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ABSTRACT

Acquiring seismic data on a regular periodic fine grid is challenging. By exploiting the

low-rank approximation property of fully sampled seismic data in some transform domain,

low-rank matrix completion offers a scalable way to reconstruct seismic data on a regular

periodic fine grid from coarsely randomly sampled data acquired in the field. While wavefield

reconstruction have been applied successfully at the lower end of the spectrum, its performance

deteriorates at the higher frequencies where the low-rank assumption no longer holds rendering

this type of wavefield reconstruction ineffective in situations where high resolution images are



desired. We overcome this shortcoming by exploiting similarities between adjacent frequency

slices explicitly. During low-rank matrix factorization, these similarities translate to alignment

of subspaces of the factors, a notion we propose to employ as we reconstruct monochromatic

frequency slices recursively starting at the low frequencies. While this idea is relatively simple

in its core, to turn this recent insight into a successful scalable wavefield reconstruction scheme

for 3D seismic requires a number of important steps. First, we need to move the weighting

matrices, which encapsulate the prior information from adjacent frequency slices, from the

objective to the data misfit constraint. This move considerably improves the performance

of the weighted low-rank matrix factorization on which our wavefield reconstructions is

based. Secondly, we introduce approximations that allow us to decouple computations on a

row-by-row and column-by-column basis, which in turn allow to parallelize the alternating

optimization on which our low-rank factorization relies. The combination of weighting

and decoupling leads to a computationally feasible full-azimuth wavefield reconstruction

scheme that scales to industry-scale problem sizes. We demonstrate the performance of

the proposed parallel algorithm on a 2D field data and on a 3D synthetic dataset. In both

cases our approach produces high-fidelity broadband wavefield reconstructions from severely

subsampled data.
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INTRODUCTION

For economical extraction of hydrocarbon resources from the subsurface and to prevent

hazardous situations oil and gas companies often rely on imaging and accurate estimates

of the earth’s subsurface physical parameters such as wavespeed, density, etc. To obtain

subsurface images and to recover these physical parameters, practitioners apply a series of

processing steps to the raw seismic data collected from field during seismic data acquisition.

Some of these processing steps, such as migration, demultiple, etc. require seismic data to be

finely sampled and preferably on a regular grid. Unfortunately, seismic data acquisition on a

fine regular grid is often prohibitively expensive and also operationally complex. Therefore,

a general practice adapted by the oil and gas industry is to acquire seismic data on a

coarse irregular grid, followed by wavefield reconstruction to a finer grid. In this work, we

consider wavefield reconstruction from randomized samples taken from a periodic grid. The

reader is referred to (Lopez et al., 2016) for an off-the-grid extension of presented wavefield

reconstruction methodology.

In recent years, several methods for wavefield reconstruction have been developed. Many

of these methods perform wavefield reconstruction in a transformed domain involving Fourier

(Xu et al., 2005), Radon (Bardan, 1987), wavelet (Villasenor et al., 1996), or curvelet

(Herrmann and Hennenfent, 2008) domain. To a varying degree, these transforms promote

sparsity on seismic data, which is a key component of wavefield reconstruction based on

compressive sensing (Candes et al., 2006; Donoho, 2006). While powerful, sparsity-based

wavefield reconstruction does not scale well to 3D seismic where the data volumes become

prohibitively large when structure is promoted along more than three dimensions, e.g. along

all four source and receiver coordinates. By exploiting low-rank properties of matrices and
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tensors (Kumar et al., 2015; Oropeza and Sacchi, 2011), some of these high dimensional

challenges have been overcome by building on early work of Recht et al. (2010), who extended

some of the ideas of compressed sensing to matrices. Similar to CS, matrix completion

relies on the fact that the underlying fully sampled data organized in a matrix permits a

low-rank approximation. As in CS, randomized sampling breaks the low-rank structure,

which informs (convex) optimization techniques that recover wavefields by minimizing the

rank. Kumar et al. (2015) and Da Silva and Herrmann (2015) exploited this property and

formalized matrix-/tensor-based wavefield reconstructions that are practical for large-scale

seismic datasets (Kumar et al., 2017).

As demonstrated in the work by Kumar et al. (2015), low-rank matrix completion methods

work well when reconstructing seismic data at the lower angular frequencies but the recovery

quality degrades when we move to the higher frequencies (> 15Hz). This degradation

in recovery quality is caused by the property that high-frequency frequency slices are not

well approximated by low-rank matrix factorization (Kumar et al., 2015; Aravkin et al.,

2014). Unfortunately, techniques such as multiple elimination and migration need access

to high-frequency data to create high-fidelity artefact-free high-resolution images. This is

especially true when physical properties are of interest in areas of complex geology.

To meet the challenges of recovering seismic data at high frequencies, we build on earlier

work by Aravkin et al. (2014) and Eftekhari et al. (2018) who discussed how to improve the

performance of low-rank matrix completion by including prior information in the form of

weighting matrices. The weighting matrices are projections spanned by the row and column

subspaces (and their complements) of a low-rank matrix factorization of a matrix that is

close to the to-be-recovered matrix. As with weighted `1-norm minimization, these weighting

matrices improve the wavefield recovery if the principle angle between the subspaces of the
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weighting matrices and the to-be-recovered matrix is small. Conceptually, this is the matrix

counterpart of weighted `1-norm minimization proposed by Mansour et al. (2012). Aravkin

et al. (2014) and Eftekhari et al. (2018) showed that wavefield recovery via matrix completion

can be improved when low-rank factorizations from adjacent frequency slices are used to

define these weighting matrices. Aravkin et al. (2014) used this principle assuming access

to the low-rank factorization of an adjacent frequency slice using a modified version of the

spectral-projected gradient algorithm (Van Den Berg and Friedlander, 2008). Also, Eftekhari

et al. (2018) showed that for small principle angles, these weighing matrices reduce sampling

requirement for successful data reconstruction by a logarithmic factor in comparison to the

sampling requirement for the conventional matrix completion method.

While the initial results on wavefield reconstruction via weighted matrix completion

were encouraging, the presented approach was not very practical because it relied on having

access to the weights. In addition, the optimization relied on a computationally expensive

optimization algorithm. We overcome these shortcomings by proposing a parallelizable

recursive method that uses a recently developed alternating minimization procedure (Xu

and Yin, 2013; Jain et al., 2013) proposed by Lopez et al. (2015). Thanks to the recursive

reconstruction, as first proposed by Zhang et al. (2019), and the improved optimization we

will demonstrate that we are able to improve the performance of our wavefield reconstruction

algorithm.

