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Upcoming events

New Publications

Mon, Aug 31st, 2015
Inaugural Full-Waveform
Inversion Workshop, Brazil

Wed, Sep 9th, 2015
Hansruedi Maurer, ETH Zurich
"The curse of dimensionality in
exploring the subsurface" 4.00
PM, ESB 5104 - 2207 Main
Mall, UBC Campus

Affordable full subsurface image volume—an application to WEMVA Conference (EAGE Workshop on
Wave Equation based Migration Velocity Analysis, Madrid)

Irregular grid tensor completion Conference (Workshop on Low-rank Optimization and Applications,
University of Bonn, Germany)

Wavefield-denoising and source encoding Conference (SIAM Conference on Mathematical and
Computational Issues in the Geosciences, Stanford University, California)

Sparsity promoting seismic imaging and full-waveform inversion Thesis (PhD)

Total variation regularization strategies in full waveform inversion for improving robustness to noise,
limited data and poor initializations Tech Report

Sparse least-squares seismic imaging with source estimation utilizing multiples Conference (PIMS
Workshop on Advances in Seismic Imaging and Inversion, University of Alberta, Edmonton)

A new take on compressive time-lapse seismic acquisition, imaging and inversion Conference (PIMS
Workshop on Advances in Seismic Imaging and Inversion, University of Alberta, Edmonton)

Compressive time-lapse seismic data processing using shared information Conference (CSEG,
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Biblio
List Filter

1 [ SEARCH PUBLICATIONS

Sort by: Author Keyword Title Type [ Year ¥] Export 64 results: BibTex
Search results for fwi [Hesel Search]

SEARCH

2015

Philipp Witte, Mathias Louboutin, and Felix J. Herrmann, “Overview on anisotropic modeling and inversion”. 2015. Abstract BibTex

Felix J. Herrmann and Bas Peters, “Pros and cons of full- and reduced-space methods for Wavefield Reconstruction Inversion”, in SIAM Conference on Mathematical and Computational Issues in the
Geosciences, 2015. rosiract BibTex

Brendan Smithyman, Bas Peters, and Felix J. Herrmann, “Constrained waveform inversion of colocated VSP and surface seismic data”, in EAGE Annual Conference Proceedings, 2015. Absiract BibTex

Zhilong Fang, Chia Ying Lee, Curt Da Silva, Felix J. Herrmann, and Rachel Kuske, “Uncertainty quantification for Wavefield Reconstruction Inversion”, in EAGE Annual Conference Proceedings, 2015.
Abstract BibTex

Felix Oghenekohwo, Rajiv Kumar, Ernie Esser, and Felix J. Herrmann, “Using common information in compressive time-lapse full-waveform inversion”, in EAGE Annual Conference Proceedings, 2015.
Abstract BibTex

Felix J. Herrmann, “Randomized algorithms in exploration seismology”, in ASEG Annual Conference Proceedings, 2015. aostract BibTex

Mathias Louboutin and Felix J. Herrmann, “Time compressively sampled full-waveform inversion with stochastic optimization”. 2015. Aostract BibTex

2014

Felix J. Herrmann, Ernie Esser, Tristan van Leeuwen, and Bas Peters, “Wavefield Reconstruction Inversion (WRI) — a new take on wave-equation based inversion”, in SEG Workshop on Full Waveform
Inversion - Elastic Approaches and Issues with Anisotropy, Nonshallow Inversion, Poor Starting Model; Denver, 2014. BibTex

Rafael Lago, Art Petrenko, Zhilong Fang, and Felix J. Herrmann, “Fast solution of time-harmonic wave-equation for full-waveform inversion”, in EAGE Annual Conference Proceedings, 2014. abstract BibTex

Zhilong Fang, Curt Da Silva, and Felix J. Herrmann, “Fast uncertainty quantification for 2D full-waveform inversion with randomized source subsampling”, in EAGE Annual Conference Proceedings,
2014. rbstract BibTex
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Software releases

https://sinbad.eos.ubc.ca/SoftwareReleases/highlights

Available at

https://www.slim.eos.ubc.ca/consortiumsoftware
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Applications in SINBAD software release Downloads

