2
=

∑
a,θ,b

|〈f, ϕa,θ,b〉|2. (2.16)

See Appendix A.1 for the definition of frames for Hilbert spaces. Some of
the important properties of curvelets are:

1. The curvelet transform provides a tight-frame expansion for any func-
tion f ∈ L2(R2) as a series of curvelets.

2. A single curvelet is strictly localized to one angular wedge in the
frequency domain and has fast decay in the spatial domain. The
effective support of ϕj,l,k(x) obeys a parabolic scaling relation with
width ∝ length2. At scale j a curvelet is a ‘fat needle’ of length 2−j/2

and width 2−j .

10



Chapter 2. The four transforms

Figure 2.3: Frequency domain partitioning of the curvelet transform
(adapted from Candès et al. (2006)). One curvelet is strictly localized to
one angular wedge (shaded) in the frequency domain.

3. A curvelet is smooth along its major axis and is oscillatory along its
minor axis (see Figure 4.16(a)).

4. The curvelet transform, as implemented in Candès et al. (2006), is
approximately 8 times redundant in 2-D and 24 times redundant in
3D.

2.3.2 The surfacelet transform

Curvelets provided us with a multiscale and a multidirectional signal de-
composition. We now explore surfacelet transforms, which are multiscale
and multidirectional transforms that is less redundant than curvelets, and
have a slightly different frequency partitioning.

The surfacelet transforms, proposed by Lu and Do (2007), conceptually
begins from a different construction than the curvelet transform. The sur-
facelet construction starts by extending the directional filter bank (DFB)
that was proposed by Bamberger and Smith (1992) to an arbitrary num-
ber (N ≥ 2) of dimensions. The DFB partitions the frequency plane into
2l, l ∈ N triangular wedges of equal area by radial lines passing through the
origin of the (ω1, ω2) plane. In the case of a general N , the N -dimensional

11



Chapter 2. The four transforms

filter bank (NDFB) partitions the frequency spectrum into rectangular pyra-
mids radiating from the origin.

We consider a 3D example: to achieve the desired frequency partitioning,
the NDFB (now N = 3) partitions the frequency cube into three hourglass-
shaped subbands that are aligned with the ω1, ω2 and ω3 axes, respectively.
Next, two iteratively resampled checkerboard filterbanks (IRC) (Lu and Do
(2007)), that act along the (n1, n2) and (n1, n3) planes, are applied to each
of the hourglass-shaped frequency subbands. The resulting output is 3 · 2l

directional sabbands (Lu and Do (2006)).
Next, we describe the construction of surfacelets, as give by (Lu and Do

(2007): the Fourier transform of the signal gets inputed into first level of
the multiscale pyramid where a highpass filter H(ω) and a lowpass filter
L(ω) operate on the signal. This is similar to the CWT construction, where
lowpass and highpass filters act on the signal to achieve a multiscale repre-
sentation (see Figure 2.2). The output of H(ω) is inputed into the NDFB,
and this returns the fine scale directional approximation to the signal. At
the lowpass branch of the pyramid the signal is upsampled by a factor of two
followed by an anti-aliasing filter S(ω). Finally, the signal is downsampled
by a factor of 3. The output of this branch is a coarse approximation to the
signal, which gets inputed into the next level of the multiscale pyramid. At
the subsequent lowpass branches S(ω) is no longer applied and the signal
only gets downsampled by a factor of 2. Figure 2.4 describes the above
process.

Surfacelets were originally designed to get similar frequency partition-
ing as curvelets, but the two transforms aim to achieve this result with two
very different approaches. The curvelet implementation starts with defining
a“mother” curvelet in the Fourier domain. Moreover, its scaled and sheared
copies form a partition of the frequency plane. As a result, the curvelet
coefficients are obtained by multiplying the Fourier samples of the input
signal with curvelet window functions at different scales and directions, fol-
lowed by spatial downsampling. The downsampling for curvelets is done
in an alias-free fashion, which requires the curvelet functions to be strictly
localized in the frequency domain. Since lower redundancy requires a higher
subsampling ratio, this poses a trade-off between redundancy and spatial lo-
calization of curvelets, and subsequently implies a narrower transition band
in the frequency supports.

It is important to note that aliasing is allowed in the N -dimensional
filter bank that is implemented in the surfacelet transform. At the end,
the aliasing is cancelled out by carefully designed filters. As a consequence,

12



Chapter 2. The four transforms

Figure 2.4: (Adapted from Lu and Do (2007)) Left: first two level of
the analysis filter bank of the surfacelet transform. Subsequent levels of
decomposition are achieved by recursively inserting the point an into an+1.
Right: synthesis filter bank of the surfacelet transform

surfacelets are significantly less redundant than curvelets (a factor of 5 for
surfacelets compared to a factor of 8 for curvelets). The surfacelet transform
can use filters with fast spatial decay without loosing redundancy efficiency,
since the filters do not need to be strictly bandlimmited (Lu and Do (2007)).
Once again, we list the essential properties of the surfacelet transforms;

1. Just like the curvelet transform, the 2-D surfacelet transform provides
a redundant, multiscale and multidirectional decomposition for func-
tions f . The transform is tight frame (see Appendix A.1).

2. Unlike curvelets, which are strictly localized to one angular wedge, a
surfacelet is spread across an entire scale in the frequency domain. In
the spatial domain surfacelets also obey a parabolic scaling relation
of width ∝ length2, with most of the oscillations occurring along the
minor axis (see Figure 4.16).

