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Abstract

Thanks to the combination of state-of-the-art accelerators and highly optimized
open software frameworks, there has been tremendous progress in the performance
of deep neural networks. While these developments have been responsible for many
breakthroughs, progress towards solving large-scale problems, such as video encod-
ing and semantic segmentation in 3D, is hampered because access to on-premise
memory is often limited. Instead of relying on (optimal) checkpointing or invertibil-
ity of the network layers—to recover the activations during backpropagation—we
propose to approximate the gradient of convolutional layers in neural networks
with a multi-channel randomized trace estimation technique. Compared to other
methods, this approach is simple, amenable to analyses, and leads to a greatly re-
duced memory footprint. Even though the randomized trace estimation introduces
stochasticity during training, we argue that this is of little consequence as long as
the induced errors are of the same order as errors in the gradient due to the use of
stochastic gradient descent. We discuss the performance of networks trained with
stochastic backpropagation and how the error can be controlled while maximizing
memory usage and minimizing computational overhead.

1 Introduction

Convolutional layers continue to form a key component of current neural network designs. Even
though the computational demands during the forward evaluation are relatively modest, significant
computational resources are needed during training, which typically requires storage of the state
variables (activations) and dense operations between the input and output. By using accelerators (e.g.
GPUs, TPUs, Inferentia), the arithmetical component of training is met as long as memory usage is
controlled.

Unfortunately, restricting memory usage without introducing significant computational overhead
remains a challenge and can lead to difficult to manage additional complexity. Examples include
(optimal) checkpointing [1, 2], where the state is periodically stored and recomputed during the
backward pass, invertible networks [3–5], where the state can be derived from the output, and certain
approximation methods where computations are made with limited precision arithmetic [6] or where
unbiased estimates are made of the gradient using certain approximations [7, 8], e.g., via randomized
automatic differentiation (RAD, [9]) or via direct feedback alignment (DFA, [10–12]).

Our work is based on the premise that exact computations are often not needed, which is an approach
advocated in the field of randomized linear algebra [13, 14], and more recently in the field parametric
machine learning [9]. There the argument has been made that it is unnecessary to spend computational
resources on exact gradients when stochastic optimization is used. A similar argument was used
earlier in the context of parameter estimation with partial-differential equation constraints [15–17].
However, contrary to intervening into computational graphs as in RAD, our approach exploits the
underlying linear algebra structure exhibited by the gradient of convolutional layers.
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By means of relatively straightforward algebraic manipulations, we write the gradient with respect to
a convolution weight in terms of the matrix trace of the outer product between the convolutional layer
input, the backpropagated residual, and a shift. Next, we approximate this trace with an unbiased
randomized trace estimation technique [14, 18–21] for which we prove convergence and derive
theoretical error bounds by extending recent theoretical results [22]. To meet the challenges of
training the most popular convolutional neural networks (CNN), we present a randomized probing
technique capable of handling multiple input/output channels. We validate our approach on the
MNIST and CIFAR10 datasets for which we achieve overall (savings of individual convolutional
layers is much larger) network memory savings of at least a factors of 2.5×. Our results are
reproducible at: Anonymous.

2 Theory

To arrive at our low-memory footprint convolutional layer, we start by casting the action of these layers
into a framework that exposes the underlying linear algebra. By doing this, gradients with respect to
the convolution weights can be identified as traces of a matrix. By virtue of this identification, these
traces can be approximated by randomized trace estimation [18], which greatly reduces the memory
footprint at negligible or even negative (speedup) computational overhead. We start by deriving
expressions for the single channel case, followed by a demonstration that randomized trace estimation
leads to unbiased estimates for the gradient with respect to the weights. Next, we justify the use of
randomized trace estimation by proving that its validity can be extended to arbitrary matrices. Aside
from proving convergence as the number of probing vectors increases, we also provide error bounds
before extending the proposed technique to the multi-channel case. The latter calls for a new type of
probing to minimize cross-talk between the channels via orthogonalization. We derive bounds for the
accuracy for this case as well.

Single channel case Let us start by writing the action of a single channel convolutional layer as
follows

Y = WX ∈ RN×B , where W =
nw∑
i=1

wiTk(i), (1)

and N, B, nw are the number of pixels, batchsize, and number of convolution weights (K2 for a K
by K kernel), respectively. For the ith weight wi, the convolutions themselves correspond to applying
a circular shift with offset k(i), denoted by Tk(i), followed by multiplication with the weight. Given
this expression for the action of a single-channel convolutional layer, expressions for the gradient
with respect to weights can easily be derived by using the chain rule and standard linear algebra
manipulations [23]—i.e, we have
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This expression for the gradient with respect to the convolution weights corresponds to computing the
trace—i.e., the sum along the diagonal elements denoted by tr(A) =

∑
iAii, of the outer product

between the residual collected in δY and the layer’s input X, after applying the shift. The latter
corresponds to a right circular shift along the columns.

Computing estimates for the trace through the action of matrices—i.e., without access to entries of
the diagonal, is common practice in the emerging field of randomized linear algebra [13, 14]. Going
back to the seminal work by Hutchinson [19, 20], unbiased matrix-free estimates for the trace of a
matrix exist involving probing with random vectors zj , j = 1, . . . , r, with r the number of probing
vectors and E(zjz>j ) = I with I the identity matrix. Under this assumption, unbiased randomized
trace estimates can be derived from

tr(A) = tr
(
AE

[
zz>

])
= E

[
z>Az

]
≈ 1
r

r∑
j=1

[
zj>Azj

]
. (3)
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By combining (2) with the above unbiased estimator for the trace, we arrive at the following
approximation for gradient with respect to the convolution weights:

δwi ≈
1
r

r∑
j=1

(
z>j X

) (
δY>T−k(i)zj

)
, i = 1, . . . , nw. (4)

From this expression the memory savings during the forward pass are obvious since X =∑r
j=1

(
z>j X

)
= Z>X, where X ∈ Rr×B with r � N . However, convergence rate guaran-

tees were only established under the additional assumption that A is positive semi-definite (PSD,
[24]). While the outer product XδY>T−k(i) we aim to probe here is not necessarily PSD, improving
upon recent results by [22], we show that the condition of PSD can be relaxed to asymmetric matrices
by a symmetrization procedure that does not change the trace. More precisely, we show in the
following proposition that the gradient estimator in (4) is unbiased and converges to the true gradient
as r →∞ with a rate of about r−1/2 (for details of the proof, we refer to the appendix A.2).