Thu Mar 3 16:21:33 PST 2016
Bug Report
1. Acquisition

2D ocean-bottom marine acquisition via jittered sampling [Head More] [GitHub &2

Rank minimization based source-separation in time-jittered marine acquisition [Head More] [GitHub &

Source separation via SVD-free rank minimization in the hierarchical semi-separable representation [Head More] [GitHub &2
Time-jittered blended marine acquisition on non-uniform grids [Head More] [GitHub 23]

Joint recovery method for time-lapse seismic data [Read More] [GitHub £2 ]

® 0o 0P

2. Imaging

Efficient least-squares imaging with sparsity promotion and compressive sensing [Head More] [GitHub £

Fast imaging with surface-related multiples by sparse inversion (update in master branch) [Read More] [GitHub &2
Fast least-squares imaging with source estimation using multiples (update in master branch) [Read More] [GitHub 2]
Time domain LSRTM with sparsity promotion (new in master branch) [Head More] [Video] [GitHub &3]

Wavefield reconstruction imaging [Read More] [GitHub £2]

P Q0 0P

3. Modeling

a. Tutorial for 2D Frequency-domain acoustic modeling and imaging [Head More] [GitHub &2
b. 3D Frequency-Domain Modeling Kernel [Read More] [GitHub £2]
c. Tutorial for time-domain 2D/3D acoustic modeling [Head More] [GitHub &2 ]

7/
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® OO0 SINBAD Consortium (SLIM)
. | ' GitHub, Inc. @ github.com/SINBADconsortium/

O Search GitHub Pull requests Issues Gist

SINBAD Consortium (SLIM)

SLIM's repositories for SINBAD consortium members
* UBC EOS, Vancouver, BC, Canada > https://www.slim.eos.ubc.ca

Repositories i People 40 (i) Teams 5 {} Settings

Flilters ¥+ | (| Find a repository... -+ New repository

SLIM-release-apps rrvae Matiab %4 0

Main SLIM software release to SINBAD sponsors - containing all applications,
algorithms, tools, and utilities

Updated 4 days ago

SLIM-release-developers rrvae HTML %2 10
SLIM developer notes and templates

Updated 27 days ago

SLIM-release-comp rrvate Shell %2 i1

3rd-party software for multi-user installation of SLIM software release to SINBAD
sponsors - not required by some of appliactions from SLIM-release-apps

Updated on Aug 6

&

Friday, March 18, 16




3D Frequency-domain FWI with batching: results
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3D Frequency-domain FWI with batching: results

Contents

¢ CARP-CG
o FWI

CARP-CG

Here we present some results of the Helmholtz solver on the overthrust model. The model and a wavefield for 2 Hz are shown below.

y [km] 0 g % [kri] ¥ [kl 0 0 x [km]

We compute the wavefield for various frequencies with a fixed number of gridpoints per wavelength. The convergence histories are shown below

10 3 T T T T T T T T T f
: f=05Hz [
f=1Hz.
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A flexible and scalable software framework

By designing our software environment in a modular fashion, we have developed a system that is
flexible, efficient, scalable, and provable correct. We have the freedom to easily mix and match
Helmholtz discretizations, preconditioners, linear solvers, optimization algorithms and more.

misfit_setup - Objective function setup layer This layer can be

swapped out for an in-

. S house data distribution
PDEfunc dist - Parallel distribution| <@ = = = = = scheme, while the rest
l of the framework
- - remains the same
Lower level function PDEfunc - Serial computation
where most of the \Ir
time is spent OpHehnhOltZ - SPOT operator
‘a H*q / \ H\q
C mmplementation of stencil-free MVP linsolve - Managing linear solver options

10

Friday, March 18, 16



Today's agenda

Time-lapse randomized marine acquisition
(15 minutes)

(Time-lapse) reverse-time migration w/ multiples, source estimation & gaps
(25 minutes)

Constrained full-waveform inversion
(20 minutes)
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Randomized acquisition

Drivers:
» Wave-equation inversions call for dense, wide-azimuth & long-offset surveys

» control on environmental impact
) economics

Solution:
» rethink sampling technologies for land & marine using insights from

Compressive Sensing
» remove sub-sampling-related artifacts by carrying out structure-promoting

Inversions
» Compressive Sensing = increased acquisition productivity

Friday, March 18, 16



Haneet Wason & Felix Oghenekohwo
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University of British Columbia
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Motivation

Seemingly innocent remark by Craig J. Beasley at SBGf meeting:

“Should we repeat or not repeat in randomized marine acquisition?”