3. In the 2-D case the surfacelet transform, as implemented in Lu and
Do (2007), is approximately 5 times redundant.

4. Unlike the curvelet directional selectivity, where the number of wedges
doubles at every other scale, in the surfacelet transform the number
of wedges doubles at every scale. The finest and second-finest scales
have the same number of wedges.
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Chapter 3

Sparse seismic signal
recovery

3.1 Motivation

A seismic survey is an experiment to estimate properties of the Earth’s
subsurface from reflected waves. The experiment usually consists of a source
of energy, such as an air gun, or a vibrator (usually called a Vibroseis) and
an array of receiver microphones that measure the reflected waves from the
subsurface. By recording these acoustic pressure changes, it is possible to
estimate the depth of the singularity that caused the reflection.

Figure 3.1: A typical land seismic survey setup (adapted from
www.iongeo.com). The survey consists of Vibroseis trucks and an array
of geophones spread around the survey area. There are physical restrictions
on where sensors can be placed: e.g., one cannot put sensors on the roads
or the lake.

As illustrated in Figure 3.1, seismic data is often irregularly sampled
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Chapter 3. Sparse seismic signal recovery

along the spatial coordinates due to practical constraints. The irregular
sampling is usually due to the fact that at certain locations along the survey
area a receiver physically cannot be placed. In marine surveys the irreg-
ular sampling occurs as a result of dead/severely contaminated traces or
due to cable feathering. A lot of the multi-trace processing algorithms do
not handle irregularly sampled data (data irregularities often result in post-
processing image artifacts), and thus the data must be interpolated onto a
regular grid. There exist relatively simple methods like linear interpolation
of neighboring traces to handle this problem. Unfortunately this method
does not account for wavefronts in the data, and the results of linear in-
terpolations are not always satisfactory. In practice, the methods that are
used to interpolate seismic data are divided into three main groups: offset
continuations (Stovas and Fomel (1993)), shot continuation (Schwab (1993))
and transform based methods (Sacchi et al. (1998)). In this work we build
on the transform-based approach for signal recovery, as was proposed by
Herrmann and Hennenfent (2008) and Hennenfent and Herrmann (2008b).

Frequency domain methods for interpolation also require the data to be
mapped onto a regular grid. This is often the case when the temporal fre-
quencies of a signal are sampled in an irregular manner (Lin et al. (2008)).
This is an often-occurring issue in seismic wavefield modeling in the fre-
quency domain; when solutions to the time-harmonic Helmholtz equation
are available for all frequencies, modeling in the frequency domain can be
transformed back to modeling in the physical domain with time-stepping
methods. However the solutions of the Helmholtz equation for each tem-
poral frequency are expensive to compute. On the other hand, if we are
to invert a seismic wavefield from only a partial set of frequencies, aliasing
artifacts will be visible in the resulting modeled wavefield. In this work we
extend the ideas presented by Herrmann and Hennenfent (2008) and Hen-
nenfent and Herrmann (2008b) to interpolate the subsampled frequencies of
a seismic signal to obtain an alias free result.

3.2 Model

One application of transforms described in the previous chapter is recovering
seismic wavefields from (i) subset of traces and (ii) a subset of angular
frequencies. To describe the problem of signal recovery, we assume the
forward model

y = RMf + n, (3.1)
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where y is a vector, each component of which is a linear measurement of
the full data vector f . The matrix M refers to the domain from which
our measurements are acquired. In problem (i) M is the identity or the
Dirac measurement basis, so M := I and in problem (ii) M is the Fourier
measurement basis, so M := F. In this text we denote by Id the d × d
identity matrix, and by Fd the d × d discrete Fourier transform matrix.
We drop the subscript when it is not necessary to specify the dimensions.
The matrix R is a restriction operator, i.e., it extracts those rows from M
that represent the samples that are actually acquired. In real life problems
the measurement basis and the restriction operator are determined by the
acquisition geometry.

In what follows, we wish to use some transform which “sparsifies” our
signal. If we can find such a transform, we can then exploit this fact by
approximating our signal by a linear combination of a few “x-let” atoms.
More precisely, let S be the analysis operator of the “x-let” transform (whose
atoms form a tight frame), and let SH , the conjugate transpose of S be the
synthesis operator. Given a set of incomplete measurement y of our signal
f , we wish to obtain an approximation f̃ such that (i) f̃ = SH x̃ where x̃ is
sparse, (ii) ‖f − f̃‖2 is small. In certain cases, such an x̃ can be computed
by solving the optimization problem

x̃ = arg min
x
‖x‖1 subject to ‖y −RMSHx‖2 ≤ ε. (3.2)

In what follows, the matrix SH refers to the synthesis matrix of one of the
four transforms domains described in the previous chapter. This problem
is setup in such a way that the solution has small `1 norm (which, at least
under certain assumptions, ensures that it is sparse), while at the same time
it fits the data up to a tolerance ε (ε is related to the amount of noise present
in our data, and in the noise-free case ε = 0). Herrmann and Hennenfent
(2008) have proposed to solve the problem given in Equation 3.2 when the
underlying transform is the curvelet transform to recover a seismic signal
from a subset of traces (Problem i). In this case SH in Equations 3.2 is
the curvelet matrix, and M is the Dirac measurement basis. They use the
principle of alignment, i.e., there is a large correlation between curvelets and
wavefronts that locally have the same direction and frequency content, to
explain heuristically why curvelets achieve good compressibility (one of the
necessary conditions for signal recovery) of seismic data.
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3.3 Compressive sampling