Proposition 1. Let A ∈ RN×N be a square matrix and the probing vectors are i.i.d. Gaussian with
0 mean and unit variance. Then for any small number δ > 0, with probability 1− δ, we have∣∣∣∣∣1r

r∑
i=1

[
z>i Azi

]
− tr (A)

∣∣∣∣∣ ≤ 4‖A‖2

r
log 2

δ
+ 2‖A‖F√

r
log1/2 2

δ
.

Imposing a small probability of failure δ means the log 2
δ term in the upper bound is large, which

implies that neither term in the upper bound is dominating for all the r values. Depending on which
term is dominant, the range of r can be divided into two regimes, the small r regime and the large
r regime. In the small r regime, the first term dominates, and the error decays linearly in r. In the
large r regime, the second term dominates and the error decays as the

√
r. The phase transition

happens when r is about 4‖A‖2
2/‖A‖2

F log 2/δ ≡ 4
ρ log 2/δ, where ρ ≡ ‖A‖2

F /‖A‖2
2 is known as

the effective rank, which reflects the rate of decay of the singular values of A. We see that as r
increases, the larger the effective rank is, the earlier the phase transition occurs, after which the decay
rate of the error will slow down. Before discussing details of the proposed algorithm, let us first
extend the above randomized trace estimator to multi-channel convolutions.

Multi-channel case In general, convolutional layers involve several input and output channels. In
that case, the output of the mth channel can be written as

Ym =
Cin∑
n=1

Wn,mXn, where Wn,m =
nw∑
i=1

wn,mi Tk(i) (5)

for n = 1, . . . , Cin, m = 1, . . . , Cout with Cin, Cout the number of input and output channels and
wn,mi the ith weight between the nth input at mth output channel. In this multi-channel case, the
gradients consist of the single channel gradient for each input/output channel pair, i.e., δwn,mi =
tr(Xn(δYm)>T−k(i)).

While randomized trace estimation can in principle be applied to each input/output channel pair
independently, we propose to treat all channels simultaneously to further improve computational
performance and memory use. Let the outer product of the (n,m)th input/output channel be An,m, i.e,
An,m = (Xn(δYm)>T−k(i))>, computing δwn,mi means estimating tr(Am,n). To save memory,
instead of probing each An,m, we probe the stacked matrix

A =

 A1,1 · · · A1,Cin

...
...

ACout,1 · · · ACout,Cin


by r length Cin ×N probing vectors stored in Z ∈ RNCin,r, and estimate each tr(Am,n) via the
following estimators

Gm,n(A) := 1
r

r∑
j=1

z>n,j (Azj)m , (6)
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where (·)m extracts the mth block from the input vector. That is to say, we simply stack the input
and residual, yielding matrices of size (N × Cin) × B and (N × Cin) × B whose outer product
XδY> (i.e. A> of the A in (6)) is no longer necessarily square. To estimate the trace of each
N ×N sub-block, in (6), we (i) probe the full outer product from the right with r probing vectors
zj of length (N × Cin); (ii) reshape the resulting matrix into a tensor of size (N, Cout, B) while the
probing matrix is shaped into a tensor of size (N, Cin, B) (i.e.,separate each block of Azj), and
(iii) probe each individual block again from the left. This leads to the desired gradient collected
in a Cin × Cout matrix. We refer to Figure 1, which illustrates this multi-channel randomized trace
estimation. After (i), we only need to save X =

∑r
j=1

(
z>j X

)
= Z>X in memory rather than X

that leads to a memory reduction by a factor of NCin
r .

Unfortunately, the improved memory use and computational performance boost of the above multi-
channel probing reduces the accuracy of the randomized trace estimation because of crosstalk amongst
the channels. Since this cross-talk is random, the induced error can be reduced by increasing the
number of probing vectors r, but this will go at the expense of more memory use and increased
computation. To avoid this unwanted overhead, we introduce a new type of random probing vectors
that minimizes the crosstalk by again imposing E(zz>) = I but now on the multi-channel probing
vectors that consist of multiple blocks corresponding to the number of input/output channels.

Explicitly, we draw each zn,j , the nth block of the j probing vector, according

zn,j ∼
{N (0, IN ) with probability pn

0 with probability 1− pn
. (7)

For different values of (n, j), the zn,j’s are drawn independently with a predefined probability pn of
generating a nonzero block. Compared to conventional (Gaussian) probing vectors (see Figure 2 top
left), these multi-channel probing vectors contain sparse non-zero blocks (see Figure 2 top right),
which reduces the crosstalk (juxtapose with second row of Figure 2). It can be shown that crosstalk
becomes less when pn ↓ 0 and r →∞.

