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ABSTRACT

Least-squares reverse-time migration is a powerful approach for true-amplitude seismic

imaging of complex geological structures. The successful application of this method is

hindered by its exceedingly large computational cost and required prior knowledge of the

generally unknown source wavelet. We address these problems by introducing an algorithm

for low-cost sparsity-promoting least-squares migration with source estimation. We adapt a

recent algorithm from sparse optimization, which allows to work with randomized subsets of

shots during each iteration of least-squares migration, while still converging to an artifact-free

solution. We modify the algorithm to incorporate on-the-fly source estimation through

variable projection, which lets us estimate the wavelet without additional PDE solves. The

resulting algorithm is easy to implement and allows imaging at a fraction of the cost of

conventional least-squares reverse-time migration, requiring only around two passes trough

the data, making the method feasible for large-scale imaging problems with unknown source
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wavelets.
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INTRODUCTION

Reverse-time migration (RTM) is an increasingly popular wave-equation based seismic imaging

algorithm that corresponds to applying the adjoint of the Born scattering operator to observed

reflection data (Baysal et al., 1983; Whitmore, 1983). Without extensive preconditioning,

applying the adjoint operator leads to an image with incorrect amplitudes, imprints of the

source wavelet and therefore blurred reflectors. To overcome these issues, imaging can be

formulated as a linear least-squares optimization problem, in which the mismatch between

observed and modeled data is minimized (Schuster, 1993; Nemeth et al., 1999; Dong et al.,

2012; Zeng et al., 2014). Conventional LS-RTM is computationally very expensive, because

it requires migration and demigration of all shot records during each iteration. To save

computational resources, shots can be subsampled or combined into simultaneous shots,

which avoids having to treat every shot separately in each iteration (e.g. Romero et al., 2000;

Tang and Biondi, 2009; van Leeuwen et al., 2011; Dai et al., 2011, 2012; Liu, 2013; Herrmann

and Li, 2012; Lu et al., 2015).

An RTM image or LS-RTM gradient is calculated by forward modeling the source wavelet

in the background model, backpropagating the observed data or data residual and applying

an imaging condition. The source wavelet is generally unknown and therefore needs to

be estimated prior to imaging or as part of the inversion process. Source estimation has

been proposed in the context of frequency domain full-waveform inversion (FWI) (Pratt,

1999; Aravkin et al., 2012) and frequency domain LS-RTM (Tu et al., 2013), where a single

complex number per frequency needs to be estimated. In the time domain, we are only aware

of the work of Zhang et al. (2016), who formulate LS-RTM independently of the source

wavelet, i.e. they eliminate the wavelet from the objective and minimize the misfit between
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the predicted and true Green’s functions. To our knowledge, there are no algorithms so

far that combine time-domain LS-RTM and estimation of the full time-dependent source

function.

We introduce an algorithm that addresses the two main challenges of time-domain LS-

RTM: estimating the source wavelet and decreasing the overall computational cost. We extend

our earlier work on sparsity-promoting imaging (SPLS-RTM) and FWI in the frequency

domain (Li et al., 2012; Herrmann et al., 2015; Tu and Herrmann, 2015) and adapt an

algorithm that has recently gained popularity in the context of compressive sensing. The

linearized Bregman method (Yin, 2010) is an algorithm for recovering the sparse solution of

an underdetermined linear system, which is closely related to the iterative soft-thresholding

algorithm (ISTA). However, it has been mathematically shown that the algorithm can also

be used to solve overdetermined linear systems and allows working with subsets of rows and

data points in each iteration (Lorenz et al., 2014b). This means that during each LS-RTM

iteration, we model and migrate only a small subset of randomly selected shots instead of the

full data set and still converge to the true solution. The algorithm is simple to implement

and in contrast to ISTA requires only a single and relatively easy to choose hyperparameter.

Furthermore we incorporate source estimation via variable projection into this algorithm,

which lets us estimate the source wavelet without additional PDE solves.

THE LINEARIZED BREGMAN METHOD FOR SPLS-RTM

In a series of previous publications (e.g. Herrmann and Li (2012), Tu and Herrmann (2015)),

we have reformulated LS-RTM as a sparsity-promoting least-squares minimization problem
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of the following form:

minimize
δm

‖C δm‖1

subject to ‖ ∇F
(
m0,q

)
δm− δd‖2 ≤ σ.