The outline of our paper is as follows. We first provide a short overview of the principles of

wavefield reconstruction via matrix completion. We follow this brief exposition by describing

the challenges of high-frequency wavefield reconstruction and how these challenges can be

addressed through weighted matrix completion. After this introduction, we describe how to

derive a formulation in factored form, which allows to drastically reduce the problem size
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rendering our approach practical for 3D seismic data. In particular, we describe how our

algorithm can be parallelized and applied to a large-scale high-frequency seismic wavefield

reconstruction problem.

WAVEFIELD RECONSTRUCTION VIA WEIGHTED MATRIX

COMPLETION

According to the seminal work of Recht et al. (2010), matrices that exhibit low-rank structure

can be recovered from random missing entries through a nuclear norm minimization procedure.

During the optimization the sum of the singular values is minimized. As long as the

randomized subsampling decreases the rate of decay of the singular values, this type of

minimization allows for the recovery of matrices that are well approximated by low-rank

matrices when fully sampled. Kumar et al. (2015) used this principle to recover frequency

slices from seismic lines in the midpoint-offset domain or from 3D seismic data permuted in

non-canonical form (Da Silva and Herrmann, 2015). In either case, the resulting frequency

slice can be approximated accurately by a low-rank matrix factorization.

To illustrate the underlying principle of wavefield reconstruction via matrix completion,

we consider a 12Hz monochromatic frequency slice assembled from a 2D line acquired in the

Gulf of Suez. Figure 1, includes the real part of this frequency slice in the source-receiver

and midpoint-offset domain after removing 75% of the sources via jittered subsampling

(Hennenfent and Herrmann, 2008). Compared to uniform random subsampling, jittered

subsampling controls the maximal spatial gap between sources, which favors wavefield recon-

struction. While the monochromatic data contained in these frequency slices is comparable,

the behavior of the singular values before and after subsampling is very different before and
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after transforming to the midpoint-offset domain (juxtapose Figures 2a and 2b). The singular

values for the matricization in the shot-domain (denoted by the dashed lines) decay slowly

when fully sampled and fast when subsampled, which can be understood since removing

rows or columns from a matrix reduces the rank. The converse is true for data in the

midpoint-offset domain, which shows a fast decay of the singular values for the fully sampled

data and a slow decay after randomized subsampling. The latter creates favorable conditions

for recovery via matrix completion (Kumar et al., 2015) via

X := argmin
Y

‖Y‖∗ subject to ‖A(Y)−B‖F ≤ ε, (1)

which promotes low-rank matrices.

[Figure 1 about here.]

[Figure 2 about here.]

By solving this minimization problem, we aim to recover the minimum nuclear norm

(‖X‖∗ =
∑
σi with the sum running over the singular values of X) of the complex-valued data

matrix X ∈ Cm×n, with m offsets and n midpoints. Aside from minimizing the nuclear-norm

objective, the minimizer fits the observed data B ∈ Cm×n at the sampling locations to

within some tolerance ε measured by the Frobenious norm—i.e., ‖D‖F =
√∑

j

∑
kD

2
jk for

a matrix D. In this expression, the linear operator A implements the sampling mask putting

zeros at source (and possibly receiver) locations that are not collected in the field. Here,

the matrix Y is the optimization variable. Equation 1 is similar to the classic Basis Pursuit

DeNoising problem (BPDN, Van Den Berg and Friedlander, 2008) and can be solved with a

modified version of the SPG`1 algorithm adapted for nuclear-norm minimization (Aravkin
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et al., 2014). To solve problem 1, SPG`1 solves a series of constrained subproblems during

which the nuclear-norm constraint is relaxed to fit the observed data.

The challenge of high-frequency wavefield recovery

Wavefield reconstruction via matrix completion (cf. problem 1) relies on the assumption that

the singular values of monochromatic data organized in matrix decay rapidly. For the lower

frequencies (< 15.0Hz) this is indeed the case but unfortunately this assumption no longer

holds for the higher frequencies. To illustrate this phenomenon, we compare in Figure 3 the

decay of the singular values for the two matricizations of Figure 2 at 12.0Hz and 60.0Hz.

While the singular values at 12.0Hz indeed decay quickly this is clearly no longer the case

at 60.0Hz (juxtapose solid lines in Figures 3a and 3b) where the singular values for the

fully sampled data decay more slowly. This slower decay at the high frequencies is caused

by the increased complexity and oscillatory behavior exhibited by data at higher temporal

frequencies. Despite the fact that the randomized source subsampling slows the decay down,

the slower decay of the fully sampled data leads to poor wavefield reconstruction (Figure 4a)

and unacceptable large residuals (Figure 4b) at 60.0Hz.

Weighted matrix completion

As Figures 3, 4a, and 4b illustrate, the success of wavefield reconstruction by minimizing the

nuclear norm (cf. equation 1) hinges on rapid decay of the singular values an assumption

violated at the higher frequencies. This shortcoming can, at least in part, be overcome

by using prior information from a related problem in the form of weights, an approach

initially put forward by Aravkin et al. (2014) and further theoretically analyzed by Eftekhari
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et al. (2018). In its original form, the weights were derived from the reconstruction of the

wavefield at a neighboring temporal frequency, which leads to a significant improvement for

the reconstruction and the residual plotted in Figures 4c and 4d, respectively. By applying

this approach recursively from low to high frequencies, Zhang et al. (2019) improved the

reconstruction even further judged by the quality of Figure 4e and the size of the residual

plotted in Figure 4f. In this work, we further extend this result by reformulating the

optimization problem and by introducing a parallel algorithm that limits communication.

[Figure 3 about here.]

[Figure 4 about here.]

We obtained the above weighted wavefield reconstructions by minimizing (Aravkin et al.,

2014; Eftekhari et al., 2018)

X := argmin
Y

‖QYW‖∗ subject to ‖A(Y)−B‖F ≤ ε, (2)

where the weighting matrices Q ∈ Cm×m and W ∈ Cn×n are projections given by

Q = w1UUH + U⊥U⊥
H

(3)

and

W = w2VVH + V⊥V⊥
H

, (4)

where the symbol H denotes complex transpose. These projections are spanned by the row

and column subspaces U, V and their orthogonal complements U⊥ and V⊥. Also, these

subspaces U, V have orthonormal columns making UUH and VVH orthogonal projections.

The pair of matrices {U,V} are low rank and can be obtained from the factorization of a

lower adjacent frequency slice. The choice for the weights w1 and w2 in equations 3 and 4
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depends on the similarity between the corresponding row and column subspaces of the two

adjacent frequency slices. We follow Eftekhari et al. (2018) and quantify this similarity

by the largest principle angle between these subspaces. The smaller this angle, the more

similar the subspaces from the two adjacent frequency slices will be. In situations where

the adjacent frequency slices are near orthogonal—i.e., have a near 90◦ angle, we choose

w1 ↑ 1 and w2 ↑ 1 so that the weighting matrices Q and W become identity matrices. In

that case, the weighting matrices should not add information—i.e., the solution of problem 2

should become equivalent to solving the original problem in equation 1. Conversely, when the

subspaces are similar—i.e., they have an angle � 90◦, then the w1 and w2 should be chosen

small such that we penalize solutions more in the orthogonal complement space. Depending

on our confidence in the given factorization, we chose these weights close to one when we

have little confidence and close to zero when we have more confidence.

