
Optimizing the computational performance and maintainability of time-domain modelling—
leveraging multiple right-hand-sides
Mathias Louboutin1*, Gerard Gorman2 and Felix J. Herrmann1

1Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia
2Department of Earth Science & Engineering, Imperial college

SUMMARY:

Numerical solvers for the wave equation are a key component
of Full-Waveform Inversion (FWI) and Reverse-Time Migra-
tion (RTM). The main computational cost of a wave-equation
solver stems from the computation of the Laplacian at each time
step. When using a finite difference discretization this can be
characterized as a structured grid computation within Colella’s
Seven Dwarfs. Independent of the degree of parallelization the
performance will be limited by the relatively low operational
intensity (number of operations divided by memory traffic)
of finite-difference stencils, that is so say that the method is
memory bandwidth bound. For this reason many developers
have focused on porting their code to platforms that have higher
memory bandwidth, such as GPU’s, or put significant effort into
highly intrusive optimisations. However, these optimisations
rarely strike the right performance vs productivity balance as
the software becomes less maintainable and extensible.

By solving the wave equation for multiple sources/right-hand-
sides (RHSs) at once, we overcome this problem arriving at
a time-stepping solver with higher operational intensity. In
essence, we arrive at this result by turning the usual matrix-
vector products into a matrix-matrix products where the first
matrix implements the discretized wave equation and each
column of the second matrix contain separate wavefields for
each given source. By making this relatively minor change
to the solver we readily achieved a ×2 speedup. While we
limit ourselves to acoustic modeling, our approach can easily
be extended to the anisotropic or elastic cases.

INTRODUCTION

Time-domain solvers for the wave equation, and its adjoint,
represents nearly all the computational cost of FWI. The time-
marching structure of the wave equation allows for relatively
straightforward implementations. However, for problem sizes
of practical interest (e.g. over 4003 grid points), FWI becomes
too costly to compute unless the wave propagator is highly
optimized. For this reason a diverse range of solvers have
emerged, focusing on issues such as: the trade-off between the
completeness of the physics being modelled and the cost of
computing that solution (e.g. many more degrees of freedom
are required to model elastic waves); wide range of different
numerical discretizations; and software implementations with
consideration to different parallel programming models and
computer architectures. Often the result is difficult to develop
and maintain software that lacks performance portability, and
that restricts innovation on the level of numerical methods and
inversion algorithms.

To understand how most of the potential performance can be
extracted without making the implementation overly complex it

is useful to first characterise the finite-difference schemes typi-
cally used in time-stepping codes as a structured grid code (or
stencil code) within Colella’s Seven Dwarfs of computational
kernels (Colella, 2004,Asanovic et al. (2006)). This charac-
terization provides an important starting point for reasoning
about what kinds of optimisations are important. Specifically,
the performance of finite-difference codes are fundamentally
limited by their relatively low operational intensity (OI; num-
ber of floating point operations divided by memory traffic) -
i.e. performance is bounded by memory bandwidth. This can be
understood in a highly visual manner using the roofline model
which considers the maximum theoretical perfomance of an
algorithm on a given computer architecture for different values
of OI (WilliamS et al., 2009). It is also for this reason SIMD
vectorization has limited impact on the performance of the code
as the CPU cores still have to wait for data to be transferred
from memory. While parallelizing the code will ensure that all
the available memory bandwidth and cores are utilized it does
not overcome the fundamental performance restriction related
to the OI of the computational kernel.

To address the performance issues with stencils, polyhedral pro-
gramming methods such as tiling (Kamil et al., 2006) have been
developed to reduce the number of cache misses in practise.
However, while these methods can increase the codes perfor-
mance, they can be highly invasive and do not fundamentally
change the OI of the computational kernel. What we propose
here is rather than computing the solution for a single shot per
compute node, we instead compute the solution for multiple
shots simultaneously, whereby the multiple solutions are stored
continuously at the grid points. By choosing an appropriate
number of shots this modification changes the computational
kernel from being a stencil acting on scalar values to being a
stencil acting on SIMD vectors.