In recent years, the theory of compressive sampling, pioneered by papers
like Candès and Donoho (2004), Candès et al. (2006), and Donoho (2006)
to name a few, has appeared in a lot of literature. As stated by Candès and
Wakin (2007), data acquisition is usually extremely wasteful; large amounts
of data are collected, only to be discarded later on. The acquired data is dis-
carded at the compression stage which is usually necessary for transmission
and storing purposes. Compressive sampling works under the philosophy
of as if “it were possible to directly acquire just the important information
about the object of interest””. By taking only a small number of random
projections, one has enough information to reconstruct the signal with an
accuracy that is at least as good as the best compressed representation of
the object. In this type of data acquisition, analog signals are essentially
already in a compressed digital form. In principle, one can obtain “supper-
resolved” signals from just a few measurements and all that is required is to
“decompress” the measured data.

Candès and Romberg (2007) have shown that when our signal f is suffi-
ciently sparse, one can exactly recover the signal exactly via `1 minimization.

Theorem1 (Candès and Romberg (2007)): Fix f ∈ Rn and suppose
that the coefficient sequence x of f in the basis Ψ is S-sparse. Select m
measurements in the domain Φ uniformly at random. Then if

m ≥ C · µ2(Φ,Ψ) · S · logn, (3.3)

for some positive constant C and mutual coherence µ, the solution to Equa-
tion 3.2 is exact with overwhelming probability.

The quantity µ is know as the coherence between the sensing matrix Φ
and the measurement matrix Ψ, and is defined by (Candès and Romberg
(2007))

µ
(
Φ,Ψ

)
=
√
n · max

1≤k,j≤n
|〈ϕk, ψj〉|, (3.4)

where ϕk is the kth row of Φ and ψj is the jth row of Ψ. This quantity
measures the spread of vectors from the measurement basis in the sparsifying
domain.

The “overwhelming probability”, mentioned in the above theorem ex-
ceeds 1 − δ if m ≥ C · µ2(Φ,Ψ) · S · log(n/δ) (see Candès and Romberg
(2007) for details). The theorem suggests a very specific type of acquisition;
a non-adaptive sampling in an incoherent domain, followed by one-norms
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solution. Essentially, this would acquire the analog signal in a compressed
form. After which, the data is “decompressed” via `1 minimization.

The theory of compressive sampling does not really apply to our case
as our “sparsity transforms” correspond to redundant expansions which are
very structured and do possess bad coherence properties for any of these
theorems to apply. Still, empirically `1 minimization seems to perform well
to capture sparse representations in these cases. One of the main goals of this
thesis is to speculate on possible empirical explanations for this unexpectedly
well performance of compressed sensing-like methods, at least in the case of
seismic datasets with the four mentioned transforms.

3.4 `1 minimization algorithm

The solution of the unconstrained optimization problem given in Equation
3.2 has been extensively studied and to this day many different solvers ex-
ist to tackle this problem. Without being exhaustive, a few of them are:
iterative reweighed least-squares, introduced by Gersztenkorn et al. (1986),
SPG`1, proposed by Berg and Friedlander (2007), a variation of the pro-
jected gradient method, proposed by Birgin et al. (2000), iterative hard-
thresholding, recently introduced by Blumensath and Davies (2008), and
iterative soft-thresholding, introduced by Daubechies et al. (2004). Herr-
mann and Hennenfent (2008) used the iterative soft thresholding (IST) to
solve the problem given in Equation 3.2. The IST is a very attractive solver
to use, especially for large problems, since it only consists of matrix-vector
multiplications and thresholding operations.

However, before we can apply this solver directly to the constrained
problem given in Equation 3.2, we must reformulate it as a series of uncon-
strained problems. Following the strategy of Elad et al. (2008), Problem 3.2
can be rewritten as an unconstrained problem using Lagrange multipliers λ
as

x̃λ = arg min
x

1
2
‖y −RMSHx‖22 + λ‖x‖1 (3.5)

where λ is a parameter that controls the tradeoff between the sparsity of the
solution (minimization of `1 norm) and the `2 data misfit. Now equation
3.5 is in such a form that we can directly apply the IST solver. To simplify
the notation, we define the matrix A to be A := RMSH .

Daubechies et al. (2004) have shown that iterative update of x by

x→ Tλ(x + AT (y −Ay)) (3.6)
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converges to the solution of the problem give in Equation 3.5, for a particular
value of λ, as the number of iterations goes to infinity. In Equation 3.6, Tλ

is a soft-thresholding function, defined by

Tλ(x) =
{
x− sign(x)λ if |x| ≥ λ
0 if |x| < λ.

(3.7)

The operation Tλ(x) thresholds and shrinks the entries of x by the threshold
level λ. An example of this function is shown in Figure 3.2 for λ = 3.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

x

T
λ(x

),
  λ

 =
 3

(a)

Figure 3.2: Example of the soft-thresholding function Tλ(x) with a threshold
level λ = 3.

To solve the full problem in Equation 3.5, the Lagrange multiplier λ
must be cooled, and each subproblem is solved with this particular value of
λ. Cooling is a common strategy to solve such problems (see e.g., Daubechies
et al. (2004)); during this cooling process the subproblems are solved ap-
proximately for a decreasing λ (Hennenfent (2008)). In practice, a limited
number of inner iterations, about 5, are required to give an accurate esti-
mate for x̃λ. In terms of computational complexity this is practical since
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each update of x in Equation 3.7 requires only two matrix-vector multipli-
cations.

