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ABSTRACT

We introduce a generalization of time-domain wavefield recon-
struction inversion to anisotropic acoustic modeling. Wavefield
reconstruction inversion has been extensively researched in re-
cent years for its ability to mitigate cycle skipping. The original
method was formulated in the frequency domain with acous-
tic isotropic physics. However, frequency-domain modeling
requires sophisticated iterative solvers that are difficult to scale
to industrial-size problems and more realistic physical assump-
tions, such as tilted transverse isotropy, object of this study.
The work presented here is based on a recently proposed dual
formulation of wavefield reconstruction inversion, which allows
time-domain propagator that are suitable to both large scales
and more accurate physics.

INTRODUCTION

Wave-equation based seismic imaging has become increasingly
popular due to its ability to produce detailed and accurate sub-
surface models. In recent years, however, the limitations of Full
Waveform Inversion (FWI) have been widely acknowledged
due to the cycle skipping issue that arises with bandlimited data
and lack of long offsets (thus low frequencies). Simple geo-
logical settings, such as shallow water sedimentary areas, have
showcased the benefits of FWI, but more challenging problems
involve complex subsurface structures such as salt bodies with
strong anisotropy, which requires extensive manual interven-
tion for a consistently successful application. To address these
limitations, extended formulation have driven some of the most
recent research in seismic imaging. These methods rely on ex-
tra variables, usually a wavefield (van Leeuwen and Herrmann,
2013a,b) as in Wavefield Reconstruction Inversion (WRI) or
time-space dependent source (Huang et al., 2018; Wang et al.,
2016) in the extended source method. Extra unknowns are
designed to absorb inaccuracies in the initial background model
by relaxing the physics, while additional constraints ensure that
this relaxation is ultimately driven to a physically consistent
scenario. One of the main challenges associated with extended
formulations is the necessity to solve for an augmented least-
squares system that, in the frequency domain, is only feasible
for small to mid-size problems with simple representations of
the physics or for industry-sized problems but of limited type of
acquisition geometries (Peters and Herrmann, 2019). Conven-
tional time-domain propagators, on the contrary, do not share
the same limitations.

This work is based on the time-domain formulation of WRI
(Rizzuti et al., 2019) which relies on conventional time-stepping
(Louboutin et al., 2019; Symes, 2015). Therefore, it straightfor-
wardly allows the adoption of a more accurate representation
of the physics. In this paper, we focus on the transverse tilted
isotropic (TTI) wave-equation (Zhang et al., 2011; Bube et al.,

2016; Louboutin et al., 2018). The inclusion of anisotropic ef-
fects are indeed crucial for the inversion of field data. Note that
frequency-domain methods do not enable TTI anisotropy in full
generality, with the exception of the limited vertical transverse
anisotropy (VTI) (Aghamiry et al., 2019). Regardless, VTI
WRI still relies on iterative solvers for the augmented system,
and is therefore unfeasible for realistic sizes.

In this paper, we highlight the benefits of the time-domain WRI
method (Peters et al., 2014; van Leeuwen and Herrmann, 2013a;
Rizzuti et al., 2019) for TTI inversion and we demonstrate that
TWRI can compensate for inaccuracies in the anisotropic pa-
rameters in addition to compensating for a poor initial model.
We briefly introduce the dual formulation of WRI, then present
two examples that demonstrate that TTI WRI is feasible and
more robust than FWI with respect to modeling faulty assump-
tions.

METHODOLOGY

In previous work (Rizzuti et al., 2019), we introduced the dual
formulation of WRI, which only requires conventional forward
and adjoint propagators in time domain and do not need the
solution of the extended wave equation. Time-domain WRI
starts from the constrained least-squares problem:
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where m represents the physical properties of interest and u
is the associated wavefield. The data is denoted by d and q is
the (known) source term. The wave equation is denominated
by A(m) and R is receiver-restriction operator. We then derive
the reduced Lagrangian associated with Eq. 1 (c.f (Rockafel-
lar, 1970; Rizzuti et al., 2020)) to obtain the TWRI objective
function:
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where the forward operator F(m) = RA(m)~! is the forward
modeling operator, and r(m) = d — F (m)q the data residual for
the model m. This dual problem has two unknowns, parameters
m (squared slowness), and variables y(having the same size
of data). One of the advantages of the formulation in Eq. 2
is that, unlike conventional WRI, the additional variable is of
a manageable size (compared to wavefields). To update the
model m, we calculate the derivative:

Vin-Zrwri = —J[m,q+F(m) y] y, 3)

where J is the conventional FWI Jacobian operator for an ex-
tended source q + F(m)'y. It is straightforward to extend



the previous acoustic implementation to the Transverse Tilted
Isotropic case (TTI, Zhang et al., 2011; Duveneck and Bakker,
2011; Louboutin et al., 2018), just by simply replacing F(m)
with its TTI counterpart.

Previous work have demonstrated that TWRI behaves more
robustly than FWI with respect to local minimum issues in the
purely acoustic case. Here we illustrate that the edge of WRI
over FWI still holds for TTI and, more importantly, when the
assumed physics do not match with the collected data.