Motivation

Seemingly innocent remark by Craig J. Beasley at SBGf meeting:

“Should we repeat or not repeat in randomized marine acquisition?”

“How sensitive is the recovery to minor errors in exact repeatability ?”




Findings — a preview

Increased exact repetition amongst surveys leads to
» deteriorated recovery of prestack vintages themselves
» improved recovery of time-lapse prestack differences

Small, but known, source location perturbations lead to
» improved recovery of the prestack vintages
» deteriorated recovery of prestack time-lapse differences

Tentative conclusions
» do not bother to repeat as long as you know where you were precisely
» instead aim to increase variability albeit natural variability already helps...

Friday, March 18, 16
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Time-jiltered marine acquisition

irregularly sampled spatial grid

continuous recording continuous recording
START STOP

Y



Randomized jitter sampling in marine

% (m) (no overlap)

>

conventional jittered /1 recovered

t(s)

aperiodic
compressed
overlapping

periodic - sparse - no overlap irregular periodic & dense
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Time-lapse seismic

Current acquisition paradigm:
- repeat expensive dense acquisitions & “independent” processing
- compute differences between baseline & monitor survey(s)
- hampered by practical challenges to ensure repetition

New compressive sampling paradigm:
- cheap subsampled acquisition, e.g., via time-jittered marine subsampling
- may offer possibility to relax insistence on repeatability
- exploits insights from distributed compressed sensing




Time-lapse data

Baseline Monitor 4-D signal [10 X]

0.5r

time samples: 512
o 3 0 receivers: 100
o o o 1 sources: 100
E E E
= = =

sampling

fime: 4.0 ms

receiver: 12.5 m
source: 12.5 m

2r 1 2" 1 2r
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Source position (m) Source position (m) Source position (m)
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Sparse siructure via curvelets

significant correlation between the vintages
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Dror Baron, Marco F. Duarte, Shriram Sarvotham, Michael B. Wakin, Richard G. Baraniuk, “An Information-Theoretic Approach to
Distributed Compressed Sensing” (2005)

Distributed compressed sensing
— joint recovery model (JRM)

vintages
A Z b l

N T baseline

A A; O Z) b, | K1 = 20 T 21 ~_ ..

= . __>differences
A.2 0 A.2 Z1 bg ~ . Xo = Z T 249
- e - monitor
2 |

common component

different vintages share common information

22
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https://www.slim.eos.ubc.ca/content/time-lapse-seismic-without-repetition-reaping-benefits-randomized-sampling-and-joint-recover
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https://www.slim.eos.ubc.ca/content/time-lapse-seismic-without-repetition-reaping-benefits-randomized-sampling-and-joint-recover

Friday, March 18, 16

Time-lapse seismic
- w/ & w/o repetition

In an ideal world (A, = A5)
- JRM simplifiesto (bs — b)) = A1(x2 — X1)
- expect good recovery when difference is sparse
- but relies on “exact” repeatability...

In the real world (A1 # A»)

- no absolute control on surveys
- errors in the shot/receiver positions
- holse...




Context

Acquire randomized subsamplings for the baseline and monitor surveys

4 N\

Aim: recovery of both vintages & time-lapse signal from incomplete data

\. J

Questions:

» Process/recover independently or jointly to exploit common features of surveys?
» Should we repeat the surveys when doing randomized subsampling?
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Synthetic seismic case study

Time-jittered marine acquisition on the grid
% repetition => “exact” repetition

NoO errors In the shot/recelver locations




Conventional vs. fime-jittered sources

- subsampling ratio = 2 (2 source arrays)

jittered acquisition 1

jittered acquisition 2

[ ]
conventional (baseline) (monitor)
0 Pany | | (-\ | |
o Array1 * O Array1 ® O Array1
*  Array 2 50 - *  Array 2|| 504 *  Array 2||
100 - ® @
G
. * 100 “a
200 1 100 @ %
kel } @ )
300 - 1501 °. 150 "
—_ —_ Oak - O*
2 < 200 ° 2 200- "
g 400 2 ° 2 g
= = ® = *
| ® _
CED 500 g’ 250 5 g’ 250 ®*
E E g : "
é",’ 600 - é‘g 300 - * § 300 - .
® o *6
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G 0,
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T T T T T T 500 T T T T T K T T T T T T—FK
/ 0 200 400 600 800 1000 1200 200 400 600 800 1000 1200 / 200 400 600 800 1000 1200
Source position (m) Source position (m)