Given probing vectors drawn from (7), we have to modify the scaling factor of the multi-channel
randomized trace estimator (6) to ensure it is unbiased,

G̃m,n(A) := 1
nnz(zm)

r∑
j=1

z>n,j (Azj)m , (8)

where nnz(zm) is the number of non-zero columns in block m. We proof the following convergence
result for this estimator (the proof can be found in appendix A.2).
Theorem 1 (Succinct version). Let p = min

n
pn, r be the number of probing vectors. For any small

number δ > 0, with probability over 1 − δ − 2Cine
−rp2/2, we have for any n = 1, . . . , Cin and

m = 1, . . . , Cout,

∣∣∣G̃n,m(A)− tr(An,m)
∣∣∣ ≤ c ·

1√
p

m
‖An,m‖F +

Cin∑
j=1,j 6=m

√
pk

pm
‖An,j‖F

√
r

log CoutCin

δ
,

where c is an absolute constant and Cin and Cout are the numbers of input and output channels.

Theorem 1 provides convergence guarantee for our special multi-channel simultaneous probing
procedure. Similar to Proposition 1, Theorem 1 in its original form (supplementary material) also
has a two-phase behaviour. So the discussion under Proposition 1 applies here. For simplification of
presentation, we only presented the bound for the large r regime in this succinct version. Still, we
can see that the error bound for estimating tr(An,m) not only depends on the norm of the current
block An,m, but also other blocks in that row, which is expected since we simultaneous probe the
entire row instead of each block individually for memory efficiency. Admittedly, due to technical
difficulties, we can not theoretically show that decreasing the sampling probability p decreases the
error. Nevertheless, we observe better performance in the numerical experiments.

3 Stochastic optimization with multi-channel randomized trace estimation

Given the expressions for the approximate gradient calculations of convolutional layers and bounds
on their error, we are now in a position to introduce our algorithm and analyze its performance
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Figure 1: Multi-channel randomized trace es-
timation. This figure shows the three steps of
the algorithm to estimate the trace of a sub
block of the outer product.

Figure 2: Probing matrices and correspond-
ing approximation of the identity for Cin =
16, Cout = 16, r = 64, and N = 256. We
can see that the orthogonalization step by ze-
roing out blocks (compare plots in top row)
leads to a near block diagonal approximation
of the identity with much less cross-talk be-
tween the different channels (compare plots
in second row).

on stylized examples and the MNIST and CIFAR10 datasets in the Experiment section 4. We will
demonstrate that for fixed memory usage the errors in the gradient are of the same order as errors
induced by selecting different min-batches. This confirms similar observations made by [9]. We
conclude this section by comparing memory usage and speed of an actual neural network.

Low-memory stochastic backpropagation The key point of the randomized trace estimator in
Equation (8) is that it allows for on-the-fly compression of the state variables during the forward pass.
For a single convolutional layer Y = conv(X, w) with input X and convolution weights w, our
approximation involves three simple steps, namely (1) probing of the state variable X = Z>X, (2)
matrix-free formation of the outer product L = XY>, and (3) approximation of the gradient via
δwi = 1

r tr(LT−k(i)Z), i = 1, . . . , r. These three steps lead to major memory reductions even for
a relatively small image size of N = 32 × 32 and Cin = 16. In that case, our approach leads to a
memory reduction by a factor of NCin

r = 214−γ for r = 2γ . For γ = 7 this leads to 100× memory
saving. Because the probing vectors are generated on the fly, we only need to allocate memory for
X during the forward pass as long as we also store the state s of the random generator. During
backpropagation, we initialize the state, generate the probing vectors, followed by applying a shift
and product by L. These steps are summarized in Algorithm 1. This simple yet powerful algorithm
provides a virtually memory free estimate of the true gradient with respect to its weights.

Algorithm 1 Low-memory approximate gradient convolutional layer. The random seed s and random
probing matrix Z are independently redrawn for each layer and training iteration.
Forward pass:
1. Forward convolution Y = conv(X, w)
2. Draw a new random seed s and probing matrix Z[s]
3. Compute and save X = Z>[s]X ∈ Rr×B
4. Store X, s
Backward pass:
1. Load random seed s and probed forward X
2. Redraw probing matrix Z[s] from s
3. Compute backward probe L = X̄Y>
4. Compute gradient δwi = 1

r tr(LT−k(i)Z[s])
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Minibatch versus randomized trace estimation errors Simply stated, stochastic optimization
involves gradients that contain random errors known as gradient noise. As long as this noise is not
too large and independent for different gradient calculations, algorithms such as stochastic gradient
descent where gradients are computed for randomly drawn minibatches, converge under certain
conditions. In addition, the presence of gradient noise helps the algorithm to avoid bad local minima,
which arguably leads to better generalization of the trained network [25, 26]. Therefore, as long as
the batchsize is not too large, one can expect the trained network to perform well.

We argue that the same applies to stochastic optimization with gradients approximated by (multi-
channel) randomized trace estimation as long the errors behave similarly. In a setting where memory
comes at a premium this means that we can expect training to be successful for gradient noise with
similar variability. To this end, we conduct an experiment where the variability of 5× 5×Cin ×Cout
(Cin = Cout = 16) convolution weights are calculated for the true gradient for different randomly
drawn minibatches of size B = 128. We do this for a randomly initialized image classification
network designed for the CIFAR10 dataset (for network details, see Table 4 in appendix A.3).

For comparison, approximate gradients are also calculated for randomized trace estimates ob-
tained by probing independently ("Indep." in blue), multi-channel ("Multi" in orange), and multi-
channel with orthogonalization ("Multi-Ortho" in green). The batchsizes are for a fixed probing
size of r = 2048 selected such that the total memory use is the same as for the true gradient
calculations. From the plots in Figure 3, we observe that as expected the independent prob-
ing is close to the true gradient followed by the more memory efficient multi-channel probing
with and without orhogonalization. While all approximate gradient are within the 99% confi-
dence interval, the orhogonalization has a big effect when the gradients are small (see conv3).