While this approach is straightforward to implement, we show
that we can readily double the performance of the solver. In
this case study, we used the high-level programming language
(MATLAB) interspersed with C functions that implement the
time-stepping for multiple sources. OpenMP is used to par-
allelize the solver over space. The inner loop is over a fixed
number of shots, therefore the compiler can readily vectorise it.
The simplicity also makes it feasible to maintain adjoints and
compute gradients and Jacobians according to the discretize-
then-optimize method where the chain rule is applied to code .
To illustrate this latter aspect, we first introduce our formulation
for FWI, followed by a detailed discussion on our optimized
implementation and its accuracy.

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2016 SLIM group @ The University of British Columbia.



SCALAR ACOUSTIC FULL-WAVEFORM INVERSION

For a spatially varying velocity model, c, the acoustic wave
equation in the time domain is given by:

1
c2

∂ 2u
∂ t2 −∇

2u = q, (1)

where u is the wavefield, q is the source, ∇ is the Laplacian and
∂ 2u
∂ t2 is the second-order time derivative. Given measurements
of the pressure wavefield, the aim is to invert for the unknown
velocity model, c. Haber et al. (2012) shows that this can
be expressed as the following PDE-constrained optimization
problem:

minimize
m,u

1
2
‖Pru−d‖2

2 ,

subject to A(m)u = qs,

(2)

where Pr is the projection operator onto the receiver locations,
A(m) is the discretized wave-equation matrix, m is the set of
model parameters (for this simple acoustic case m := 1/c2),
u is the discrete synthetic pressure wavefield, qs is the corre-
sponding source and d is the measured data. In this formulation,
both u and m are the unknowns. We can rewrite Equation 2 as a
single objective function to be minimised (Virieux and Operto,
2009,Lions (1971)) ,

minimize
m

Φs(m) =
1
2

∥∥∥PrA−1(m)qs−d
∥∥∥2

2
. (3)

To solve this optimization problem using a gradient-descent
method we use the adjoint-state method to evaluate the gradient
∇Φs(m) (Plessix, 2006,Haber et al. (2012)):

∇Φs(m) =

nt∑
t=1

u[t]vtt [t] = JT
δds, (4)

where δd = (Pru−d) is the data residual, and vtt is the second-
order time derivative of the adjoint wave equation computed
backwards in time:

A∗(m)v = P∗r δd. (5)

As we can see, the adjoint-state method requires a wave-
equation solve for both the forward and adjoint wavefields
(many more solves are required if checkpointing is also used).
While this computational cost clearly motivates the interest in
optimizing the performance of the solvers, the importance of
an accurate and consistent adjoint model in the solution of the
optimisation problem motivates the requirement to keep the
implementation relatively simple.

FROM MATRIX-VECTOR TO MATRIX-MATRIX
PRODUCTS

For multiple RHSs, we can rewrite the wave equation as

A(m)U = Q, (6)

where U is now a matrix with one wavefield for each source
per column with the corresponding source located in the same
column in Q. Since the same recasting applies to the adjoint

(as long as the adjoint stencil is properly derived), we will only
consider Equation 6. This is implemented by arranging the
wavefield matrix U as a flat nRHS×N matrix while making sure
that every column is memory aligned and contiguous so the
compiler can readily vectorize the code. Figure 1 illustrates that
the stencil kernel now operates on SIMD vectors rather than
scalar values, thereby increasing the AI. This approach can be
easily implemented for arbitrary time-stepping codes by adding
an additional inner loop, which applies the stencil to a SIMD
vector instead of a single scalar for each time step.

Figure 1: Single source versus multi-source stencil computation
load.

SWAP FREE TIME-STEPPING WITH ASYNCHRONOUS
I/O

Our implementation requires three consecutive wavefields (for
the second time derivative in the gradient) and the next time
step is computed from the current and previous time step.In
order to propagate in time, the wavefields need to be swapped at
the end of each time step so that the next time step becomes the
current and the current the previous (see Algorithm 1). This can
be accomplished in pure C implementation by a simple pointer
swap at the end of each time step. However, moving pointers
around] corrupts MATLAB’s memory management as it will
not be aware of these swaps. We address this problem by work-
ing in cycles of three time steps as shown in Algorithm 1 and
returning to MATLAB to perform the data swaps.In addition
to these swaps, controlling the storage of the wavefield’s time
history is another challenge. Computing multiple wavefields at
once uses significantly more memory and increases the need
for caching the time history to disk. Typically we save the time
history of the forward modelled wavefields for all sources to
disk every few time steps (4 to 8 or more in case the time is
subsampled as recently proposed by Louboutin and Herrmann
(2015)). However, the I/O overhead can be hidden within the
compute cost by writing this data out to disk asynchronously.
After combining these different steps, we arrive at the following
workflow where every ui or vi are matrices of size nRHS ∗N:

We can see from this algorithm that the wavefields are never
swapped in the optimized low-level part implemented in C. In
addition, the matrix u1 is never updated allowing us to write it
onto disk properly during the propagation. The pseudo-code
for the adjoint modelling is similar. The full setup can be



Algorithm 1 Forward
In MATLAB

u3 := u[t+1]
u2 := u[t]
u1 := u[t−1]

Go into C
Write u1 to disk asynchronously
u3=f(u2,u1);

for t=1:length(subinterval)
u2=f(u3,u2);t=t+1;
if t< length(interval)

u3=f(u2,u3);t=t+1;
end

end
Go back to MATLAB (swap the wavefields)

if mod(length(interval),2)==0
u1 = u3;

else
u1 = u2;u2 = u3;

end

summarized by the following graphic and all calculations are
done in single precision.

Figure 2: Running setup.

COMPUTATIONAL EFFICIENCY

To evaluate the performance of our implementation, we start
by measuring the relative speed up compared to modelings of
one single right-hand-side (matrix-vector product) of our im-
plementation designed to work with multiple RHSs vectorized
(matrix-matrix products). For this purpose, we use a 10Hz
Ricker wavelet as a source (same source time signature for all
source positions), which generates 4s of . The velocity model is
a two layer cube of size 4.75km discretized with a 19m grid in
every direction (2503 grid points). We simulate 1 to 64 sources
concurrently and we compare these times with the computa-
tion time per individual source by dividing the simulation time
for the concurrent simulations by the number of concurrently
computed sources. The timings and speed-up factors are shown
on Figure 3. We can see from this figure that we obtained a
speedup of a factor of 3.8 between operating on a single source
and 64 sources. Even for 20 concurrent sources, we already
have a speedup by 2.5. Because our vectors are aligned on
32 bits and we have to load two vectors at once, we observe

a staircase behaviours where the performance increases every
four sources.

(a) Times comparison

(b) Speedup factor

Figure 3: Single source versus multi-source timing comparison
for a fixed model size.

Now that we know that our method scales with the number
of RHSs for a fixed domain size, we ensure this behaviour
scales with the size of the model. For this purpose, we fix the
number of RHSs to 20 as this number already gives a significant
speedup. This choice also allows us to go to relatively large
models given our memory of 256GB of RAM. For a fixed
source and receiver setup, we increase the model size from
203 to 7003 including an absorbing boundary layer of 40 grid
points. The effective computational domain ranges from 1003

to 7803 grid points (2km cube to 15km cube with a 19m grid at
10Hz). The results are presented in Figure 4, which shows the
simulation times for 4s recordings of 3D shots as the model size
increases. From this figure, we observe that the computational
times for our multiple RHS approach grow moderately fast as a
function of the model size compared to simulations of the wave
equation on a shot-to-shot basis.

GRADIENT TEST

We know insure the accuracy of our operators from the FWI
point of view. In order to have a correct update direction, we
check that the gradient obtained satisfy the behaviour defined
by the Taylor expansion of the FWI objective. This Taylor
expansion also gives conditions on the forward modelling we
require for an accurate modelling kernel. Mathematically, this



Figure 4: Single source versus multi-source timing comparison
for increasing model sizes.

conditions are expressed by

Φs(m+hdm) = Φs(m)+O(h)

Φs(m+hdm) = Φs(m)+h(J[m]T δd)dm+O(h2)
(7)

meaning that the forward operator behave linearly with the
model perturbation and that the Jacobian operator is a second-
order operator. We can see on Figure 5 that our forward operator
is exact for a broad range of perturbation and that our gradient
stays accurate up til h ' 10−2,10−3 corresponding to h2 '
10−4.10−6. We therefore have operators accurate roughly up
to single precision as expected.