Result: Estimate for x
initialization;1

x0 ←− initial guess for x;2

λ0 ←− initial Lagrange multiplier;3

L ←− number of inner iterations;4

while ‖Ax− y‖2 ≥ ε do5

for ` = 1 to L do6

i←− i+ 1;7

xi+1 ←− Sλk

(
xi + AH(y −Axi)

)
;8

end9

λk+1 ←− αkλk with 0 < αk < 1;10

k ←− k + 1;11

end12

Algorithm 1: Iterative soft thresholding, proposed by Figueiredo and
Nowak (2003).

In the next chapter we apply the theory of compressive sampling com-
bined with `1 minimization to investigate which transform performs best
when recovering seismic signals from different types of restrictions.
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Results

In this section, we demonstrate the performance of recovery using Algo-
rithm 1 on a synthetic seismic wavefield. We also compare the compressibil-
ity and mutual coherence of the transforms in the physical and frequency
domains. We try to determine if there is indeed a correlation between the
sparsity/coherence and the signal recovery performance of a particular trans-
form.

4.1 Recovering from a set of missing traces

The first problem that we are considering is the sparse recovery of a seismic
shot gather from a partial set of seismic traces. The model, consisting from
a full set of traces and the data, consisting from a partial set of traces are
shown in Figures 4.1(a) and 4.1(b) respectively.

(a) (b)

Figure 4.1: Seismic data and missing traces. (a) Model - synthetic seismic
wavefield. (b) Data - same seismic wavefield as in (a) but with 50% of the
traces removed

In this case the data is generated by randomly removing 50% of the traces.
In section 4.2.2, we will demonstrate that the success of the recovery also
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depends on in which manner the data is sampled. We apply the iterative
soft-thresholding algorithm to the data in Figure 4.1(b) and test the recov-
ery by the four different transforms - curvelets, surfacelets, shift-invariant
and complex wavelets. In this problem the measurement basis is the Dirac
measurement basis. Mathematically, S in Equation 3.5 is one of the four
transforms and M := I.

(a) (b)

(c) (d)

Figure 4.2: Recovered seismic wavefield via (a) curvelets; (b) surfacelets; (c)
shift-invariant wavelets; (d) complex wavelets

The recovery results by the iterative soft-thresholding algorithm using
curvelets, surfacelets shift-invariant wavelets and complex wavelets are plot-
ted in Figures 4.2(a), (b), (c) and (d) respectively. Using the IST algorithm
(Algorithm 1), we have limited ourselves to 5 inner-loop and 30 outer-loop
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iterations. The signal-to-noise ratios, computed by

SNR = −20 log ‖f0 − f̃‖2/ log ‖f0‖2, (4.1)

where f0 is the full model and f̃ is the recovered signal, are: 7.49 dB for
curvelets, 5.36 dB for surfacelets, 3.99 dB for shift-invariant wavelets and
4.34 dB for complex wavelets. As expected from the coherency argument
and the empirical decay of coefficients, curvelets (the ones that are most
incoherent with the Dirac measurement basis and have the fastest coefficient
decay rate) are the most successful in the recovery. Compared to curvelets,
shift-invariant and complex wavelets had very limited success. The recovery
results from missing seismic traces are summarized in Table 4.1.

Transform Shift-invar. wavelet complex wavelet curvelet surfacelet
SNR (dB) 3.99 4.33 7.49 5.36

Table 4.1: Physical restriction performance summary

4.2 Recovering from a set of missing angular
frequencies

In the second problem that we are investigating, we are assuming that our
data comes from only a subset of temporal frequencies. The model and the
data are shown in Figures 4.3(a) and 4.3(b), respectively.
The data is generated by taking the frequency spectrum of the unrestricted
synthetic wavefield from Figure 4.1(a) and randomly removing 50% of the
temporal frequency content. In this case, just as in the previous case, the
matrix S in Equation 3.5 is still one of the four transforms, but now the
measurement basis is Fourier, so M := F. The problem of recovering a
signal from a set of missing seismic traces (section 4.1) is an interpolation
problem in the physical domain, while the recovery of a signal from a set
of temporal frequencies is in fact an anti-aliasing problem in the physical
domain.

This idea is shown in Figure 4.4, where the data from Figure 4.3(b)
is shown in the physical domain. The data contain aliasing artifacts that
are the comparable to coherent noise. We again apply the iterative soft-
thresholding algorithm to test the recovery performance of the four different
transforms. Again, just as in the previous problem, we limit ourselves to 5
inner-loop and 30 outer-loop iterations.
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(a) (b)

Figure 4.3: Fourier spectrum and missing frequencies. (a)The model - fre-
quency spectrum of the synthetic wavefield in Figure 4.1(a). (b) The data -
50% of the temporal frequencies are missing.