Figure 3: Randomized trace estimation of the
gradient of our randomly initialized CNN for
the CIFAR10 dataset. While gradient noise
is present, its magnitude is reduced by the
orthogonalization when weights are small.

Figure 4: Standard deviation of the gradients
w.r.t the weights for each of the four convo-
lutional layers in the neural network. The
standard deviation is computed over 40 mini-
batches randomly drawn from the CIFAR10
dataset.

To better understand, the interplay between different batchsizes B = {64, 128, 256, 1024} and num-
bers of probing vectors r = {64, 256, 512}, we also computed estimates for the standard deviation
from 40 randomly drawn minibatches. As expected, the standard deviations of the network weights
gradients increase for smaller batchsize and number of probing vectors. Moreover, the variability of
the approximates obtained with randomized trace estimation are for the deeper convolutional layers
larger for B = 64. However, since we can afford larger batchsizes for similar memory usage, we can
control the variability for a given memory budget by using a larger batch size.

Overall effective memory savings Approximate gradient calculations with multi-channel random-
ized trace estimation can lead to significant memory savings within convolutional layers. Because
these layers operate in conjunction with other network layers such as ReLU and batchnorms, the
overall effective memory savings depend on the ratio of pure convolutional and other layers and on
the interaction between them. This is especially important for layers such as ReLU, which rely on the
next layer to store the state variable during backpropagation. Unfortunately, that approach no longer
works because our low-memory convolutional layer does not store the state variable. However, this
situation can be remedied easily by only keeping track of the signs [9].
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Figure 5: Network memory usage for a single gradient. We show the memory usage for known
networks for low and high probing sizes for a fixed input size.

To assess what the effective memory savings are of the multi-channel trace estimation, we include
in Figure 5 layer-by-layer comparisons of memory usage for different versions of the popular
SqueezeNet [27] and ResNet [28]. The memory use for the conventional implementation is plotted
in blue and our implementation in orange. The results indicate that memory savings by a factor of
two or more are certainly achievable, which allows for a doubling of the batchsize or increases in the
width/depth of the network. As expected, the savings depend on the ratio of CNN versus other layers.

Wall-clock benchmarks Ideally, reducing the memory footprint during training should not go at
the expense of computational overhead that slows things down. To ensure this is indeed the case, we
implemented the multi-channel randomized trace estimation optimized for CPUs in Julia [29] and for
GPUs in PyTorch [30]. Implementation details and benchmarks are included in appendix A.5.

Our extensive benchmarking experiments demonstrate highly competitive performance for both CPUs,
against the state-of-the-art NNLib [31, 32], and GPUs, against the highly optimized implementation
of convolutional layers in CUDA. On CPUs, we even outperform for large images and large batchsizes
the standard im2col [33] implementation by up to 10× as long as the number of probing vectors
remains relatively small. We observe similar behavior for GPUs, where we remain competitive and
even at times outperform highly optimized CuDNN kernels [34] with room for further improvement.
In all cases, there is a slight decrease in performance when the number of channels increases.
Overall, approximate gradient calculations with multi-channel randomized trace estimation substitute
expensive convolutions between the input and output channels by a relatively simple combination
of matrix-free actions of the outer product on random probing vectors on the right and dense linear
matrix operations on the left (cf.(8) and Algorithm 1).

4 Experiments

Table 1: Training accuracy for varying batchsizes
B and number of probing vectors r on the MNIST
dataset.

B = 64 B = 128 B = 256
True 0.9905 0.9898 0.9901
r = 2 0.9625 0.9692 0.9745
r = 16 0.9753 0.9803 0.9823
r = 64 0.9777 0.9723 0.9782
r = 256 0.9718 0.9706 0.9791

Even though memory and computational gains
of our proposed method can be significant dur-
ing backpropagation, accuracy of trained net-
works needs to be verified. To this end, we
conduct a number of experiments on the MNIST
and CIFAR10 datasets. In these experiments,
we vary the batchsize B and the number of prob-
ing vectors r. Implementations both in Julia and
Python are evaluated.

MNIST dataset We start by training two
"MNIST networks" (detailed in Table 2 and 3 of
appendix A.3 for Julia and PyTorch with training
parameters listed in appendix A.4) for varying

batchsizes B = {64, 128, 256} and number of probing vectors r = {2, 16, 64, 256}. The network
test accuracies for the the Julia implementation, where the default convolutional layer implementation
is replaced by XConv.jl, are listed in Table 1 for the default implementation and for our implemen-
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tation where gradients of the convolutional layers are replaced by our approximations. The results
show that our low-memory implementation remains competitive (compare numbers in bold) even for
a small number of probing vectors, yielding a memory saving of about 2.5×.

We obtained the results listed in Table 1 with the ADAM [35] optimization algorithm. In an effort
to add robustness when training overparameterized deep neural networks, we switch in the next
example to stochastic line searches (SLS, [36]) that remove the need to set hyperparameters manually.
With this algorithm, the line search parameters are set automatically at the cost of an extra gradient
calculation. Figure 6 shows the test accuracies as a function of the number of epochs, batchsize
B = 2γ , γ = 6, . . . , 11 and number of probing vectors r = 2γ , γ = 4, . . . , 8. Because the
randomized trace estimation is unbiased, we observe convergence as r increases. Despite relatively
large approximation errors for small r, we also notice that the induced randomness by our approximate
gradient calculations does not adversely affect the line searches. As in the previous example, we
achieve competitive results with slight random fluctuations for r = 16 for all batchsizes, resulting in
a reduction in memory use by a factor of about 2.5×.