/ Source position (m)

[BLENDING & SUBSAMPLING]
spatial subsampling factor = 2

“blended” shot gathers
number of shots = 100/2 = 50 (25 per array)

“unblended” shot gathers
number of shots = 100 (per array)

26

Friday, March 18, 16

shot record length: 10.0 s
spatial sampling: 12.5 m

vessel speed: 1.25 m/s
recording time = 100 x 10.0 =(1000.0 s

>
<

spatial sampling increase factor = 2
[DEBLENDING & INTERPOLATION]

spatial sampling: 50.0 m (ji
vessel speed: 2.50 m/s
recording time = 1000.0 s/2

ered)




Measurements
- subsampled and blended

Baseline Monitor
70| | | 70|
80 : 80!
0 O
m _—_—- 0 -
£ 90 ——— _ £ 90
() (o)) — —
= = —_—
e T |
S 100/ g 100
) = )
e s
110 1 Mop
I— — 120" . .
1200 500 1000 0 500 _ 1000
Receiver position (m) Receiver position (m)

27

Friday, March 18, 16




Monitor recovery
- Independent recovery

100% overlap 50% overlap 25% overlap
[11.6 dB] [11.0 dB] [10.3 dB]

Time (s)
Time (s)

Time (s)

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Source position (m) Source position (m) Source position (m)
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Monitor recovery
— Joint recovery

100% overlap 50% overlap 25% overlap
[11.6 dB] [15.7 dB] [18.6 dB]

Time (s)
Time (s)

Time (s)

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Source position (m) Source position (m) Source position (m)
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Monitor residual
- Independent residual

30
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Monitor residual
- Jointresidual

100% overlap 50% overlap 25% overlap
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4-D recovery
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4-D rec overy [colormap scale: 10 X]
— Joint recovery

100% overlap 50% overlap 25% overlap
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Notion of repetition

Time-jittered marine acquisition off the grnd

With & without errors In shot locations




4-D time-jittered marine acquisition
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4-D recovery - JRM

— 50% overlap in acquisition matrices

057

Time (s)
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On the contrary,

locatfion errors iImprove recovery of the vintages!




Monitor recovery - JRM
— 50% overlap in acquisition matrices

no error ermror=1.0m
[13.9 dB] [14.5 dB]

0 250 500 750 1000 0 250 500 750 1000
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error<2.8m
[15.5 dB]
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Monitor residual - JRM

— 50% overlap in acquisition matrices

0% overlap
no error error=1.0m ermror=2.8m
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Observations

In the given context of randomized subsampling, errors in the shot locations
» deteriorate recovery of the time-lapse signal
» improve recovery of the vintages

“Exact” repeatability of the surveys seems essential for good recovery of
prestack time-lapse signals

However, most time-lapse studies involve poststack attibutes suggesting
not to repeat in the field...




Randomized computations

Drivers:
» wave-equation inversions are computationally prohibitively expensive
» withstands their widespread adaptation

» challenges development of resilient workflows, inclusion of more complex wave
physics, and assessment of risk

Solution:
» remove insistence of “touching all data” for each iteration while still leveraging the fold
» work on small randomized subsets of data
(random batches of shots / randomized composite shots)
» control sub-sampling related artifacts via averaging or structure promotion
» randomized computations = increased imaging productivity
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Xiang Li, Felix Oghenekohwo, Ning Tu, Phillip Witte, and Mengmeng Yang
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From processing to inversion

Lateral distance (m)
0 5000 10000 15000

0

Depth (m)
2000

RTM imaging via adjoint, high-pass filtered to remove low-wavenumber RTM artifacts




From processing to inversion

Lateral distance (m)
0 5000 10000 15000

0

Depth (m)
2000

SPLSM image via inversion, # of wave-equation solves roughly equals 1 RTM w/ all data




Motivation

Wave-equation based imaging (migration) is expensive
» insists on touching all data (= all RHS’s)
» low resolution

Linearized wave-equation based inversion is prohibitively expensive
» touches all data for each iteration
» restores amplitudes (corrects for GN-Hessian)
» high-resolution when exploiting structure (e.g. sparsity)

Leverage randomized sampling techniques...