While replacing the nuclear-norm objective in equation 1 by its weighted counterpart

in equation 2 is a valid approach responsible for improvements reported in Figure 4, its

solution involves non-trivial weighted projections (see equation 7.3 in Aravkin et al., 2014).

These computationally costly operations can be avoided by rewriting optimization problem 2

in a slightly different form where the weights are moved from the objective to the data

constraint—i.e., we have

X̄ := argmin
Ȳ

‖Ȳ‖∗ subject to ‖A(Q−1ȲW−1)−B‖F ≤ ε. (5)

In this formulation, the optimization is carried out over the new variable Ȳ = QYW. After

solving for this variable, we recover the solution of the original problem X from X̄ as follows:

X = Q−1X̄W−1. We arrived at this formulation by using the fact that the matrices Q and
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W are invertible (for non-zeros weights w1 and w2) with inverses given by

Q−1 =
1

w 1
UUH + U⊥U⊥

H

(6)

and

W−1 =
1

w 2
VVH + V⊥V⊥

H

. (7)

Because we moved the weighting matrices to the data constraint, we no longer have to

project onto a more complicated constraint as in Aravkin et al. (2014), which results in

solutions of equation 5 at almost the same computational costs as in the original formulation

(Equation 1). This formulation forms the basis for our approach to wavefield reconstruction

that is capable of handling the large data volumes of 3D seismic.

SCALABLE MULTI-FREQUENCY SEISMIC WAVEFIELD

RECONSTRUCTION

So far, our minimization problems relied on explicit formation of the data matrix and on

the singular-value decomposition (SVD, Aravkin et al. (2014)) both of which are unfeasible

for industry-scale 3D wavefield reconstruction problems. To address this issue, we discuss

how to recast the above weighted matrix completion approach into factored form, which has

computational benefits and, as we will show below, can still be parallelized.

Weighted low-rank matrix factorization

To avoid computing costly SVDs, we first cast the solution of equation 5 into factored form:

L̄, R̄ := argmin
L̄#,R̄#

1

2

∥∥∥∥∥∥∥∥
L̄#

R̄#


∥∥∥∥∥∥∥∥
2

F

subject to ‖A(Q−1L̄#R̄H
#W−H)−B‖F ≤ ε, (8)
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where L̄ = QL and R̄ = WR. Under certain technical conditions (Candes and Recht, 2009),

which include choosing the proper rank r, the factored solution, X = LRH with L = Q−1L̄

and R = W−1R̄, corresponds to the solution of the weighted problem included in equation 2.

Here, the matrices L ∈ Cm×r and R ∈ Cn×r are the low-rank factors of X. Using the

property that the matrices WH = W and QH = Q in equation 8 are idempotent, we replace

W−H by W−1 to avoid extra computation. Compared to the original convex formulation,

equation 8 can be solved with alternating optimization, which is computationally efficient as

evidenced from the runtimes plotted in Figure 5 as a function of temporal frequency. Of

course, this approach only holds as long as the monochromatic data matrices can be well

approximated by low rank matrices—i.e., r � min(m,n).

[Figure 5 about here.]

While the above weighted formulation allows us to solve the problem in factored form, it

needs access to the subspaces {U,V}, which requires computing the full SVD (Eftekhari

et al., 2018). Since we cannot compute this full SVD, we instead orthogonalize the low-rank

factors from adjacent frequency slices themselves by carrying out computationally cheap

SVDs on the factors rather than on the full data matrix and then keeping the top r left

singular vectors. This approach is justified because orthogonalizing low-rank factors allows

approximating orthogonal subspaces spanned by the full frequency slice.

The results presented in Figure 4 were obtained in factored form and demonstrated clearly

how the incorporation of weight matrices improves recovery especially when these weight

matrices are calculated recursively from low to high frequencies (juxtapose Figures 4c, 4d

and 4e, 4f). This improvement is due to the fact that low-frequency data matrices can be

better approximated by low-rank matrices, which improves the recovery and therefore the
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weighted reconstruction.

Weighted parallel recovery

The example in Figure 4 made it clear that wavefield reconstruction via matrix factorization

improves when including weight matrices that carry information on the row and column

subspaces. However, inclusion of these weight matrices makes it more difficult to parallelize

the algorithm because the parallelized alternating optimization approach by Recht and Ré

(2013) and Lopez et al. (2015) no longer applies straightforwardly. That approach relies

on decoupled computations on a row-by-row and column-by-column basis (see Figure 6) in

which case one alternates between minimizing the rows via

R(l1, :)
H := argmin

v

1

2
‖v‖2 subject to ‖Al1(Lv)−B(:, l1)‖ ≤ γ (9)

for l1 = 1 · · ·n and the columns via

L(l2, :)
H := argmin

u

1

2
‖u‖2 subject to ‖Al2((Ru)H)−B(l2, :)‖ ≤ γ (10)

for l2 = 1 · · ·m. With this approach, the rows of the right factor R are updated first by

iterating over the rows via the index l1 = 1 · · ·n. These updates are followed by updates on

the rows of the left L factor by iterating over the rows via the index l2 = 1 · · ·m. Contrary

to the serial problem, these optimizations are conducted on individual vectors v ∈ Cr and

u ∈ Cr in parallel because they decouple—i.e., the l1, l2th row of R,L only involve the

l1, l2th column/row of the observed data matrix B and submatrices Al1 ,Al2 that act on

these columns/rows. To simplify notation, we introduced the symbol : to extract the l1th

column, B(:, l1), or l2th row, B(l2, :). As before, we allow for the presence of noise by solving

the optimizations to within a user-specified `2-norm tolerance γ.
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[Figure 6 about here.]