CIFAR10 dataset To conclude our empirical validation of approximate gradient calculations with
multi-channel randomized trace estimation, we train a network on the CIFAR10 dataset. Compared to
the previous examples, this is a more challenging larger realistic training problem. To mimic an actual
training scenario, memory usage is fixed between the regular gradient, and the approximate gradients
obtained by probing independently ("Indep." in blue with r = 32), multi-channel ("Multi." in green
with r = 256), and multi-channel with orthogonalization ("Multi-Ortho" in red with r = 256).
The batchsize for the approximate gradient examples is increased from B = 128 to B = 256 to
reflect the smaller memory footprint. Results for the training/testing loss and accuracy are included
in Figure 7. The following observations can be made from these plots. First, there is a clear gap
between the training/testing loss for the true and approximate gradients. This gap is also present
in the training/testing albeit it is relatively small. However, because of doubling the batchsize the
runtime for the training is effectively halved.

5 Related work

The continued demand to train larger and larger networks, for tasks such as video compression and
classification in 3D, puts pressure on the memory of accelerators (GPUs, etc.), which is in short
supply. This memory pressure is exacerbated when training relies on backpropagation that in its
mundane form calls for storage of the state variables during the forward pass. To relieve this memory
pressure several attempts have been made, ranging from the use of optimal checkpointing [1, 2] to

Figure 6: Training for varying batchsizes and probing sizes. This experiment ran with the Stochastic
Line Search algorithm (SLS, [36])
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Figure 7: CIFAR10 training with equivalent memory comparing our approximate method to standard
training. The four panels show the training and test loss (top row) and training and test accuracy
(bottom row) after 100 epochs.

the use of invertible neural networks [3–5]. While these approaches can reduce the memory footprint
during training, they introduce significant computational overhead, algorithmic complexity, and
invertible neural network implementations that may lack in expressibility.

Alternatively, people have relied on approximate arithmetic [6], on replacing symmetric backprop-
agation by direct feedback alignment [10–12], where random projections on the residual are used,
or on approximations of gradients and Jacobians with techniques borrowed from randomized linear
algebra [14, 18, 20]. Compared to these other approaches, the latter is capable of producing approxi-
mations that are unbiased, a highly desirable feature when training neural networks with stochastic
optimization [25]. Instead of randomizing the forward pass in stochastic computational graphs, we
propose to approximate gradients by exploiting the special structure of gradients of convolutional
layers. This structure allows us to use the relatively simple method of randomized trace estimation
to approximate the gradient while reducing the memory footprint significantly. While perhaps less
versatile than the recently proposed method of randomized automatic differentiation [9], our approach
does not need intervention in the computational graph and acts as a drop-in replacement for the 2D
and 3D convolutional layers in existing machine learning frameworks.

6 Conclusion and Future work

We introduced a novel take on convolutional layers grounded on recent work in randomized linear
algebra that allows for unbiased estimation of the trace via randomized probing. Aside from being
memory efficient—i.e., the state variable only needs to be stored in a majorly compressed form, the
proposed approach, where gradients with respect to convolution weights are approximated by traces,
also has computational advantages outperforming state-of-the-art neural network implementations. In
addition, randomized trace estimation comes with convergence guarantees and error estimates, which
have the potential to inform the proposed algorithm. While there is still room for improvements,
networks trained with approximate gradients calculated with randomized probing have a performance
that is very close to that of the most advanced training methods with an error that decreases with
the number of randomized probing vectors. The latter opens enticing perspectives given recent
developments in specialized photonic hardware where the speed of randomized probing is drastically
increased [37]. This will allow future implementations of our approach to scale to large problems in
video representation learning and other 3D applications.
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A Appendix

A.1 Implementation and code availability

For the anonymous submission, we provide the software in a .zip format with author information
removed and will replace it by the GitHub repository after review. The directory paper contains the
scripts to reproduce the figures. However, this software is intended to be a usable software package
rather than only a set of runnable examples that can be easily plugged into existing framework
seamlessly. The code is therefore organized to be installed and used as a standard pip and Julia
package.

Our probing algorithm is implemented both in Julia, using LinearAlgebra.BLAS on CPU and
CUDA.CUBALS on GPU for the linear algebra computations, and in PyTorch using standard linear
algebra utilities. The Julia interface is designed so that preexisting networks can be reused as we are
overloading rrule (see ChainRulesCore.jl) to switch easily between the conventional true gradient
(NNlib.jl) and ours. The PyTorch implementation defines a new layer that can be swapped for the
conventional convolutional layer, torch.nn.Conv2d or torch.nn.Conv3d, in any network using
the convert_net utility function.

A.2 Proofs of Preposition 1 and Theorem 1

For a square matrix A, let G(A) be the trace estimator:

G(A) = 1
r

r∑
j=1

z>j Azj

where zj ∼ N (0, IN ) be i.i.d. Gaussian vectors. We now prove the proposition and theorem stated
in Section 2.

A.2.1 Proof of Proposition 1

We restate Proposition 1 here.
Proposition 1. Let A ∈ RN×N be a square matrix. Then for any small number δ > 0, with
probability 1− δ,

|G(A)− tr(A)| ≤
(

4‖A‖2

r
log 2

δ
+ 2‖A‖F√

r
log1/2 2

δ

)
.

The proof uses the following result on trace estimation of symmetric matrices.
Lemma 1 (Theorem 5 of [22]). Let B ∈ RN×N be symmetric. Then

P (|G(B)− tr(B)| ≥ ε) ≤ 2 exp
(
− rε2

4‖B‖2
F + 4ε‖B‖2

)
for all ε > 0.

Proof of Proposition 1. For a symmetric matrix B, Lemma 1 immediately implies that for any small
number δ > 0, with probability 1− δ,

|G(B)− tr(B)| ≤ 4‖B‖2

r
log 2

δ
+ 2‖B‖F√

r
log1/2 2

δ
.