[Herrmann & Li, 12; Ning & Herrmann, ’15]

_ Migration

Seismic imaging is linear, separable but extreme large scale
e overdetermined, ill-conditioned & inconsistent system
e so far: solved by applying a (scaled) adjoint w/ many PDE solves

A X =D

AH

X =

Ng Ny
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Migration

Solving Ax = b with X = A”b =P image

Alternatively: least-squares solution via matrix-free iterations to
1

minimize = ||Ax — b||5
X 2

with solution x=( A”A ) 'A"Db
N’
GN Hessian

Inverting GN Hessian expensive = solve with linear optimization




[Shen et. al. '01]

Migration with sparsity promotion

Normal least-squares solution:
¢ does not exploit structure in X
® requires many iterations (= data passes/# of PDE solves)

Sparsity-promoting inversion
e “classic” sparse recovery: minimize HXH1
X

subject to Ax =Db

e Basis Pursuit (BP)

¢ designed for underdetermined systems
(but we will later see it works for randomly sampled systems too!)




[Daubechies, ‘03; Figueiredo and Nowak, ‘03;Yin et al. , ‘08; Beck and Teboulle, ‘09’]

ISTA
lterative Shrinkage Thresholding Algorithm
1. fork=0,1,---
2. Z1+1 — Xk — tkA* (AXk — bk)
3. Xk+1 = OA(Zk+1)
4.  end for
*where Sy (x) = sign(x) - max(|z| — A, 0) is soft thresholding and ¢ are step
lengths

» simple but converges slowly, especially for A small
» BP corresponds to non-trivial limit A — 0"
» requires (complicated) continuation strategies for \
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Gilles Hennenfent, Ewout van den Berg, Michael P. Friedlander, and Felix J. Herrmann, “New insights into one-
norm solvers from the Pareto curve”, Geophysics, vol. 73, p. A23-A26, 2008.

Solution paths
4

ly—Ax,,

ISTA |

[ IRLS |
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Ewout van den Berg and Michael P. Friedlander, “Probing the Pareto frontier for basis pursuit solutions”, SIAM Journal on Scientific Computing, vol.
31, p. 890-912, 2008

Observations

Contributions from “optimizers” yielded robust solvers such as SPGI1
» relatively fast because of continuation methods that relax the constraint
» black boxes with clever state-of-the-art “tricks”

But, their
» convergence is too slow for realistic seismic problems w/ expensive matvecs & 10
» implementation is rather complicated & somewhat inflexible
» design is not optimized for overdetermined problems

Suggests use of Stochastic Average Approximation (SAA) to reduce costs...
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Eldad Haber, Matthias Chung, and Felix J. Herrmann, “An effective method for parameter estimation with PDE constraints with multiple right hand
sides”, SIAM Journal on Optimization, vol. 22, 2012.

SPLSM w/ CS$

slow convergence of SAA

Lateral distance (m)
0 5000 10000 15000
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Depth (m)
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SPLSM image via inversion w/ fixed randomization
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Randomized L1 solvers

For large scale seismic problems we are interested in:
e reducing time consuming |/O & PDE solves
e working on (random) subsets of data = row blocks of A

A X =D>b Ar(k) — r(k)

- I I ngn’y K ngny

Ng Nf



Felix J. Herrmann and Xiang Li, “Efficient least-squares imaging with sparsity promotion and compressive sensing”, Geophysical Prospecting,
vol. 60, p. 696-712, 2012

Felix J. Herrmann, “Accelerated large-scale inversion with message passing’, in SEG Technical Program Expanded Abstracts, 2012, vol. 31, p. 1-6.