NUMERICAL EXPERIMENTS

These two examples aim to elucidate two main advantages
of TWRI. First, since we use a time-domain formulation that
only necessitates the implementation of standard forward and
adjoint propagators, we are able to implement TTI TWRI by
simply replacing the acoustic time-stepper with an anisotropic
version thereof. Moreover, thanks to Devito (Louboutin et al.,
2019; Luporini et al., 2018) and JUDI(Witte et al., 2019), these
propagators are implemented in a simple high-level way and
benefit from its highly efficient just-in-time compiler. Finally,
we show that TTI TWRI mitigates cycle skipping either with
true anisotropy parameters and a kinematically inaccurate initial
model, or with inaccurate anisotropic parameters and a fair
initial model. Finally, we verify a known secondary advantage
of WRI that is its robustness to inaccurate water layer velocity
and ocean bottom position.

We concentrate on three increasingly difficult settings over these
examples:

1. Invert the TTI data with a TTI wave-equation and as-
suming the true anisotropy parameters are known.

2. Invert the TTI data with a TTI wave-equation with error
introduced in the anisotropic parameters.

3. Invert the TTI data with an acoustic wave-equation.

The first two cases demonstrate the TWRI mitigates the sensi-
tivity to cycle skipping associated with both the velocity and
anisotropy errors. The third case demonstrates that TWRI can
compensate for a numerical representation of the physics that
does not correspond to the physics of the observed data.

Gaussian lens

This first example follows (Huang et al., 2018) with a 2D sin-
gularity model with a constant initial model. This model in
known to be cycle skipped and demonstrate the capability of
TWRI to obtain a better update direction than conventional
FWI. To further highlight the robustness with respect to the
Thomsen parameters(Thomsen, 1986), we fix these to zero and
compute the gradient. This parameterization shows that TWRI
can compensate for anisotropy errors for the computation of
the gradient with respect to the squared slowness.

We show the initial model (constant velocity) and true pertur-
bation in Figure 2, and we expect to see the gradient update to
have the same sign as the true perturbation in Figure 2.
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Figure 1: Squared slownes, Thomsen parameters and dip angle
for the BG Compass model.
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Figure 2: Initial models and true perturbation for the Gaussian
lens model. The initial model is a constant velocity and the true
perturbation is the velocity singularity.

The gradient obtained with each of the three cases are displayed
on Figure 3. We first see that, as expected from previous work,
FWI does not produce a good update direction as the sign is
flipped compared to the true perturbation (FIgure 2) and opti-
mizations algorithms will not converge to a good solution. On
the other hand, we can see that in all three cases, the update
direction obtained with TWRI is consistent with the true per-
turbation and will lead to a good model reconstruction. One
interesting observation is that TWRI correctly handles the er-
rors in the anisotropy, including for the complete absence of
anisotropy in the modeling kernel. Such result is encouraging
in light of more realistic examples.

BG Compass

The second example involves the BG Compass model. The
Thomsen parameters are synthesized from the velocity model,
while dip angles are inferred from the orientation of the lay-
ers. We show the TTI parameters in Figure 4. This model
is notoriously difficult due to the velocity kick back (situated
at around the one kilometer depth on Figure 4) that prevents
turning waves from traveling back to the surface.

This experiment is divided in two settings. On one hand, we
assume the water velocity and depth of the water layer to be
known and look at the first update computed with TWRI and
FWI. In the second case, we do not assume any knowledge of
the water layer, that is known to be delignated by WRI in the
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Figure 3: Gradients obtained with the anisotropic data for the
three different inversion settings.
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Figure 4: Squared slowness, Thomsen parameters and dip angle
for the BG Compass model.

acoustic case, and once again look at the first FWI and TWWRI
update. These two initial models and the true perturbation
associated with it are on Figure 5, and a good update is expected
to correlate with the true perturbation well while a cycle skipped
update would have the wrong sign in most areas in particular
for the velocity kick-back part.
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Figure 5: Initial models and true perturbation for the two test
cases. The two initial models are smoothed version of the true
model with a 20 points gaussian filter, and the right initial model
has the true water layer speed and ocean bottom position.

The results obtained with the correct water velocity are shown
in Figure 6. Similarly to the previous example, TWRI succeeds
to capture most of the features of the true perturbation while
FWI displays major differences. The most difficult part of the

model to image is the middle section around 1 km depth. The
velocity kick-back makes the inversion very difficult as the
turning wave are diving deeper into the model rather than going
back up towards the receivers. We can see that TWRI perfectly
captures this velocity kick back while FWI only succeeds to
match partially the shallower part of the model.

In the second part of this experiment, the results obtained with
the incorrect water velocity are shown on Figure 6. As expected
from previous results (Peters et al., 2014), TWRI provides a
correct update direction in the water layer while still featuring
the attributes necessary for inversion such as the previously
mentioned velocity kick-back.

These examples and related software can be found at TTIWRI
in our reproducibility repository https://github.com/slimgroup/
Software.SEG2020.

DISCUSSION & CONCLUSIONS

In this work, we presented an application of TWRI to a realistic
inversion scenario, by including TTI physics. Because our work
is based on time-domain modeling, we can leverage on state
of the art anisotropic propagators. The extension to anisotropy
is not trivial in the frequency domain due to the current limi-
tations of iterative solvers for large-scale, coupled PDEs. We
experimented that TWRI not only produces more qualitative
results that conventional FWI when data and modeling physics
matches, but also fairs better with respect to modeling inaccu-
racies, e.g. when the inverted data presents anisotropic effects
but an acoustic medium is postulated. While these preliminary
results are encouraging, future work will focus on a more thor-
ough validation of TWRI for TTI media and applications to 3D
examples.
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Figure 6: Gradients obtained with the anisotropic data and an initial model without the correct water layer.
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Figure 7: Gradients obtained with the anisotropic data and an initial model with the correct water layer.
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