(1)

These optimization problems are called basis pursuit denoise (BPDN) problems and have

recently gained large popularity in the context of compressive sensing (Donoho, 2006). The

objective of this problem is to minimize the `1-norm of the curvelet coefficients of the seismic

image δm, obtained through the forward Curvelet transform C. This is subject to the

constraint that the synthetic data, given by the action of the Born modeling operator ∇F on

δm, fits the observed reflections δd within some noise level σ. The Born modeling operator

is a function of the background velocity model m0 and the source wavelet q, which are for

now assumed to be known. As shown in Li et al. (2012), enforcing sparsity on the seismic

image leads to high quality results when working with randomization techniques, where the

computational cost of LS-RTM can be significantly reduced by working with randomized

subsets of sources during each iteration.

The main drawback of this approach is that optimization algorithms that solve the BPDN

problem, such as the spectral projected gradient method with `1 (SPG`1) (van den Berg

and Friedlander, 2008) are difficult to implement and do not necessarily allow us to work

with randomization techniques. Other solvers such as ISTA, work with modifications of the

BPDN problem and solve an unconstrained formulation in which the constraint is added to

the objective as a penalty. This introduces a penalty parameter that is difficult to choose

and requires complex cooling techniques (i.e. the penalty parameter needs to be relaxed) in

order to converge to the solution sufficiently quickly (Hennenfent et al., 2008).

An alternative algorithm, which has recently gained popularity in solving sparsity-

promoting least-squares problems is the linearized Bregman method (Yin, 2010). The
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algorithm solves a slightly modified version of the BPDN problem, in which an `2 penalty

term is added to the objective::

minimize
δm

λ‖C δm‖1 +
1

2
‖C δm‖22

subject to ‖ ∇F
(
m0,q

)
δm− δd‖2 ≤ σ.

(2)

The combination of `1- and `2-norm terms in the objective is referred to as an elastic net in

machine learning and has the effect of making the objective function strongly convex (Lorenz

et al., 2014a). This small change to the objective yields a relatively simple iterative scheme

for minimizing the above optimization problem, in which the penalty parameter λ plays a

completely different role than in ISTA. In ISTA, λ is a penalty parameter that controls the

trade-off between the `1-norm of the (transform-domain) image and the data fidelity term

and to solve the BPDN problem, we need λ→ 0+ (i.e. λ goes to 0 from above). However,

as discussed in Hennenfent et al. (2008), small values of λ lead to very slow convergence of

ISTA and complex cooling techniques are required to improve its performance. A value of

λ that is too large on the other hand, prevents any entries in the unknown to enter into

the solution. In the linearized Bregman method on the other hand, λ controls the trade-off

between the `1- and `2-norms of the unknown model vector. A value of λ that is too large

only initially prevents new entries to enter into the solution, but as the iterations progress,

larger and larger values start entering the solution, making the algorithm in some sense

“self-tuning” (Herrmann et al., 2015). Choosing an appropriate value for λ in the linearized

Bregman method is therefore easier and can be done automatically. For example, setting λ

to the infinity norm of the gradient in the first iteration, leads to no value passing the first

threshold, but the solution starts to build up from iteration two onwards.

Another important benefit of the linearized Bregman method is the possibility to work

with subsets of blocks of rows of ∇F (each corresponding to a source experiment) and δd
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during each iteration, while still converging to the correct solution (Lorenz et al., 2014b).

For least-squares migration, this means that instead of treating all shot records during each

iteration, we can use a randomized subset of fewer source positions, thus decreasing the

number of PDE solves. This provides flexibility to the user to find a trade-off between the

number of sources per iteration and the overall number of iterations. In the extreme case, it

is possible to use only a single shot in each iteration, which then requires many iterations to

reach an acceptable solution. We found that it is often sufficient to use between ∼ 1
10 and 1

20

of the shots during each iteration and perform around ∼ 20 overall iterations, i.e. on average

every shot record is demigrated/migrated only once or twice, making our algorithm in terms

of PDE solves several times cheaper than conventional LS-RTM.