Randomized L1 solvers

Randomized iterative soft thresholding algorithm (RISTA):
1. fork=0,1,---

_ X
2. 11 — Xk — tkAr(k) (Ar(k)Xk — bk)
3. Xk+1 = Sy (Zk+1)
4. end for
*where Sy (x) = sign(x) - max(|z| — A, 0) is soft thresholding and ¢, are step
lengths

e relates to “approximate” message passing theory (Montanari, ‘09)
e reduces /O, works on small subset of data
e only converges for special A™, A andtuned A s
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_ RISTA solution path
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W. Yin. Analysis and generalizations of the linearized Bregman method. SIAM J. Imaging Sci., 3(4):856-877, 2010.

Relaxed sparsity objective

Instead, consider
1

minimize Al|x|/1 HXH2
X 2

subject to Ax =D

» strictly convex objective known as “elastic” net in machine learning
» equivalent to Basis Pursuit for “large enough” \

» corresponds to [Lorentz et. al.,'14]
- sparse Kaczmarz for single-row A}’s
- linearized Bregman for full A’s

Friday, March 18, 16



Lorenz, Dirk A.; Wenger, Stephan; Schopfer, Frank; Magnor, Marcus. A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing. arXiv:1403.7543

RISKA

Randomized IS Kaczmarz Algorithm w/ linearized Bregman

1. for Kk =0,1,---

2. i1 — ZL — tkAZ(Aka — bk)
3. Xk+1 = OA(Zk+1)

4. end for

2
*where t;, = ” J*A(T:x_kliklilkw are the step lengths
k

» exceedingly simple flexible “three line” algorithm

» gradient descend on the dual problem, which provably converges
» total different role for A
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The Linearized Bregman Method via Split Feasibility Problems: Analysis and Generalizations. Lorenz, Dirk A.; Schopfer, Frank;
Wenger, Stephan. eprint arXiv:1309.2094

Linearized Bregman

Extension to handle noisy data

1
minimize \||x[1 + =||x]|?
- 9

subject to  ||Ax —Db|| <o

via projections onto norm balls
1. fork=0.1,---

2 Zi+1 — 24k — tl{A;E(k)PO'(A‘T(k)Xk _ bfr(k))
3. Xk+1 = OA(Zk+1)
4 end for

o

"where Po (A Xk — b)) = max{0, 1 - pr gy b (Ar) Xe = bri)
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Linearized Bregman solution path

Converges (up to noise level), even when working on randomized
subsets of data + without difficult strategies for \

601 — Pareto Curve

——Linearized Bregman A = 1
---Noise Level I

_(\I

o

O

<

0 5 15 20

i
X 1
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Least-squares migration

Switch to seismic notation: 6d;; = VF;,;(my, q;;)dm

om : Model perturbation
od : data residual

VF : Born modeling operator
1, 7 : frequency, source index

Instead of applying VF* (migration)

5m — Z VFzg 111, ng)ddz’j

=P Solve least-squares problem w/ sparsity constraint (SPLSM)
using linearized Bregman



Fast SPLSM w/ CS

w/ randomized source subsets

1
minimize \||x||1 + =||x||°
X 2
SllbjeCt to Z HVF,,/] (mo, qij)C*X — 5(:1@] H S O
]
By iterating C : Curvelet transform
for k=01,

Qell---ng|, X e[l ng] for #OQ K< nyp, #X K ng
Ay = {VF;;(mo, q;;)C* }icq jex With Qi = D>, wiq,
br = {dd;; }icq.jex with od;; = > 7%, widd,
i1 — 2 — tkA.ZPO'(A.ka — bk)
Xk+1 = ON(Zk+1)
end for

2ENARAE S

Friday, March 18, 16



Fast SPLSM w/ CS

experimental setup

Data:
e 320 sources and receivers
e 72 frequency slices ranging from 3 —12 Hz
e 4)d = F(m) — F(my), generated with separate modeling engine

Experiments:
e one pass through the data with different batch/block sizes
e choose according to max (t1 : Aibl) and number of iterations
® No source estimation — use correct source for linearized inversions




Fast SPLSM w/ CS

True model perturbation

5000 10000

Lateral distance [m]



Fast SPLSM w/ CS

360 iterations, each w/ 8 frequencies/source experiments

5000
Lateral distance [m]



Fast SPLSM w/ CS

90 iterations, each w/ 16 frequencies/source experiments

5000
Lateral distance [m]



Fast SPLSM w/ CS

23 iterations, each w/ 32 frequencies/source experiments

5000 10000

Lateral distance [m]