Because the operations in equations 9 and 10 decouple, they allow for a parallel implemen-

tation that scales well for large-scale industrial 3D seismic problems. However, the decoupled

formulation does not include weighting matrices limiting its usefulness for recovery problems

at higher frequencies that require weighting matrices. Below we present a novel approach to

ameliorate this problem in which we take equations 9 and 10 as a starting point and pre- and

post multiply the data misfit terms by Q and W after including the weighting matrices as in

equation 8. Next, we use the property that for large weights, the matrices Q and W nearly

commute with the measurement operator A—i.e., we have QA(Q−1X̄W
−1

) ≈ A(X̄W
−1

)

and A(Q−1X̄W
−1

)W ≈ A(Q−1X̄) where X̄ represents the fully sampled data matrix or its

factored form. With these approximations, we arrive at the following weighted iterations:

R̄(l1, :)
H := argmin

v̄

1

2
‖v̄‖22 subject to ‖Al1(Q

−1L̄v̄)−BR(:, l1)‖ ≤ γ (11)

for l1 = 1 · · ·n and

L̄(l2, :)
H := argmin

ū

1

2
‖ū‖2 subject to ‖Al2((R̄ū)HW−1)−BL(l2, :)‖ ≤ γ (12)

for l2 = 1 · · ·m. In these expressions, we replaced the incomplete data matrix by BR = BW

and BL = QB, respectively. This means that we pre- and post-multiply the observed

monochromatic data matrix B with Q and W before extracting its columns or rows.

The above derivation is only valid if the above approximations involving commutations

of the weight matrices with the sampling operator A are sufficiently accurate. To verify

that these approximations are indeed justified, we compare in Figure 7 their accuracy by

comparing plots of QA(Q−1X̄W
−1

) and A(X̄W
−1

) for two different values of the weights

in equations 6 and 7. As expected, for the small value w1,2 = 0.25 the weighting matrix Q
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does not commute with the sampling matrix (see Figures 7a – 7c). However, for w1,2 = 0.75

the approximation is reasonably accurate (see Figures 7d – 7f). Similarly, in Figure 8 we

compare plots of A(Q−1X̄W
−1

)W and A(Q−1X̄) for small and large weights. As before,

for smaller weights w1,2 = 0.25, the weighing matrix W does not commute with the sampling

matrix (see Figures 8a – 8c). However, for w1,2 = 0.75 the approximation is again reasonably

accurate (see Figures 8d – 8f). Remember, the weights w1,2 reflect confidence we have in the

weight matrices and are chosen small when we have confidence that the weighting matrices

Q and W add information to the recovery. This means we need to select a value for the

weights w1,2 that balances between how much prior information we want to invoke and how

accurate the commutation relations need to be. Choosing small weights goes at the expense

of large “commutation” errors while large weights leads to small “commutation” errors but

limits the inclusion of the prior information via the weights.

[Figure 7 about here.]

[Figure 8 about here.]

Although, the decoupled equations 11 and 12 can now be parallelized over the rows of

the low-rank factors R̄ and L̄, they come at additional computational cost. Unlike sparse

observed data collected in the matrix B, the data matrices BR and BL are dense (have all

non-zero entries) because of the multiplications by W and Q. However, when the weights

w1,2 are relatively large we observe that both dense matrices BL, BR (Figure 9b and 9d) can

be well approximated by the sparse observed data matrix B judged by the difference plots

in Figure 9. With this approximation, equations 11 and 12 can be solved computationally

efficiently.
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[Figure 9 about here.]

While the above formulation allows us to carry out weighted factored wavefield recovery

in parallelized form, we observed that taking inverses of Q and W in the data misfit objective

(see equation 8) leads to inferior recovery because these involve reciprocals of the weights

(see equations 6 and 7). The value range of these reciprocals is no longer contained to the

interval (0, 1] and this can lead to numerical problems during the recovery. To circumvent

this issue, we propose an alternative but equivalent form for the weighted formulation with

weights defined as

Q̂ = UUH + w1U
⊥U⊥

H

= w1Q
−1, (13)

Ŵ = VVH + w2V
⊥V⊥

H

= w2W
−1 (14)

With these alternative definitions, we can as before approximate Q̂−1A(Q̂X̄Ŵ) by A(X̄Ŵ)

and A(Q̂X̄Ŵ)Ŵ−1 by A(Q̂X̄), yielding the following decoupled parallellizable equations

for the factors

R̄(l1, :)
H := argmin

v̄

1

2
‖v̄‖2

subject to

‖Al1(Q̂L̄v̄)− w1w2B(:, l1)‖ ≤ w1w2γ

(15)

for l1 = 1 · · ·n and

L̄(l2, :)
H := argmin

ū

1

2
‖ū‖2

subject to

‖Al2((R̄ū)HŴ)− w1w2B(l2, :)‖ ≤ w1w2γ

(16)

for l2 = 1 · · ·m . Equations 15 and 16 form the basis for our recovery approach summarized

in Algorithm 1 below, which corresponds to

minimize
X̄

‖X̄‖∗ subject to ‖A(Q̂X̄Ŵ)− w1w2B‖F ≤ w1w2ε, (17)
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which is equivalent to equation 5 as we show in Appendix A.

Algorithm 1 Weighted minimization via Alternating minimization.

Input: Observed Data B, rank parameter r, acquisition maskA, priors Q̂,Ŵ & initial guess L̄(0)

1. for k = 0, 1, 2, · · · , N − 1 //solve for rows of R̄ & L̄ in parallel

2.
(
R̄(k+1)(l1, :)

)H
:= argmin

v̄

1
2 ‖v̄‖

2 s. t. ‖Al1(Q̂L̄(k)v̄)− w1w2B(:, l1)‖ ≤ w1w2γ

3.
(
L̄(k+1)(l2, :)

)H
:= argmin

ū

1
2 ‖ū‖

2 s. t. ‖Al2((R̄
(k+1)ū)HŴ) − w1w2B(l2, :)‖ ≤

w1w2γ

4. end for

5. L = 1
w1

Q̂L̄

6. R = 1
w2

ŴR̄

Output: Recovered wavefield in factored form {L, R}.

In Algorithm 1, Line 2 corresponds to solving for each row of the low-rank factor R̄(k+1)

at the (k + 1)th iteration using the estimate of low-rank factor L̄(k) from the (k)th iteration.

Similarly, Line 3 corresponds to solving for each row of the low-rank factor L̄(k+1) at the

(k + 1)th iteration using the estimate of low-rank factor R̄(k+1). Finally, Lines 5 and 6

correspond to retrieving the low-rank factors L and R from L̄ and R̄, respectively.

CASE STUDIES

We now conduct a series of experiments to evaluate the accuracy of the proposed weighted

wavefield reconstruction methodology. In all cases, we have access to the ground truth fully

sampled data. This allows us to assess the accuracy by means of visual inspection and S/R’s

(Signal to noise ratio). Our examples include the seismic line from the Gulf of Suez we

discussed earlier and a complex full-azimuth synthetic 3D dataset.
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Gulf of Suez field data: 2D example

To evaluate the performance of our recursively weighted wavefield recovery method on field

data, we conduct an experiment on a 2D line from the Gulf of Suez. The fully sampled

split-spread dataset consists of 1024 time samples, acquired with 354 sources and 354 receivers.