ON-THE-FLY SOURCE ESTIMATION

The algorithm in the previous section assumes that the source wavelet q is known, which is

generally not the case. Often some general information about the source function is known,

i.e. the approximate frequency range, the general wavelet shape and the approximate length

in time. We therefore base our source estimation algorithm on the assumption that an initial

guess of the true wavelet q0 is available and that there exists a filter w, such that convolving

the initial guess with this filter yields the correct source wavelet: q = q0 ∗ w, with the

symbol ∗ denoting circular convolution over time. SPLS-RTM with source estimation can

then be formulated as a multi-parameter optimization problem with the image δm and the

filter w as unknowns. Optimization problems of this form require gradients of the objective

with respect to both parameters, which not only requires a completely new optimization

algorithm, but can also pollute the image during the early iterations, as the initial wavelet

might be far off from the true one. We therefore follow the approach in Aravkin et al. (2012)
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and Tu et al. (2013) and formulate the objective as a separable least-squares problem, which

can be solved using the variable projection method (Golub and Pereyra, 2003). For this, we

only replace the Jacobian in equation 2 by w(δm) ∗ [∇F(m0,q0)δm]. This corresponds to

modeling the data with the initial source wavelet q0, followed by a trace-by-trace convolution

with the filter w(δm). The filter is a function of the current estimate of the image and is

obtained by solving a small independent least-squares subproblem during each iteration:

wk = argmin
w
‖w ∗

[
∇Fk

(
m0,q0

)
δmk

]
− δdk‖2. (3)

As mentioned earlier, we want to work with randomized subsets of shots during each iteration,

so ∇Fk and δdk denote the subset of the Jacobian and the data at the current iteration k

and δmk is the current estimate of the image. We want the estimated wavelet to be localized

in time, since we know that the time signature of an impulsive source is typically short.

Therefore the vector w for the filter is chosen to have the approximate length of the true

wavelet.

The algorithm for time-domain SPLS-RTM with source estimation is outlined below.

Each iteration involves choosing a randomized subset of shots and ∇Fk and δdk denote

the current subset of the Jacobian and the data (lines 3− 5). Updating the gradient (line

8) requires a step size, which is chosen as tk = ‖wk ∗ dk − δ̂dk‖/‖∇F>
(
wk ∗ dk − δ̂dk

)
‖

(Lorenz et al., 2014b). The operator Pσ in line 8 is a projection operator that projects the

data residual onto the `2-ball of the size of the noise, i.e. it does not fit the data exactly.

Calculating the gradient also involves the transpose action of the convolution operator (line

8), which is the correlation of wk with the data (denoted by ?). The function Sλ (line 9) is

the soft thresholding function.
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Algorithm 1 Linearized Bregman for sparsity-promoting LS-RTM with source estimation.
1. Initialize x0 = 0, z0 = 0, q0, λ, batchsize n′s � ns

2. for k = 1, ..., n

3. Randomly choose subsets I ∈ [1 · · ·ns], |I| = n′s

4. ∇̂Fk = {∇Fi(m0,q0)}i∈I

5. δ̂dk = {δdi}i∈I

6. dk = ∇̂Fkxk

7. wk = argminw‖w ∗ dk − δ̂dk‖2

8. zk+1 = zk − tk∇̂F
>
k

[
wk ? Pσ

(
wk ∗ dk − δ̂dk

)]
9. xk+1 = Sλ(zk+1)

10. end

Sλ(z) = sign(z) ·max(0, |z| − λ)

Pσ(∇Fx− δd) = max
(
0, 1− σ

‖∇Fx−δd‖

)
·
(
∇Fx− δd

)

NUMERICAL EXAMPLE

We test our algorithm for SPLS-RTM with source estimation on the Sigsbee 2A velocity

model (Bashkardin et al., 2002) and show that our proposed algorithm is capable of accurately

recovering the source wavelet and provides a high quality image with good illumination below

the salt, while only requiring two passes through the data. We generate linearized observed

data for 960 source locations with 25 m shot spacing and 10 seconds recording time. Each

shot is recorded by 960 receivers, located at 25 m depth with a maximum offset of 10 km.

We use a minimum phase source wavelet to generate the synthetic observed data with 15 Hz

peak frequency (shown in figure 1).