Figure 4.4: The data from Figure 4.3(b) in the physical domain. Aliasing
artifact are present throughout the entire image.
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(a) (b)

(c) (d)

Figure 4.5: Recovered seismic wavefield via (a) curvelets; (b) surfacelets; (c)
shift-invariant wavelets; (d) complex wavelets.
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(a) (b)

(c) (d)

Figure 4.6: Fourier spectra of the recovered signals via (a) curvelets; (b)
surfacelets; (c) shift-invariant wavelets; (d) complex wavelets.
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The recovered signals by curvelets, surfacelets, shift-invariant wavelets
and complex wavelets are shown in Figures 4.5(a), 4.5(c), 4.5(c) and 4.5(d).
The corresponding Fourier spectra are shown in Figure 4.6. The signal-to-
noise ratios for the four different cases are: 5.77 dB for curvelets, 6.17 dB
for surfacelets, 11.0 dB for shift-invariant wavelets and 8.01 dB complex
wavelets. Again, just as expected from the coherency argument, out of the
four transforms shift-invariant wavelets had the best success in recovering
the signal from missing frequencies. The wavelet recovery result has the
highest SNR and the fewest aliasing artifacts left over. The recovery results
from missing angular frequencies are summarized in Table 4.1.

Transform Shift-invar. wavelet complex wavelet curvelet surfacelet
SNR (dB) 11.0 8.01 5.77 6.17

Table 4.2: Frequency restriction performance summary.

4.2.1 A different sampling scheme

The sampling scheme used in section 4.2 assumes that we have no previous
knowledge of the distribution of the frequency content of our data. That
is, we assume the the frequencies are uniformly distributed over the full
spectrum, and we sample this spectrum in a uniform manner. From Figure
4.3(b) it can be seen that most of the frequency content of the wavefield
is concentrated around the 5 Hz to 50 Hz band. If we have this previous
knowledge we can use this to sample our data only in the region that is
know to have to highest frequency content.

The averaged frequency spectrum, shown in Figure 4.7(a) is now used as
a pseudo probability density function to determine where our samples will
come from. That is, the averaged spectrum is used as an envelope for the
new sampling scheme, i.e., most of the samples are measured from frequency
intervals that have the highest relative magnitude.

The signal in Figure 4.7(b) shows the recovered result by taking the
samples from Figure 4.7(a) (red lines). As expected, we have a signifi-
cant improvement over the purely random sampling scheme result in Figure
4.5(c). The signal-to-noise ratio for the band random sampling scheme is
11.86 dB, while in the uniform random sampling case the SNR is 11.0 dB.
This is a significant improvement since in this case we were recovering from
only 20% of the original temporal frequencies while in the previous case we
were recovering from 50% of the original frequencies.
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Figure 4.7: Frequency-weighted sampling scheme. (a) Averaged frequency
distribution with 20% of the frequencies used to sample the signal (red lines);
(b) recovered signal via shift-invariant wavelets with the frequency samples
taken from (a).
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4.2.2 The importance of random sampling

Lets return to the scenario where we assume to have no previous knowledge
on the location of the frequency content of the data. One might think that if
this is the case, then instead of sampling the data randomly, where we could
miss locations of high frequency content, we could try to uniformly sample
the data. In this part we will show that the success of signal recovery is
very much dependent on the sampling scheme used. Lets first consider a 1d
example.

signal

spectra

Figure 4.8: A 1D signal and it’s Fourier spectrum

The signal in Figure 4.8 is a signal composed of a superposition of three
cosine functions with different frequencies. The corresponding Fourier spec-
trum has three distinct peeks corresponding to the three different frequen-
cies. Lets subsample the signal in a random manner (in the physical do-
main).
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randomly sampled signal

spectra

Figure 4.9: Randomly subsampled 1D signal and it’s Fourier spectrum

Figure 4.9 show the original signal randomly subsampled by a factor of 3.
The red lines represent the samples actually acquired. The Fourier spectra
of the subsampled signal is noisy, but never-the-less we can still see the three
distinct spikes corresponding to the three different frequencies. If we set to
zero all the coefficients that are below the threshold level (the green line),
that when we synthesize back to the physical domain, we can exactly recover
our signal. Now lets subsample the signal in a uniform manner.
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uniformly sampled signal

spectra

Figure 4.10: Uniformly subsampled 1D signal and it’s Fourier spectrum

The signal in Figure 4.10 is a three-fold uniformly sabsampled signal.
The Fourier spectrum is no-longer noisy; it now consists of the three orig-
inal spikes plus some coherent aliasing artifacts. All of these spikes live
above the threshold level (that same threshold level as in the previous Fig-
ure). Therefore, after thresholding and synthesizing back to the physical
domain we would not get back our original signal, but instead a distorted
and aliased copy of it. We now demonstrate this idea on our 2-D synthetic
wavefield.
Figure 4.11(c) shows a three-fold uniformly subsampled frequency spectrum
of the synthetic wavefield. Figure 4.11(b) shows the attempt to recover the
signal with the iterative soft-thresholding algorithm using the shift-invariant
wavelet transform. Clearly the algorithm is unsuccessful since we have co-
herent aliasing artifacts left in the recovered result. In this case the signal
to noise ratio is 1.58 dB.

4.2.3 Direct Fourier spectra interpolation

Motivated by the success of curvelets to recover a signal from a set of missing
seismic traces, we would like to see if we can improve upon the recovery of
a signal from a set of missing angular frequencies, using curvelets. This is
done by direct interpolation of the subsampled Fourier spectra. In this case
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(a) (b)

(c)

Figure 4.11: Uniform sub-sampling of angular frequencies. (a) Three-fold
uniformly subsampled frequency spectra of the synthetic wavefield; (b) At-
tempted recovery result by shift invariant wavelets with a uniform subsam-
pling scheme from (a); (c) interpolated spectrum.
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the optimization problem can be formulated as

x̃ = arg min
x
‖x‖1 subject to ‖y −Ax‖2 ≤ ε, (4.2)

where A = RISH , y = FRIf0 and SH is the synthesis of the curvelet
transform. The approximation to f0 is calculated by f̃ = FHSH x̃.