Time is sampled at 0.004 s. The source-receiver spacing is 25m. To test our algorithm, we

reconstruct this 2D line from randomly subsampled traces, which we obtain by removing

75% of the sources via optimal jittered subsampling (Herrmann and Hennenfent, 2008).

We assess the performance of recursively weighted matrix factorization by comparing

wavefield recovery with and without weighting as a function of the angular frequency. To

avoid the impact of noise at the low frequencies, we start the recovery at 7.0Hz. Since this

is a small problem, we reconstruct the frequency slices by performing 150 iterations of the

SPG-LR algorithm (Van Den Berg and Friedlander, 2008; Aravkin et al., 2014) for each

frequency. We compare wavefield reconstructions with and without weights the results of

which are summarized in Figure 10. From these results we can see that above 17Hz, the

wavefield reconstruction clearly benefits from including weights for reconstructions carried

out with the same number of iterations but without weighting.

For comparison purposes, we also reconstruct missing data using the conventional matrix

factorization method. For fairness of comparison, we once again use 150 iterations of SPG-LR

algorithm for each frequency slice. As expected other than few lower frequency slices where

conventional method performs well, we get improvements in signal to noise ratio (Figure 10)

across all other frequency slices with our recursively weighted approach.

[Figure 10 about here.]
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Figures 11c and 12c include the shallow and deeper parts of a reconstructed common

receiver gather extracted from results based on the conventional method yielding S/R =

6.9 dB. In the data residual plots (Figures 11d and 12d), we observe signal leakage and noise

due to reconstruction artifact in both shallow and deeper parts. By signal leakage we mean

that there are coherent events in the data residual plot indicating incomplete reconstruction

of data. Also, at far offsets we observe signal leakage in the difference plot. Far offset data

is important for FWI (Full Waveform Inversion) purposes since it contains turning waves.

On the other hand, we observe better reconstructed data in the common receiver gather

(Figures 11e and 12e) extracted from reconstructed data using the recursively weighted

approach with improved S/R of 11.7 dB. Its corresponding data residual plot (Figures 11f

and 12f) shows less signal leakage in comparison to its conventional counterpart. Even at far

offsets, we observe better reconstruction of signal.

[Figure 11 about here.]

[Figure 12 about here.]

Synthetic Compass model data: 3D example

In 2D seismic surveys, receivers only measure wavefields traveling in the vertical plane along

sources and receivers. Therefore, we fail to capture reflections out of the 2D source-receiver

plane. This lack of recording of out of plane scattering ultimately affects the quality of the

subsurface image, especially in regions where there is strong lateral heterogeneity. To capture

3D effects most of the seismic exploration surveys are 3D nowadays during which sources

and receivers are spread along the surface rather than confined to a single line. To evaluate

the performance of our recursively weighted low-rank matrix factorization methodology in
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this more challenging 3D setting, we consider synthetic 3D data simulated on the Compass

model (E. Jones et al., 2012). We choose this model because it contains velocity kickbacks,

strong reflectors, and small wavelength details constrained by real well-log data collected in

the North Sea. Because of the complexity of this dataset, which mimics marine acquisition

with a towed array, we face similar challenges in wavefield reconstruction as we would face

dealing with real 3D field data. The authors Da Silva and Herrmann (2015) also used this

3D dataset to evaluate their tensor-based wavefield reconstruction algorithm based on the

Hierarchical Tucker decompositions.

For this experiment, we use a subset of the total data volume of 501× 201× 201× 41× 41

gridpoints—i.e., nt × nrx × nry × nsx × nsy along the time, receiver x, receiver y, source x,

and source y directions. Here, nt is the number of samples along time, nrx, nry are number

of receivers along x and y directions respectively and nsx, nsy are number of sources along x

and y directions respectively. In both spatial directions, the spacing between the adjacent

sources is 150.0m and 25.0m between adjacent receivers. The sampling interval along time

is 0.01 s. To get the subsampled data, we remove 75% of the receivers from jittered locations

(Herrmann and Hennenfent, 2008). We use this incomplete data as input to our recursively

weighted wavefield reconstruction scheme.

Before proceeding further, let us first briefly discuss the organization of the data in which

we will carry out the wavefield reconstructions. While we could in principle transform the data

into the midpoint offset domain as in the 2D case, we follow Da Silva and Herrmann (2015)

and Demanet (2006) and exploit the fact that monochromatic 3D frequency slices rearranged

along the x and y-coordinates for sources and receivers can be well approximated by a

low-rank factorization. In this rearrangement the data is organized as a matrix with Sx, Rx

and Sy, Ry coupled along the columns and rows respectively unfolded along is coordinate
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directions. Here Sx,y and Rx,y are the source and receiver coordinates along the x and y

directions. After rearrangement in this non-canonical form, the frequency slices are low-rank

while data with randomly missing receivers is not (juxtapose 10.0Hz frequency slices in

Figures 13c and 13d and the singular value plots in Figures 14a and 14b). We choose 10Hz

frequency slice as the changes in the rate of decay of singular values upon sampling at lower

frequencies is more prominent in comparison to changes we observe at higher frequencies.

This frequency choice allows us to better demonstrate the reasoning behind choosing Sx, Rx

and Sy, Ry domain for reconstruction. In the canonical organization, missing receivers leads

to missing rows and this decreases the rank (cf. solid lines in Figure 14) in the non-canonical

rearrangements the rank increases (cf. dashed lined in Figure 14). The sudden drop in the

singular values in the canonical arrangement is a direct consequence of the fact that removing

complete rows or columns decreases the rank. From the behavior of the singular values before

and after removal of the receivers, it is clear that the simple rearrangement of the data in

the non-canonical organization can serve as the transform domain in which to recover that

data via weighted low-rank factorization.

[Figure 13 about here.]

[Figure 14 about here.]

As before, we now perform the full-azimuth 3D wavefield reconstruction for each frequency

slice using our proposed recursively weighted low-rank matrix factorization approach. Since

this is a relatively large problem, we employ the parallel framework presented in the previous

section (Algorithm 1) for 4 alternations with 40 iterations of SPG-`2 per frequency slice.

We choose these values because for a given rank parameter we observed better continuity
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of signals and lesser noise in the reconstructed data. In addition to setting the number of

alternations, i.e. switching between Equations 15 and 16, the algorithm needs us to specify

the rank of the factorization and the weights. Based on tests performed using different rank

values and weights, we selected a rank of r = 228 and a value for the weights of w1,2 = 0.75,

because they provide a good balance between quality of reconstructed data (in terms of

continuity of events, lesser noise) and computational time.