Fast SPLSM w/ CS

90 iterations, each w/ 16 frequencies/source experiments

5000
Lateral distance [m]



Aleksandr Y. Aravkin and Tristan van Leeuwen, “Estimating nuisance parameters in inverse problems”, Inverse Problems, vol. 28, 2012

Ning Tu, Aleksandr Y. Aravkin, Tristan van Leeuwen, Tim T.Y. Lin, and Felix J. Herrmann, “Source estimation with surface-related multiples—fast
ambiguity-resolved seismic imaging”. 2015

Fast SPLSM w/ CS

w/ source estimation w/ variable projection

1
minimize A||x||; + =||x||°
X 2

subject to Z |VF;;(mp,q;;)C*x — dd;;|| <o

(]
By iterating
for k=0,1,---
Qe[l---ng|, e[l ---ng| for #Q K ny, #3 <K ng
Ay = {VF;;(mo, q;;)C* }icq jex With Qi = >, wiqs,
bk — {5dij}i€§2,j€2 Wlth 5d7/] — Z?:Sl wlédi,l
qij = <Zf£:,ﬂzz> A ={VF;;(mo, qi;)C" }icq jex
i1 — Lk — tkAZPU(Aka — bk)
Xi+1 = O\ (Zk+1)
end for

O N OUE =
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Fast SPLSM w/ source estimation
experimental setup

Data:
e 320 sources and receivers
e 72 frequency slices ranging from 3 - 12 Hz
e 4d = F(m — mg) inverse crime data

Experiments:

® one pass through the data with the same block size
simultaneous sources
choose A according to max (¢ - A b)
source estimation with delta Dirac as initial guess
estimated source scaled w.r.t. true source




Fast SPLSM w/ source estimation
80 iterations, each w/ 72 frequencies/4sim. shots & tfrue source

5000 10000

Lateral distance [m]



Fast SPLSM w/ source estimation
estimated source

5000 10000

Lateral distance [m]




Fast SPLSM w/ source estimation
- estimated source

0.2

—e—estimated source _ —e—estimated source|
—1{rue source —1rue source

0.15¢

Amplitude
o

0.05¢

4 6 8 10 12 6 8 10
Frequency (HZ) Frequency (HZ)
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Ning Tu and Felix J. Herrmann, “Fast imaging with surface-related multiples by sparse inversion”, Geophysical Journal International, vol. 201, p. 304-317, 2015

Extension
imaging w/ surface-related multiples

Incorporate predictor of surface-related multiples via areal
sources

f(x,w) =) > [|6d;; — VF[my, s;q; — dd; ;]C*x||3

i€EQ JET
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RTM w/ multiples
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Fast SPLSM w/ multiples by SPGI1
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Simulation cost ~1 RTM using all the data




Fast SPLSM w/ multiples by RISKA
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Simulation cost ~1 RTM using all the data
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Time-lapse seismic
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Time-lapse seismic
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Time-lapse seismic
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Sparsity-promoting migration
w/ multiples

Large monitor
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. Production/drill 0 1000 2000 3000 4000 5000
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Example w/o source estimation

Data:

e 320 sources (25 m spacing), 800 receivers (10 m spacing), OBN
e 4 srecording time

e 30 Hz peak frequency

LSRTM:

e 40 iterations /w 8 random shots per iteration
(1 data pass, 640 PDE solves)




_ Sparsity promoting LSRTM

Friday, March 18, 16

e Problem formulation

1
S l[Coml
subject to || Jom — dd||s < o

minimize \||Codm]||; -

om: model perturbation/image

od: linearized data (single scattered data)
J: linearized forward modeling operator (Jacobian)
C: curvelet transtorm




_ Sparsity promoting LSRTM

Friday, March 18, 16

e Problem formulation

1
minimize \||Com||; 1 QHC(SmH%

subject to || Jom — dd||s < o

e Preconditioning
om — 1\/I§1X

M; 'IM,'x = M; 'od
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(Herrmann, Brown, Erlangga and Moghaddam (2009): Curvelet-based migration preconditioning and scaling, Geophysics, Vol. 74, No. 4)