(a) (b)

Figure 4.12: Subsampled signal. (a) Subsampled Fourier spectrum of a
seismic signal; (b) same signal as in (a), but in the physical domain.

The subsampled Fourier spectrum and the signal in the physical domain
are shown in Figure 4.12. The full model is shown in Figure 4.12(b). The
spectra in Figure 4.12(a) is two-fold under-sampled.

(a) (b)

Figure 4.13: Directly interpolating the Fourier spectra. (a) Interpolated
spectra from Figure 4.12(a); (b) interpolated signal in the physical domain.
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The results of direct Fourier spectra interpolation are shown in Figure
4.13. The interpolated spectrum is shown in Figure 4.13(a) and the recov-
ered signal in the physical domain is shown in Figure 4.13(b). Again the
IST solver, with 5 inner and 30 outer loop iterations was applied to Problem
4.2 to obtain these results.

Unfortunately the results from directly interpolation the Fourier spec-
trum are not as favorable as the ones observed in section 4.2. The recovered
signal in Figure 4.13(b) has a significant number of aliasing artifacts left
over. The SNR for the recovered signal is 4.64 dB. Using shift-invariant
wavelets we observed better results when recovering a signal from missing
angular frequencies, as formulated in Problem 3.2 The wavelet recovery for
a two-fold subsampled signal in the frequency domain had a SNR of 11.0
dB.

4.3 Compressibility

In this section, we compare the compressibility of seismic data with respect
to the four transforms. In this context, compressibility means that only a a
few coefficients are required to capture most of the energy of a signal.

4.3.1 Nonlinear approximation

Since each of the four transforms provides an over-complete signal repre-
sentation with different redundancy factors, it would not be a fair to just
compare the decay rates of the sorted coefficients corresponding to each dif-
ferent transform. Two different approaches have been used in the literature
to remedy the problem of different redundancy factors (see e.g., Tantum
and Collins (2003)). The first approach is a Monte Carlo type of sampling
of coefficients where we account for the different redundancies. For exam-
ple, the curvelet transforms is approximately 8 times redundant (in 2-D)
so we randomly remove 7 out of 8 of the curvelet coefficients. This pro-
cedure is repeated n times (n should be large, say 100) and the resulting
coefficients are averaged and the resulting averaged coefficients are plotted
in magnitude-descending order. The same procedure is done for the other
three transforms. The results are shown in Figure 4.14(a).

The other approach is, instead of analyzing at the relative decay rate of
the coefficients we can investigate the mean squared error (or the `2 error) as
a function of the percentage of coefficients used in the reconstruction. This
type of comparison is shown in Figure 4.14(b).
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From the two plots in Figure 4.14 we can see that curvelet coefficients
decay in magnitude significantly faster than the other three transforms’ co-
efficients. The results are similar in the compression plot - a significantly
smaller fraction of coefficients are required to attain the same `2 error from a
partial reconstruction of curvelet coefficients than from any other transforms
partial set of coefficients, i.e., 30% of shift-invariant wavelet coefficients are
required to get the same MSE compared to when we use only 16% of curvelet
coefficients. In both plots (compression and `2 error) the experiments were
performed on a seismic dataset, shown in Figure 4.1(a). The same number
of scales (5) was used in every transform.

From Figures 4.14(a) and 4.14(b) we get an idea about the compressibil-
ity of seismic datasets with respect to different transforms. But never the
less this is a rather rudimentary way of trying to determine which transform
will perform better in seismic signal recovery. The Pareto curve (discussed
in the next section) is perhaps a more suitable tool.
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Figure 4.14: Nonlinear approximation. (a): Randomly sampled transform
coefficients plotted in magnitude-descending order. (b) MSE of the recon-
struction from an incomplete set of transform coefficients
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4.3.2 The Pareto curve

Another tool to measure the compressibility of a signal could be obtained us-
ing the Pareto curve (see e.g., Berg and Friedlander (2008)) associated with
the optimization problem given in Equation 3.2. The use of this curve has
been previously proposed to compare the compressibility of seismic signals
by curvelets and Fourier in Hennenfent and Herrmann (2008a). We extend
this approach to include surfacelets, shift-invariant and complex wavelets in
the compressibility comparison, and test whether one can indeed infer the
efficiency of a transform for sparse recovery from the corresponding Pareto
curves.

The Pareto curve traces the optimal tradeoff between the data misfit
and some prior. We use SPG`1 (Berg and Friedlander (2007)) to solve the
basis pursuit problem (BP0) (Chen et al. (1999)), where BPσ is

BPσ : min
x
‖x‖1 s.t. ‖y −Ax‖2 ≤ σ. (4.3)

In our case we are assuming a noise-free dataset (σ = 0). The matrix A
corresponds to the synthesis matrix of one of the above-described transforms
and y is the data. The columns of each A are normalized to have unit-norm.
Stated in plain English, we try to find a vector of coefficients that has the
smallest `1-norm that fits our data.

The lines in Figure 4.15 represent the Pareto curves for the four different
transforms, plus Fourier. The curves were computed on a synthetic seismic
dataset shown in Figure 4.1(a). For each transform, the point at the bottom
of the ‖y − Ax‖2 axis represents the `1 norm of the solution to the BP0

problem, i.e., the vector of transform coefficients with the smallest `1 norm
that perfectly describes the data.