Now for our asymmetric A, let B = A+A>

2 . Then G(A) = G(B), tr(A) = tr(B), ‖B‖2 ≤ ‖A‖2,
and ‖B‖F ≤ ‖A‖F , then the proposition follows.

A.2.2 Preparation lemmas for Theorem 2

Lemma 2. Let A ∈ RN×N be a square matrix, zj ,xj ∼ N (0, IN ) be random Gaussian vectors for
j = 1, . . . , r, and all the xj and zj are independent of each other. Then for any δ with probability
1− δ, ∣∣∣∣∣∣1r

r∑
j=1

z>j Axj

∣∣∣∣∣∣ ≤ c
(
‖A‖2

r
log 2

δ
+ ‖A‖F√

r
log1/2 2

δ

)
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where c is some absolute constant independent of r.

proof of Lemma 2. Set T := 1
r

r∑
j=1

z>j Axj . For each summand, we have

z>j Axj = z>j USV>xj = z̃>j Sx̃j =
∑
t

stz̃j [t]x̃j [t] ≡
∑
t

stfj,t, (9)

where the first equality used the singular value decomposition A = USV>, in the second equality,
we defined z̃j = U>zj and x̃j = V>xj , which are still Gaussian. In the third equality, we used st to
denote the tth diagonal entry of S and z̃j [t] and x̃j [t] to denote the tth entry of z̃j and x̃j , respectively.
In the last equality, we defined fj,t := z̃j [t]x̃j [t]. Since zj and xj are i.i.d., so are fj,t. And since
fj,t are products of independent sub-Gaussian random variables, they obey the sub-exponential
distribution, i.e.,

‖fj,t‖ψ1 ≤ ‖z̃j [t]‖ψ2‖x̃j [t]‖ψ2 = c2,

where ‖ · ‖ψ1 denotes the sub-exponential norm and ‖ · ‖ψ2 the sub-Gaussian norm. We also used the
property that there is a constant c, such that for any σ, a Gaussian variable a ∼ N (0, σ2) has a sub-
Gaussian norm ‖a‖ψ2 ≤ cσ, and this property is applied on z̃j [t] and x̃j [t] who are both N (0, 1)
variables due to the rotation invariance of Gaussian vectors.

Apply the Bernstein inequality [38] to T = 1
r

∑
j,t stfj,t, we obtain

P (|T | ≥ t̃) ≤ e
−c′ min{ rt̃2

4‖A‖2
F

,4 rt̃
‖A‖2

}
,

where c′ is some absolute constant. Letting δ to be the right hand side probability, the above implies

P

(
|T | ≥ c

(
‖A‖2

r
log 2

δ
+ ‖A‖F√

r
log1/2 2

δ

))
≤ δ,

with some constant c. Then the lemma is proved.

Lemma 3. Let A ∈ RN×N be a square matrix, zj ,xj ∼ N (0, IN ) be random Gaussian vector for
j = 1, . . . , r, and all the xj’s and zj’s are independent of each other. Let yj be the random vector
that equals to xj with probability p and equals to 0 with probability 1− p. Then for any δ > 0 with
probability over 1− δ − 2e−rp2/2,∣∣∣∣∣∣1r

r∑
j=1

z>j Ayj

∣∣∣∣∣∣ ≤ c
(
‖A‖2

r
log 2

δ
+
√
p‖A‖F√
r

log1/2 2
δ

)
,

where c is some absolute constant independent of r.

Proof. The proof is very similar to that of Lemma 2. Set T := 1
r

r∑
j=1

z>j Ayj . Let gj = 1{yi 6=0} be

the indicator function of whether yj is non-zero. Then clearly yj = xjgj . For each summand, we
have

z>j Ayj = z>j USV>xjgj = z̃>j Sx̃jgj =
∑
t

stz̃j [t]x̃j [t]gj ≡ gj
∑
t

stfj,t, (10)

where in the first equality, we used the singular value decomposition, A = USV>, and in the second
equality, we defined z̃j = U>zj and x̃j = V>xj . In the third equality, we used st to denote the tth

diagonal entry of S with z̃j [t] and x̃j [t] denoting the tth entry of z̃j and x̃j , respectively. In the last
equality, we defined fj,t := z̃j [t]x̃j [t]. From Lemma 2, fi,j follow sub-exponential distributions, i.e.,
‖fj,t‖ψ1 ≤ c2.

Conditional on gj , applying the Bernstein inequality to T̃ := 1∑
j

1{gj 6=0}

∑
j,t stfj,tgj , we obtain

P (|T̃ | ≥ t̃) ≤ e
−c′ min

{
t̃2
∑

i
1{gi 6=0}

4 |A‖2
F

,4
t̃
∑

j
1{gj 6=0}

‖A‖2

}
.
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Letting δ to be the right hand side probability, the above implies

P

|T̃ | ≥ c
 ‖A‖2∑

j 1{gj 6=0}
log 2

δ
+ ‖A‖F√∑

j 1{gj 6=0}

log1/2 2
δ

 ≤ δ.
Since

∑
j 1{gj 6=0} ∼ B(r, p), we then have with probability of 1− 2erp2/2, 3rp/2 ≥

∑
j 1{gj 6=0} ≥

rp/2. Plugging this estimate into the above, we have

P

(
|T̃ | ≥ c

(
‖A‖2

pr
log 2

δ
+ ‖A‖F√

pr
log1/2 2

δ

))
≤ δ.