For SPLS-RTM with source estimation, we have to define an initial wavelet from which
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the true wavelet can be estimated reliably with our algorithm. We found this is the case

for an initial wavelet with a wide frequency spectrum, meaning the initial wavelet contains

a broad range of frequencies, while the shape of the spectrum, as well as the phase can be

well recovered with our algorithm. We design the spectrum of the initial wavelet to have a

plateau between 15-25 Hz, which is wider than the approximate peak frequency of the true

wavelet. To show that we can recover the true source from an initial wavelet with a different

phase and shape, we design the initial wavelet to be mixed-phase with various side lobes,

while the true wavelet is minimum phase (figure 1).

For SPLS-RTM with and without source estimation we run 18 iterations of the linearized

Bregman method with 100 sources per iteration, which corresponds to roughly two passes

through the data. Our velocity model is a smoothed version of the true model, meaning

it is kinematically correct. We use a few basic preconditioners to improve the convergence

of our algorithm. In the model domain, we use a linear depth scaling preconditioner, as

well as a topmute to remove the source/receiver imprints in the water column. In the data

domain, we employ a data topmute to suppress the water bottom reflection, as well as a

half integration to compensate for the order of the 2D normal operator (Herrmann et al.,

2008). One challenge of the Sigsbee 2A model is the strong and shallow salt body, which

causes significant backscattering of the forward modeled wavefield and leads to low-frequency

artifacts in the gradients. We address this problem by using the linearized inverse scattering

imaging condition (Op’t Root et al., 2012; Whitmore and Crawley, 2012) instead of the

crosscorrelation imaging condition. This modification is incorporated into both the imaging

operator ∇F> and the modeling operator ∇F, in order to preserve their adjointness (Witte

et al., 2017). The only hyperparameter we need to choose is λ, which we set according to

the maximum absolute value of the gradient in the first iteration, as mentioned in the theory
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Figure 1: The top figure shows the true source wavelet, as well as the initial guess and

the estimated wavelet. The bottom figure contains the frequency spectra of the respective

wavelets.

section. We set λ to the 1
10 of the maximum absolute value, which leads to values already

entering the solution during the first iteration. We found that setting λ to be larger than this,

requires too many iterations to build up an image that includes also the small amplitude

reflectors.

DISCUSSION

Figures 2 and 3 show the conventional RTM image in comparison to the result after 18

iterations. The RTM image was obtained using the true source wavelet, whereas for the

SP-LSRTM result, the source wavelet was estimated during inversion. We apply a vertical

derivative to both final images to remove some residual low frequency artifacts. However,

no derivatives or Laplacian filtering was used within the imaging algorithm itself. Whereas
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Figure 2: RTM image using the true source wavelet.

the RTM image suffers from typical migration artifacts like decaying amplitudes, blurred

reflectors and poor illumination below the salt, the SPLS-RTM result has well balanced

amplitudes and improved spatial resolution. The SPLS-RTM result was obtained with only

two passes through the data, requiring only four times as many overall PDE solves as the

RTM image.

Figure 1 shows the estimated wavelet, which is obtained by convolving the estimated

filter with the initial guess of the wavelet. Both the time signature as well as the frequency

spectrum are fairly close to the true wavelet. Because the spectrum of our initial wavelet is

missing the lower frequencies of the true wavelet, a perfect recovery cannot be expected. The

image and the source wavelet can both only be estimated up to some scaling factor, because

it is possible to scale up the image and scale down the source without affecting the `2 norm

of the data residual. Therefore the source functions in figure 1 are all normalized by their

respective energies.
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Figure 3: Sparsity-promoting LS-RTM with on-the-fly source estimation after 18 iterations.

CONCLUSIONS

Through leveraging recent advances in stochastic optimization and sparse inverse problems,

we have introduced an algorithm for sparsity-promoting reverse-time migration with signifi-

cantly reduced computational cost in comparison to conventional least-squares reverse-time

migration. Our numerical example shows that our algorithm yields a high quality true

amplitude image, even though we only use a small subset of shots during each iteration and

limit the overall passes through the data to two. In contrast to earlier work, the algorithm

relies on a solver with proven convergence, even when working with randomized subsets of

data during each iteration. We also include source estimation into the imaging algorithm,

which makes our approach feasible for 3D field data applications, where the source wavelet is

generally unknown.
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