Figure 5: Gradient test for the FWI objective.

Finally we compared our implementation with an industrial
solver. The implementation we use as a reference is a 3D SSE
implementation (all written in intrinsic) with optimal tilling. It
uses a 4th order in time method (against second order for us)
with 10th order in space discretization (against 4th order) of
the Laplacian allowing to work on grids 25% coarser than ours
with larger time steps for a given physical domain and source
peak frequency. We compare it for a model of size 15km by
15km with a 2km depth and 10s recording with a 10Hz Ricker
wavelet. We will make a more rigorous comparison once more
complex wave equations are included in our solver. For this
setup the industrial solver took between 3 and 4 minutes to
solve a single source with 20 thread and scales linearly with
the number of threads. More explicitly 20 sources are solved
in roughly 1.5h whether you solve each one a single thread in
parallel or sequentially with the 20 threads dedicated to a single

experiment. Our implementation took 13h with a fine grid (10
grid points per wavelength) and 3.5h with a coarser one (7
points per wavelength) for the 20 sources. A slice of the shot
record on Figure 6 shows that our modelling generates a non-
dispersive shot record even with only 7 points per wavelength.
We show the shot record obtained on Figure 6.

Figure 6: 3D BG compass shot record.

CONCLUSIONS

The balance between productivity and performance is a key
concern in rapidly evolving fields such as FWI. This is even
more pronounced for any gradient based inversion problem
where both the forward model and adjoint model have to be
developed. In this work we took a first principles look at both
a performance model for the underlying numerical method,
namely the roofline model, and considered this in the specific
context of FWI where shots are typically processed using task
parallelism. We were readily able to double the speed of the
code by redesigning the computational kernel so that its oper-
ational intensity was increased by processing multiple shots
at once. This directly alleviates the key performance barrier
for this problem, making the solver both less memory bounded
and highly vectorized. The changes required to the source code
were minimal and did not require any platform specific tuning
whatsoever. While this work only considered the acoustic wave
equation, the method has broad applicability and will have even
greater impact as the number of parameters being inverted for
increases as this will further increase the OI.

ACKNOWLEDGEMENTS

This work was financially supported in part by the Natural
Sciences and Engineering Research Council of Canada Collab-
orative Research and Development Grant DNOISE II (CDRP
J 375142-08) and the Imperial College London Intel Parallel
Computing Centre. This research was carried out as part of the
SINBAD II project with the support of the member organiza-
tions of the SINBAD Consortium.



REFERENCES

Asanovic, K., R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, et al., 2006, The landscape of parallel com-
puting research: A view from berkeley: Technical report,
Technical Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley.

Colella, P., 2004, Defining software requirements for scientific
computing.

Haber, E., M. Chung, and F. J. Herrmann, 2012, An effective
method for parameter estimation with PDE constraints with
multiple right hand sides: SIAM Journal on Optimization,
22.

Kamil, S., K. Datta, S. Williams, L. Oliker, J. Shalf, and K.
Yelick, 2006, Implicit and explicit optimizations for stencil
computations: Proceedings of the 2006 Workshop on Mem-
ory System Performance and Correctness, ACM, 51–60.

Lions, J. L., 1971, Optimal control of systems governed by
partial differential equations, 1st ed.: Springer-Verlag Berlin
Heidelberg.

Louboutin, M., and F. J. Herrmann, 2015, Time compressively
sampled full-waveform inversion with stochastic optimiza-
tion. (submitted to the SEG conference).

Plessix, R.-E., 2006, A review of the adjoint-state method for
computing the gradient of a functional with geophysical
applications: Geophysical Journal International, 167, 495–
503.

Virieux, J., and S. Operto, 2009, An overview of full-waveform
inversion in exploration geophysics: GEOPHYSICS, 74,
WCC1–WCC26.

WilliamS, S., A. Waterman, and D. Patterson, 2009, The
roofline model offers insight on how to improve the per-
formance of software and hardware.: communications of the
acm, 52.