To avoid noise at the very low frequencies observed due to simulation artifacts, we start

our recursively weighted from 4.4Hz. For comparison, we also use conventional matrix

completion for wavefield reconstruction. Here, we use the same number of alternations and

SPG-`2 iterations as before. We also use same rank of 228. For visualization purpose we show

results in a common shot gather (Figure 15a) extracted from 15Hz frequency slice. Here

we choose higher frequency of 15Hz instead of 10Hz to show how the recursively weighted

method is able to give better reconstruction at high frequency in comparison to reconstructed

data obtained from the conventional method. In Figure 15b we show subsampled shot

gather with 75% missing receivers. Using the conventional method we get S/R of 17.7 dB

for the reconstructed data at 15.0Hz (Figure 15d). Whereas, with the recursively weighted

method we get improved S/R of 19.9 dB (Figure 15f). We also observe less leakage of signal

and less noise in the residual plots for the data reconstructed using recursively weighted

method (Figure 15g) in comparison to the data reconstructed using the conventional method

(Figure 15e). From Figure 18a, we also observe improvement in the S/R of reconstructed data

for all the frequencies with the recursively weighted method (dashed black line in Figure 18a)

in comparison to its conventional counterpart (solid black line in Figure 18a). In Figures 16

and 17 we also show comparison of the recursively weighted and conventional method in time

domain common shot gather at earlier and later arrivals respectively. In Figure 16, we also
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show comparison of a time slice at 1.6 s extracted from a 3D common shot gather. Figure 16a

shows two common shot gathers extracted from the true data along x and y directions along

with a time-slice on top left corner. Figure 16b shows the corresponding observed data

with missing receivers. We observe improved reconstruction of signals in the common shot

gather (with S/R = 17.8 dB) reconstructed from recursively weighted method (Figure 16f) in

comparison to the reconstructed data from the conventional method (Figure 16d) with S/R

of 15.3 dB. Even in the residual plots we observe less leakage of signal with the recursively

weighted method (Figure 16g) in comparison to its conventional counterpart (Figure 16e).

In Figures 17a and 17b, we show the same common shot gather at later time along x and

y directions extracted from true and observed data respectively. We observe noise in the

data and corresponding residual (Figures 17c and 17d) reconstructed from the conventional

method. Whereas, we observe better reconstruction and less noise in the data reconstructed

(Figures 17e and 17f) from the recursively weighted method.

[Figure 15 about here.]

[Figure 16 about here.]

[Figure 17 about here.]

[Figure 18 about here.]

BG synthetic 3D data with 90% missing receivers

Next we test the ability of the recursively weighted method with a reduced number of samples.

We subsample the BG synthetic 3D data by 90% using jitter subsampling, i.e. we use only
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10% of receivers for wavefield reconstruction. We use 4 alternations and 40 inner iterations of

SPG-`2 in each alternation per frequency slice for both conventional and recursively weighted

method. We use rank parameter of 228 for all the frequency slices. Like before we arrive

at these values by inspecting the quality of reconstructed data based on the continuity of

signal and attenuated noise in the reconstructed data. To avoid noise at lower frequencies

we start recursively weighted method from 4.4Hz. As evident from the signal to noise ratio

plot (Figure 18b), we observe improvement in data reconstruction quality across all the

frequency slices using the recursively weighted method (dashed black line in Figure 18b) in

comparison to its conventional counterpart (solid black line in Figure 18b). In a common

shot gather extracted from a frequency slice at 15Hz, we observe better continuity and

less noise in the reconstructed wavefield (Figure 15j) in comparison to the reconstruction

obtained from its conventional counterpart (Figure 15h). We observe more leakage of signal

in the data residual with the conventional method (Figure 15i) in comparison to the data

residual obtained from recursively weighted method (Figure 15k). In Figure 16 we compare

data reconstruction in time domain using conventional (Figures 16h and 16i) and recursively

weighted method (Figures 16j and 16k). We again observe better data reconstruction and

reduced data residual with the recursively weighted method in comparison to reconstruction

obtained from the conventional method.

DISCUSSION

From the above case studies it is clear that recursively weighted low-rank matrix completion

provides several benefits over conventional method. The reconstructed data preserves the

signals and continuity of events even at high frequencies and at deeper sections where

amplitude is very weak. We arrive at these results by exploiting the fact that fully sampled
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seismic data can be approximated by a low-rank matrix in some transform domain and

randomized/jittered sampling degrades (or negatively affects) this low-rank property. We

also exploit the fact that there is some degree of similarity between the subspaces of adjacent

frequency slices of the seismic data.

Our method, which uses recursively weighted low-rank matrix completion, outperforms

its conventional counterpart in terms of quality of the reconstructed data specially at higher

frequencies. At higher frequencies conventional low-rank matrix completion performs poorly

because these increasingly complex matrices eventually violate our low-rank assumption.

As we mentioned earlier, good quality high frequency content in the data is important

for high-resolution imaging of earth’s subsurface and also for inversion of earth’s physical

parameters with fine details.

Weighted matrix completion was first introduced by Aravkin et al. (2014) to improve

the seismic data reconstruction quality of the conventional matrix completion framework.

Here we have exploited the potential of weighted method by recursively reconstructing data

from low to high frequencies. Also, we have made the original weighted method formulation

proposed by Aravkin et al. (2014) computationally efficient by switching the weights from

objective to data misfit constraint function.

Similarity between the adjacent frequency slices and appropriate choice of weights play key

role in the success of recursively weighted method. Conventional method is easily parallelized

over frequencies making it computationally very efficient. Whereas, the interdependence

between frequency slices in the recursively weighted method does not allow us to parallelize

the recursively weighted method over frequencies. This poses computational challenge

especially for large scale 3D datasets. By using the strategies of alternating minimization
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and decoupling we have made the recursively weighted method computationally efficient for

higher weights. Depending on the availability of computational resources, the recursively

weighted method can be efficiently applied to large scale 3D datasets. Our parallel weighted

framework partially exploits the benefits of weighted low-rank matrix factorization since

it can be parallelized only for higher weights. Despite this, our numerical experiments

demonstrate improvements in the reconstructed data quality across all the frequencies for 3D

seismic data generated on a geologically complicated velocity model resembling part of true

Earth’s subsurface. To exploit the full benefits of weighted method for large 3D datasets, our

future work will focus on extending this methodology to exploit parallelism even for smaller

weight values.

By directly using the low-rank factors from a subsequent previous frequency slice to

calculate the weight matrix, our recursively weighted framework avoids taking SVDs of the

complete dataset to calculate its row and column subspaces. Our SVD free parallel weighted

framework can be applied to industry scale large seismic datasets. With the advent of cloud

computing there are plenty of computational resources available. But the main issue is to use

these resources to optimize both the turnaround time and the budget. Therefore, next steps

will be to re-engineer the weighted framework to efficiently use the cloud based computational

resources using the ideas of serverless computing. For example, Witte et al. (2019) designed

serverless computing architecture to perform large scale 3D seismic imaging.