Then, with this bound of |T̃ |, we have

|T | =

∣∣∣∣∣∣1r
r∑
j=1

z>j Ayj

∣∣∣∣∣∣ =
∣∣∣∣
∑
j 1{gj 6=0}

r
T̃

∣∣∣∣ ≤ c(‖A‖2

r
log 2

δ
+
√
p‖A‖F√
r

log1/2 2
δ

)
,

which is the statement of this lemma.

A.2.3 Multi-channel result: Proof of Theorem 1

For simplicity, we assume the number of input and output channels are the same and both equal to C.
Let

A =

A1,1 · · · A1,C

...
...

AC,1 · · · AC,C


the goal is estimate tr(Am,n), for m,n = 1, . . . , C.

Let Z ∈ RNC×r be the “orthogonalized” matrix of r probing vectors. We further denote by zn,· the
nth row block of Z, which is the block containing the (1 + (n− 1))th to the (nN)th rows of Z. We
also denote by zj ∈ RNC , j = 1, . . . , r the jth column of Z (i.e., the jth probing vector), and by zn,j
the nth block of zj . For any n = 1, . . . , C, j = 1, . . . , r, we define zn,j as

zn,j ∼
{N (0, IN ), with probability pn

0, with probability 1− pn
. (11)

For different values of (n, j), zn,j are independent of each other. Here pn is a predefined probability
for randomly generating each nonzero block.

With these probing vectors, we defined the following estimator for tr(Am,n)

Gm,n(A) := 1
nnz(zn,·)

r∑
j=1

z>n,j(Azj)m,

where nnz(zn,·) is the number of nonzeros columns of zn,·, which is also a random variable.
Theorem 2. Let p = min

n
pn, r be the number of probing vectors. For any small number δ > 0, with

probability over 1− δ − 2Ce−rp2/2, we have for any n,m = 1, . . . , C,

|Gm,n(A)−tr(Am,n)| ≤ c


C∑
k=1
‖Am,k‖

pjr
log C

2

δ
+

1√
p

j
‖Am,n‖F +

C∑
j=1,j 6=n

√
pj

pn
‖Am,j‖F

√
r

log1/2 C
2

δ

 ,

where c is an absolute constant and C is the number of channels. For sufficiently large number of
probing vectors, the above bound reduces to

|Gm,n(A)− tr(Am,n)| ≤ c ·

1√
p

n
‖Am,n‖F +

C∑
j=1,j 6=n

√
pj

pn
‖Am,j‖F

√
r

log1/2 C
2

δ
.
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Proof. First we show the estimator is unbiased. For simplicity of notation, let gn,l = 1{zn,l 6=0} be
the random variable that indicates whether zn,l is non-zero. By definition, conditional on gn,l = 1,
zn,l is Gaussian, and this Gaussian distribution is independent of gn,l. Also

∑
l gn,l ∼ B(r, pn) is

Binomial distribution with probability pj . Then the estimator can be written as

Gm,n(A) := 1∑
l gn,l

r∑
l=1

z>n,l(Azl)mgn,l.

Taking the expectation, we have

E(Gm,n(A)) = Eg

[
EZ|g

(
1∑
l gn,l

r∑
l=1

z>n,l(Azl)mgn,l

)]

= Eg

[
1∑
l gn,l

EZ|g

(
r∑
l=1

C∑
k=1

z>n,lAm,kzk,lgn,l

)]

= Eg

[
1∑
l gn,l

r∑
l=1

C∑
k=1

EZ|g
(
tr(Am,kzk,lz>n,l)gn,l

)]

= Eg

[
1∑
l gn,l

r∑
l=1

C∑
k=1

tr(Am,kEZ|g(zk,lz>n,l))gn,l

]

= Eg

[
1∑
l gn,l

r∑
l=1

Am,ngn,l

]
= tr(Am,n),

where the second to last equality used EZ|g(zn,lz>n,l) = gn,lIN and EZ|g(zk,lz>n,l) = 0 for k 6= n.
Then we estimate the large deviation,

Gm,n(A)− tr(Am,n) = 1∑
l gn,l

r∑
l=1

C∑
k=1

z>n,lAm,kzk,lgn,l − tr(Am,n)

= 1∑
l gn,l

r∑
l=1

z>n,lAm,nzn,lgn,l − tr(Am,n) +
C∑

k=1,k 6=n

(
1∑
l gn,l

r∑
l=1

z>n,lAm,kzk,lgn,l

)
.

The first term is bounded by Proposition 1, and the second term is bounded by Lemma 2. Explicitly,∑
l gn,l is the number of probing vectors we are using in probing Gm,n(A), so conditional on gn,l,

Proposition 1 yields an upper bound on the first term in the above right hand side, with probability
1− δ′∣∣∣∣∣ 1∑

l gn,l

r∑
l=1

z>n,lAm,nzn,lgn,l − tr(Am,n)

∣∣∣∣∣ ≤ 4‖Am,n‖2∑
l gn,l

log 2
δ′

+ 2‖Am,n‖F√∑
l gn,l

log1/2 2
δ′
. (12)

By Lemma 3, the bound on the second term is, with probability 1− δ′ − 2Ce−rp2/2,∣∣∣∣∣∣
C∑

k=1,k 6=n

(
1∑
l gn,l

r∑
l=1

z>n,lAm,kzk,lgn,l

)∣∣∣∣∣∣ ≤
C∑

k=1,k 6=n

∣∣∣∣∣ 1∑
l gn,l

r∑
l=1

z>n,lAm,kzk,lgn,l

∣∣∣∣∣
≤ c

C∑
k=1,k 6=n

(
‖Am,k‖2∑

l gn,l
log 2

δ′
+
√
pk‖Am,k‖F√∑

l gn,l
log1/2 2

δ′

)
. (13)

Since
∑
l gn,l ∼ B(r, pn), so with probability over 1 − Ce−rp

2
n/2, we have

∑
l gn,l > pnr/2.