In Figure 4.15 we can see that Fourier achieves the poorest compressibil-
ity of the signal. Curvelets provide the sparsest representation of the data
with ‖xcurvelet‖1 = 32.6, the smallest `1 norm solution among all transforms.
Hennenfent and Herrmann (2008a) suggested that this type of analysis pro-
vides a better understanding of signal compressibility than just comparing
the empirical decay rates of the magnitude sorted coefficients as was done
by Candès et al. (2006). By tracing the solution path to the BP problem
the Pareto curve provides us with a concrete way of comparing transform
compressibility. The compressibility comparison of the magnitude-sorted co-
efficients is more suitable when comparing transforms which have the same
redundancy factors. It is important to note that the transforms’ recovery
performance, observed in the next chapter, does not correspond to either
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Figure 4.15: Pareto curves for the different transforms. The lined in the
plot represent Pareto curves for compressibility of seismic data by: Fourier
(yellow), curvelets (blue), surfacelets (red), complex wavelets (green) and
shift-invariant wavelets (black)

the order of BP solutions observed in the Pareto curve, nor the empirical
decay rates of the sorted coefficients.

4.4 Mutual coherence

In this section we adapt this theory of compressive sampling to our prob-
lems of interest, i.e., we would like to determine the coherence µ of the
two measurement domains Dirac (M := I) and Fourier (M := F), for the
four transform domains - curvelets, surfacelets, shift-invariant and complex
wavelets. Although it is computationally expensive to calculate this quan-
tity even for small 2-D signals, we can get an idea of its relative values from
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one ’x-let’ in the physical domain and its corresponding frequency response.

Figure 4.16 demonstrates this coherence idea. It shows one curvelet, sur-
facelet, shift-invariant wavelet and complex wavelet plotted in the physical
and frequency domains, all at the same scale. One can see that a curvelet
appears to be most incoherent in the physical domain (i.e. µ

(
I,Scurvelet

)
is

the smallest), that is, there are large oscillations along one direction, and
it appears to be the least-localized in the physical domain. Shift-invariant
wavelets appear to be the least localized in frequency and thus they are most
incoherent in the Fourier domain (µ

(
F,Swavelet

)
is the smallest).

The basis functions in Figure 4.16(a) were generated by applying a syn-
thesis transform on a vector with a single non-zero entry. The corresponding
frequency response, Figure 4.16(b), is generated by taking an fft of the basis
functions in Figure 4.16(a), applying an fftshift (zero-frequencies are now in
the center) and plotting their absolute values.

4.4.1 Coherence approximation

A more deterministic way of looking at the coherence of the four transforms
is to use a Monte-Carlo (Nagata and Watanabe (2008)) type of method.
Rather than calculate the full set of inner products, as defined by Equation
3.4, we approximate the coherence for only a subset of columns as follows;
start by defining the quantity νi by

νi = max |ATAvi| with A = RMWSH , (4.4)

where S is one of the four sparsifying transforms, W is a diagonal matrix
that ensures that the columns of A have unit norm, M is am measurement
basis (either physical or frequency) and R is a restriction operator. In the
physical domain R restricts the columns that correspond to missing traces
and in the frequency domain R restricts the rows that correspond to missing
angular frequencies. The vector vi is a vector that singles out one column of
A, i.e., vi is a vector of zeros with a single 1 at a random location. The the
coherence of the transform and the measurement basis is then computed by

µ̃ = max{νi}i∈[1..N ], (4.5)

where νi is defined in Equation 4.4. N is the number of columns for which
we wish to calculate µ̃. We perform this computation on 10000 random
vectors vi and the results are summarized in Table 4.3.
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Physical Domain Frequency Domain
µ̃ mean var µ̃ mean var

Curvelets 0.876 0.748 0.0056 0.924 0.818 0.0010
Surfacelets 0.871 0.692 0.0042 0.841 0.691 0.0037

Complex Wavelets 0.998 0.738 0.0305 0.876 0.612 0.0499
Shift-invar. wavelets 0.997 0.741 0.0413 0.810 0.690 0.0091

Table 4.3: Coherence approximations

The mean and variance are calculated from the set {νi} for νi as defined
in Equation 4.4. From the coherence approximations in Table 4.3, one can
see that complex and shift-invariant wavelets are the most coherent in the
physical domain. Shift-invariant wavelets are the most incoherent with the
frequency domain. One could use this Table 4.3 as a rough-predictor of
which transform will be the most suitable for signal recovery in the two
different cases. Curvelets are the most coherent in the frequency domain,
and are quite incoherent in the physical domain so we expect curvelets to
perform better when recovering a signal from missing traces rather than
when we recover a signal from missing frequencies. By the same rational we
can expect the best results when recovering a signal from missing frequencies
using shift-invariant wavelets. Although we observed the best result when
recovering a signal from missing traces (see Chapter 4.1) using curvelets,
surfacelets appear to be slightly more incoherent in the physical domain
than curvelets.