Both the datasets used for experiments have sources and receivers on a uniform grid but

in reality this is not the situation. Because of environmental and operational constraints

sources and receivers are often shifted from the uniform grid. If we do not take into account

of this shift in our reconstruction framework then we can encounter poor performance of

the reconstruction framework. By incorporating an extra operator (Lopez et al., 2016)
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corresponding to these shifts from the uniform grid we can apply our weighted framework to

field data recorded on a non-uniform grid.

CONCLUSIONS

While successful at the low to midrange frequencies, wavefield reconstruction based on matrix

factorization fails at the higher frequency where seismic data is no longer low rank. We

overcome this problem by exploiting similarities between low-rank factorizations of adjacent

monochromatic frequency slices organized in a form that reveals the underlying low-rank

structure of, the for budgetary and physical reasons not accessible, fully sampled data.

During matrix factorization these similarities take the form of alignment of the subspaces in

which the low-rank factors live. By introducing weight matrices that project these factors

onto the nearby subspace of the adjacent frequency, the performance of the low-rank matrix

factorization improves if this beneficial feature is used recursively starting at the lower

frequencies. However, turning this approach into an algorithm that scales to industry-scale

wavefield reconstruction problems for full-azimuth data requires a number of additional

important steps. First, we need to avoid costly projections onto weighted constraints. We

accomplish this by moving the weights to the data misfit. This simple reformulation results

in an equivalent formulation, which is computationally significantly faster. Secondly, while

the recursively applied weighting matrices improve the performance for the high frequencies,

the introduction of these matrices does not allow for a row-by-row and column-by-column

parallelization of the alternating minimization procedure we employ to carry out the matrix

factorizations on which our low-rank wavefield reconstruction is based. We overcome this

problem by balancing the emphasis we put on information from adjacent frequency slices

with our ability to decouple the operations so that the algorithm can be parallelized. By
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means of carefully selected examples on a 2D field dataset and on a full-azimuth 3D dataset,

we demonstrate the ability of the proposed algorithm to handle high frequencies. We also

show that the proposed algorithm scales well to 3D problems with large percentages of

traces missing. From these results, we argue that the proposed approach could be a valuable

alternative to transform-based methods that are force to work on small multidimensional

patches.
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APPENDIX A

In this section, we justify our parallel implementation of the weighted matrix completion prob-

lem. Beginning at equation 2, our original weighted program, we will arrive at equations 15

and 16 which specify our implemented parallel counterpart.

Recall equation 2

X := argmin
Y

‖QYW‖∗ subject to ‖A(Y)−B‖F ≤ ε.

Because this is a convex program and Q,W are invertible when w1, w2 > 0, we can show

that

QXW := argmin
Y

‖Y‖∗ subject to ‖A(Q−1YW−1)−B‖F ≤ ε, (A1)

where

Q−1 =
1

w1
UUH + U⊥U⊥

H
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and

W−1 =
1

w2
VVH + V⊥V⊥

H

.

From a numerical perspective, we wish to avoid implementing the operators Q−1, W−1 due

to the factors w−11 , w−12 which may be large and cause algorithmic instability. Instead, by

multiplying both sides of the constraint of equation A1 by w1w2 we obtain the equivalent

program

QXW := argmin
Y

‖Y‖∗ subject to ‖A(Q̂YŴ)− w1w2B‖F ≤ w1w2ε, (A2)

where we have defined

Q̂ = UUH + w1U
⊥U⊥

H

and

Ŵ = VVH + w2V
⊥V⊥

H

.

Choosing a rank parameter r, we now apply a factorization approach and solve

L̄, R̄ := argmin
L̄#,R̄#

1

2

∥∥∥∥∥∥∥∥
L̄#

R̄#


∥∥∥∥∥∥∥∥
2

F

subject to

‖A(Q̂L̄#R̄H
#Ŵ)− w1w2B‖F ≤ w1w2ε,

(A3)

which gives the approximation L̄R̄H ≈ QXW. Given an initial left factor estimate, L̄0, we

proceed with a block coordinate descent (Xu and Yin, 2013) approach which at the k-th

iteration solves

R̄k := argmin
R̄#

‖R̄#‖2F subject to ‖A(Q̂L̄k−1R̄H
#Ŵ)− w1w2B‖F ≤ w1w2ε, (A4)

and upon output switches to optimize over the left factor

L̄k := argmin
L̄#

‖L̄#‖2F subject to ‖A(Q̂L̄#(R̄
k)HŴ)− w1w2B‖F ≤ w1w2ε. (A5)
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After k iterations, we obtain estimate L̄k(R̄k)H ≈ QXW.

Our next goal is to approximately solve problems A5 and A4 in a distributed manner, to

be implemented in a parallel computing architecture. To this end, we apply our approximate

commutative property, i.e., A(Q̂YŴ) ≈ A(Q̂Y)Ŵ and A(Q̂YŴ) ≈ Q̂A(YŴ) for large

values of w1 and w2. Using these approximations, we obtain

L̄k ≈ argmin
L̄#

‖L̄#‖2F subject to ‖Q̂A(L̄#(R̄
k)HŴ)− w1w2Q̂Q̂−1B‖F ≤ w1w2ε.

(A6)

Define B̂L = Q̂−1B. Using the inequality property ‖AB‖F ≤ ‖A‖‖B‖F for any two matrices,

where ‖ ◦ ‖ is the spectral norm, in the constraint, we see that

‖Q̂
(
A(L̄#(R̄

k)HŴ)− w1w2B̂L

)
‖F ≤ ‖Q̂‖‖A(L̄#(R̄

k)HŴ)− w1w2B̂L‖F

= ‖A(L̄#(R̄
k)HŴ)− w1w2B̂L‖F .

The last equality holds since ‖Q̂‖ = max{1, w1} = 1. Therefore, if we instead solve

L̃k := argmin
L̄#

‖L̄#‖2F subject to ‖A(L̄#(R̄
k)HŴ)− w1w2B̂L‖F ≤ w1w2ε, (A7)

we expect L̃k ≈ L̄k due to approximate commutativity and therefore L̃k is feasible for A6 .

A similar argument can be established for the right factor, where we solve

R̃k := argmin
R̄#

‖R̄#‖2F subject to ‖A(Q̂L̃k−1R̄H
#)− w1w2B̂R‖F ≤ w1w2ε, (A8)

with B̂R = BŴ−1.