Combining this, (12), and (13) gives

|Gm,n(A)− tr(Am,n)| ≤ c


C∑
k=1
‖Am,k‖

pnr
log 2

δ′
+

1√
p

n
‖Am,n‖F +

C∑
k=1,k 6=n

√
pk

pn
‖Am,k‖F

√
r

log1/2 2
δ′

 .
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For sufficiently large r, the second term is dominant and the bound reduces to

|Gm,n(A)− tr(Am,n)| ≤ c′
1√
p

n
‖Am,n‖F +

∑C
k=1,k 6=n

√
pk

pn
‖Am,k‖F

√
r

log1/2 1
δ′
.

So far the result is for a given pair of m,n. By the union bound of probability, the probability of
failure for any m,n is δ = δ′C2. Then with probability over 1− δ − 3Ce−rp2/2, we have

|Gm,n(A)− tr(Am,n)| ≤ c ·
1√
p

n
‖Am,n‖F +

∑C
k=1,k 6=n

√
pk

pn
‖Am,k‖F

√
r

log1/2 C
2

δ
.

A.3 Networks

We describe here the network architectures used in our experiments. The architecture used in the
MNIST experiments are standard architectures inspired by existing networks for this dataset. The
CIFAR10 architecture is intentionally chosen to be mostly convolutional and obtained from [9].

Table 2: MNIST network and sizes for training with our Julia implementation for a batchsize B.

Layer kernel size Input size (Co ×Nx ×Ny) Output size (Co ×Nx ×Ny)

Conv2d (3, 3) B×1×28×28 B×16×28×28
ReLU – B×16×28×28 B×16×28×28

Maxpool (2, 2) B×16×28×28 B×16×14×14
Conv2d (3, 3) B×16×14×14 B×32×14×14
ReLU – B×32×14×14 B×32×14×14

Maxpool (2, 2) B×32×14×14 B×32×7×7
Conv2d (3, 3) B×32×7×7 B×32×7×7
ReLU – B×32×7×7 B×32×7×7

Maxpool (2, 2) B×32×7×7 B×32×3×3
Flatten – B×32×3×3 B×288
Dense – B×288 B×10

Table 3: MNIST network and sizes for training with PyTorch on the MNIST dataset for a batch size
B.

Layer kernel size Input size (Co ×Nx ×Ny) Output size (Co ×Nx ×Ny)

Conv2d (3, 3) B×1×28×28 B×32×28×28
ReLU – B×32×28×28 B×32×28×28

Conv2d (3, 3) B×32×28×28 B×64×28×28
ReLU – B×64×28×28 B×64×28×28

Maxpool (2, 2) B×64×28×28 B×64×14×14
Dropout – B×64×14×14 B×64×14×14
Flatten – B×64×14×14 B×12544
Dense – B×12544 B×128
ReLU – B×128 B×128

Dropout – B×128 B×128
Dense – B×128 B×10

Log Softmax – B×10 B×10
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Table 4: CIFAR10 network and sizes for the training with PyTorch on the CIFAR10 dataset for a
batch size B.

Layer kernel size Input size (Co ×Nx ×Ny) Output size (Co ×Nx ×Ny)

Conv2d (5, 5) B×3×32×32 B×16×32×32
ReLU – B×16×32×32 B×16×32×32

Conv2d (5, 5) B×16×32×32 B×32×32×32
ReLU – B×32×32×32 B×32×32×32

AvgPool (2, 2) B×32×32×32 B×32×16×16
Conv2d (5, 5) B×32×16×16 B×32×16×16
ReLU – B×32×16×16 B×32×16×16

Conv2d (5, 5) B×32×16×16 B×32×16×16
ReLU – B×32×16×16 B×32×16×16

AvgPool (2, 2) B×32×16×16 B×32×8×8
Flatten – B×32×8×8 B×2048
Dense – B×2048 B×10

Log Softmax – B×10 B×10

A.4 Training parameters

We now detail the training hyperparameters for the results presented in section 4.

A.4.1 MNIST with Julia

• NVIDIA Quadro P1000 GPU
• 20 epochs
• ADAM with initial learning rate of 0.003
• MNSIST dataset for varying batchsize B and probing size r
• Julia implementation

A.4.2 MNIST with PyTorch

• NVIDIA Tesla K80 (Azure NC24 4xK80, one K80 per case) GPU
• 50 epochs
• Stochastic LineSearch (SLS [36]) with initial learning rate of 1.0 and default SLS parameters
• MNSIST dataset for varying batch size and probing size
• PyTorch implementation

A.4.3 CIFAR10 with PyTorch

• NVIDIA Tesla K80 (Azure NC6) GPU
• 100 epochs
• Stochastic Gradient Descent optimizer
• Initial learning rate of 0.001 with cosine annealing scheduler. 1.5× learning rate with

probing.
• CIFAR10 dataset
• PyTorch implementation

A.5 Wall-clock benchmarks

We show in the following figures the wall-clock benchmark results discussed in Section 3 with the
hardware description.
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B=4 B=4

B=8 B=8

B=16 B=16

B=32 B=32

B=64 B=64

Figure 8: CPU benchmark on a Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.80GHz node. The left column
contains the runtimes for 4 channels and the right column for 32 channels. We can see that for large
images and batchsizes, our implementation provides a consequent performance gain of up to 10×.
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B=32 B=64

B=128 B=256

Figure 9: GPU benchmark on a Tesla K80 (Azure NC6 instance) for a single gradient for varying
batchsizes B, image sizes N and number of channel Cin = Cout. We observe that for larger
scale problems we perform as well if not better than state-of-the-art CuDNN kernels such as for
B = 256, Cin = 256.
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