4.4.2 Data-dependent coherence approximation

We hypothesize that the success of the recovery of a signal in the physi-
cal domain using curvelets might be due to the nature of the signal - i.e.
curvelets achieve the sparsest representation of seismic signals (see Section
4.3.1). Instead of randomly choosing the v vectors in Equation 4.4, we
choose the vectors that correspond to 10000 most significant or insignificant
transforms’ coefficients, and repeat the same calculation for µ̃.
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Physical Domain Frequency Domain
µ̃ mean var µ̃ mean var

Curvelets 0.864 0.825 0.0013 0.864 0.819 0.0007
Surfacelets 0.834 0.677 0.0040 0.833 0.681 0.0035

Complex Wavelets 0.875 0.556 0.0298 0.875 0.575 0.0316
Shift-invar. wavelets 0.871 0.599 0.0301 0.872 0.582 0.0211

Table 4.4: Data-dependent coherence approximations using 10000 most sig-
nificant transforms’ coefficients

Physical Domain Frequency Domain
µ̃ mean var µ̃ mean var

Curvelets 0.845 0.816 0.0073 0.846 0.815 0.0082
Surfacelets 0.833 0.698 0.0031 0.834 0.671 0.0029

Complex Wavelets 0.875 0.875 1.4e-26 0.875 0.666 0.0490
Shift-invar. wavelets 0.871 0.871 6.4e-19 0.822 0.670 0.0517

Table 4.5: Data-dependent coherence approximations using 10000 most in-
significant transforms’ coefficients

From Tables 4.4 and 4.5 no clear pattern can be observed that would
indicate which transform should perform better when it comes to recovering
a signal from either missing traces or missing angular frequencies. That is,
both tables shows that surfacelets are slightly less coherent than curvelets in
the physical domain, but when recovering a signal from missing traces (phys-
ical restriction), the best results are observed using curvelets (see Section
5).
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(a)

(b)

Figure 4.16: Single atoms of the four transforms in the physical and fre-
quency domains. (a): curvelet (top right), surfacelet (top right), shift-
invariant wavelet (bottom left), complex wavelet (bottom right) in the phys-
ical domain. (b): Fourier transform of the atoms in the same order.
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Conclusions and discussion

Throughout this thesis, we have investigated the recovery of a seismic sig-
nal from missing angular frequencies and missing seismic traces using four
different transforms: shift-invariant wavelets, complex wavelets, curvelets
and surfacelets. The recovery was carried out using the iterative soft-
thresholding procedure, and the algorithm was ran for a fixed number of
iterations. The signal-to-noise ratios for the different experiments performed
are summarized in Table 5.1.

Recovery signal-to-noise ratios
Physical restriction Frequency restriction
50% of traces missing 50% of frequencies missing

Curvelets 7.49 dB 5.77 dB
Surfacelets 5.36 dB 6.17dB
Shift-invar. wavelets 3.99 dB 11.0 dB
Complex wavelets 4.33 dB 8.01 dB

Table 5.1: Recovery performance summary

In the problem of recovering the signal from missing traces the best
results were observed using the curvelet transform. Curvelets were able to
give the sparsest representation of or seismic signal at the cost of a moderate
redundancy factor. Also, out of the four transforms curvelets appear to be
most incoherent with the Dirac measurement basis, which explains, from a
compressive sampling point of view why the best interpolation results were
observed using curvelets.

In the problem of recovering a signal from a subset of angular frequencies
the best results were observed using the shift-invariant wavelet transform,
although at a cost of high redundancy. These results were found to be
significantly better (an improvement by 6.36 dB) than a direct interpolation
of the Fourier spectra of the subsampled signal. Out of the four transforms,
shift invariant wavelets were observed to be most incoherent with the Fourier
measurement basis.

We have also seen that the success of the recovery also depends on the
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sampling scheme used. Uniform subsampling results in coherent aliasing
artifacts and as a result the recovery algorithm fails to produce meaningful
results, as can bee seen in Figure 4.11(b). On the other hand, if one has some
prior knowledge of where most of the frequency content is concentrated, one
can sample in the band. In this case the recovery results had a high SNR
(11.86 dB) when recovering from just 20% of the frequencies.

Throughout this thesis we have attempted to find a direct link between a
transform’s performance in recovering seismic signals from incomplete mea-
surement and the compressibility/mutual coherence of a transform with a
particular measurement basis. Unfortunately no such link was observed.
This is mainly due to the fact that our sparsifying transforms correspond to
redundant expansions with poor coherence properties. A more thorough in-
vestigation is required to determine precisely how non-orthonormal systems
(like shift-invarieant wavelets, complex wavelets, curvelets and surfacelets)
tie into the theory of compressive sampling.
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Appendix A

Wavelet concepts

A.1 Frames

Frame theory is used to analyze the completeness, stability and redundancy
of discrete transforms. It was originally developed by Duffin and Schaefer
(1952) to reconstruct band-limited signals f from irregularly spaced samples
{f(tn)}n∈Z. Roughly speaking, a frame is a family of vectors {φn}n∈Γ in a
Hilbert space H that characterizes any signal f ∈ H from its inner prod-
ucts {〈f, φn〉}n∈Γ in a numerically stable way. More precisely, the sequence
{φn}n∈Γ ∈ H is a frame of H if there exist two constants A > 0 and B > 0
such that for any f ∈ H

A‖f‖2 ≤
∑
n∈Γ

∣∣〈f, φn〉
∣∣2 ≤ B‖f‖2. (A.1)

When A = B the frame is said to be tight. A frame defines a complete
and stable signal representation, which may or may not be redundant. The
redundancy of the signal representation is reflected by the frame bounds A
and B if the frame vectors ϕn have unit norm. Indeed, a frame {ϕn}n∈Γ,
with ‖ϕn‖ = 1, ∀n ∈ Γ, is an orthonormal basis if and only if the frame
bounds satisfy A = B = 1.
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