The main advantage in computing iterates R̃k, L̃k, rather than R̄k, L̄k, is that these pro-

grams allow for a distributed implementation. The data matrices B̂R and B̂L in equations A8

and A7 are dense (have all non-zero entries) making computation expensive. However, when

the weights w1,2 are relatively large we observe that both dense matrices B̂R, B̂L can be well
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approximated by the sparse observed data matrix B. This leads to subproblems 15 and 16

and concludes our derivation.
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(a) (b)

Figure 1: 12.0Hz frequency slice extracted from 2D seismic data acquired in Gulf of Suez.
Data with 75% missing random jittered sources in (a) source-receiver domain and (b) in
midpoint-offset domain.
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(a) (b)

Figure 2: Decay of singular values for 12.0Hz frequency slice in source-receiver and midpoint-
offset domain for (a) full data and for (b) subsampled data with 75% missing sources.
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(a) (b)

Figure 3: Singular value decay for fully sampled and subsampled data (75% missing sources)
in midpoint-offset domain for (a) 12.0Hz and (b) 60.0Hz frequency slice
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Wavefield reconstruction comparison for a 60 Hz frequency slice. (a) Reconstructed
wavefield from 75% subsampling. (b) residual with a poor S/R = 2.83 dB. (c) Reconstructed
wavefield using the recovery at the adjacent lower frequency as weights and (d) improved
residual with S/R = 5.08 dB. (e) and (f) the same but now with the weighting scheme
applied recursively with significantly improved S/R = 8.72 dB.
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Figure 5: Runtime comparison plot: Solid black line shows runtime of the original weighted
formulation and dashed black line shows runtime of the new weighted formulation for same
number of iterations with same data residual at the end.
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(a)

(b)

Figure 6: Alternating minimization and decoupling. (a) Solving for the low-rank factor R by
using fixed factor L and observed data B. (b) Solving for the lth1 row of the low-rank factor
R by using rows (in black color) of the fixed factor L corresponding to the non-zero entries
(in black color) of the lth1 column from the observed data B.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Commutation test for small and large weights. (a) Subset of 3D frequency slice for
QA(Q−1X̄W

−1
) for w1,2 = 0.25; (b) the same but now for A(X̄W

−1
); (c) difference plot

between (a) and (b); (d)-(f) the same as (a)-(c) but now for w1,2 = 0.75.
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(a) (b) (c)

(d) (e) (f)

Figure 8: Commutation test for small and large weights. (a) Subset of 3D frequency slice for
A(Q−1X̄W

−1
)W for w1,2 = 0.25; (b) the same but now for A(Q−1X̄); (c) difference plot

between (a) and (b); (d)-(f) the same as (a)-(c) but now for w1,2 = 0.75.
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(a) (b) (c)

(d) (e)

Figure 9: Accuracy of sparse approximation for weights w1,2 = 0.75, (a) Subset of 3D
frequency slice for sparse observed data B; (b) the same but now for the dense matrix BL;
(c) difference plot between (a) and (b); (d) Subset of 3D frequency slice for the dense matrix
BR; (e) difference plot between (a) and (d).
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Figure 10: (a) Signal to noise ratio comparison of conventional (solid black line) and
recursively weighted method (dashed black line) with (w1,2 = 0.75) for all frequencies
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Wavefield reconstruction in common receiver gather domain in the shallow part.
(a) True data, (b) Observed data with 75% missing sources. (c) Reconstructed data using the
conventional method with S/R = 6.9 dB and (d) corresponding difference with respect to the
true data. (e) Reconstructed data using the recursively weighted method with S/R = 11.7 dB
and (f) corresponding difference with respect to the true data.
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Wavefield reconstruction in common receiver gather domain in the deeper part.
(a) True data, (b) Observed data with 75% missing sources. (c) Reconstructed data using
the conventional method and (d) corresponding difference with respect to the true data. (e)
Reconstructed data using the recursively weighted method and (f) corresponding difference
with respect to the true data.
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(a)

(b)

(c)

(d)

Figure 13: 10.0Hz Frequency slice from 3D data: (a) True and (c) observed data in Sx, Sy
domain with 75% missing receivers. (b) True and (d) observed data in Sx, Rx domain with
75% missing receivers. Figures in left column show full data and in right column show data
zoomed in the small black box.
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(a) (b)

Figure 14: Singular values decay comparison for (a) fully sampled and (b) subsampled data
with 75% missing receivers in Sx, Sy domain (solid black line) and Sx, Rx (dashed black line)
domain for 10.0Hz frequency slice
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 15: Full azimuth wavefield reconstruction comparison for 15.0Hz frequency slice
in common shot domain. (a) True frequency slice. Subsampled frequency slice with (b)
75% missing receivers and (c) 90% missing receivers. Middle row represents reconstruction
using observed data with 75% missing receivers. (d) Reconstructed data using conventional
method with S/R = 17.7 dB and (e) corresponding data residual with respect to true data.
(f) Reconstructed data using recursively weighted method with S/R = 19.9 dB and (g)
corresponding data residual with respect to true data. Last row represents reconstruction
using observed data with 90% missing receivers. (h) Reconstructed data using conventional
method with S/R = 3.7 dB and (i) corresponding data residual with respect to true data.
(j) Reconstructed data using recursively weighted method with S/R = 12.5 dB and (k)
corresponding data residual with respect to true data.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 16: Full azimuth wavefield reconstruction in time domain for a common shot gather
along with time slice at 1.6 s. (a) True data. Subsampled data with (b) 75% missing receivers
and (c) 90% missing receivers. Middle row represents reconstruction using observed data
with 75% missing receivers. (d) Reconstructed data using the conventional method with
S/R = 15.3 dB and (e) corresponding data residual with respect to the true data. (f)
Reconstructed data using the recursively weighted method with S/R = 17.8 dB and (g)
corresponding data residual with respect to the true data. Last row represents reconstruction
using observed data with 90%missing receivers. (h) Reconstructed data using the conventional
method with S/R = 3dB and (i) corresponding data residual with respect to the true data.
(j) Reconstructed data using the recursively weighted method with S/R = 10.2 dB and (k)
corresponding data residual with respect to the true data.
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(a) (b)

(c) (d)

(e) (f)

Figure 17: Full azimuth wavefield reconstruction in time domain for a common shot gather
(deeper section). (a) True data. (b) Subsampled data with 75% missing receivers. (c)
Reconstructed data using the conventional method and (d) corresponding difference with
respect to the true data. (e) Reconstructed data using the recursively weighted method and
(f) corresponding difference with respect to the true data.
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(a) (b)

Figure 18: Signal to noise ratio comparison of conventional (solid black line) and recursively
weighted (w1,2 = 0.75) method (dashed black line) for all the frequencies for (a) 75% and (b)
90% missing receiver scenarios.
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