Preconditioning

e Left-hand preconditioning (data space)

le = T,F T, : Topmute

F : Fractional integration 0O

e Right-hand preconditioning (model space)

1\/1}_21 =T, A T,, : Topmute
A : Depth scaling

—1/2
]



Linearized Bregman

1
minimize \||Cx||; ZHCXHg

subject to || M; 'JM,' ' x — M;'dd ||, <o
N\’ \——

3 b
Algorithm:
1. for k=0,1,--- )
2 711 — Zk_tk‘];ﬁ(k) (Jr(k)xk_br(k))max(()’ 1 er(k)xk_br(k)HQ)
3. Xk+1 = C*"S\(Czp41)
4 end for

er(k)xk — b5
HJ;E(;C) (Jr(k)Xk — br(k))”%

Sxa(x) = max(0, |x| — \) -sign(x) {x =



Velocity model & perturbation

~ Velocity model
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Velocity model & perturbation

Background model
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Velocity model & perturbation
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Data preprocessing

0 Linearized data with topmute
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Resulis
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Resulis
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Resulis
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Source estimation - background model
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Source estimation - perturbation
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Images - w/ known source
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Images - w/ estimated source
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Observations

Compressive imaging leads to

» a simple parallel algorithm w/ flexible degree of parallelism
» hifi artifact-free images from data w/ multiples

Randomizations lead to fast & computationally affordable RTM
» touches data only once or twice / reduces # of PDEs solves & 10
» iterative system not yet fully analyzed
» issue w/ scaling ambiguity

But, requires
» densely sampled data
» good velocity models...




Joint work w/ Ernie Esser, Bas Peters, Zhilong Fang, Tristan van Leeuwen, Mathias
Louboutin

SLM@

University of British Columbia
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John “Ernie” Esser (May 19, 1980 — March 8, 2015)
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Stylized example

Simplistic forward model
d=F(c)gq=cxq

w/ vanilla inversion

1
. e . “IEF —d 2
minimize 1| F(c)a — dl;

leads to nowhere if the source q misses low frequencies...




Stylized example w/ consiraints

However, Imposing constraints

1
minimize §|\F(c)q —d||7 subject to Dc >0

Cc>Cq

» minimal velocity

» monotonic increasing gradient of the velocity

on the model fully recovers the model...




Inversion w/o constraints

velocity data inversion data fit
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Inversion w/ constraints

velocity
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Ernie Esser, Lluis Guasch, Tristan van Leeuwen, Aleksandr Y. Aravkin, and Felix J. Herrmann, “Total variation regularization strategies in full
waveform inversion for improving robustness to noise,. limited data and poor initializations”. 2015

_ Strategy

Extend the search space
» “less” nonlinear
» ensures data fit & avoids cycle skips

“Squeeze” the extension by
» enforcing the wave equation to compute model updates
» imposing asymmetric constraints that encode “rudimentary” properties of the geology
» relaxing the constraints to allow data fits & details to enter the solution

Leverage frequency continuation & warm starts where
» sparsity-promoting asymmetric constraints limit adverse affects of local minima
» there is hope as long as progress is made towards the solution during each cycle

Outcome: an automatic multi-cycle optimization-driven workflow
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https://www.slim.eos.ubc.ca/biblio/author/346
https://www.slim.eos.ubc.ca/biblio/author/346
https://www.slim.eos.ubc.ca/biblio/author/362
https://www.slim.eos.ubc.ca/biblio/author/362
https://www.slim.eos.ubc.ca/biblio/author/120
https://www.slim.eos.ubc.ca/biblio/author/120
https://www.slim.eos.ubc.ca/biblio/author/207
https://www.slim.eos.ubc.ca/biblio/author/207
https://www.slim.eos.ubc.ca/biblio/author/275
https://www.slim.eos.ubc.ca/biblio/author/275
https://www.slim.eos.ubc.ca/content/total-variation-regularization-strategies-full-waveform-inversion-improving-robustness-noise
https://www.slim.eos.ubc.ca/content/total-variation-regularization-strategies-full-waveform-inversion-improving-robustness-noise
https://www.slim.eos.ubc.ca/content/total-variation-regularization-strategies-full-waveform-inversion-improving-robustness-noise
https://www.slim.eos.ubc.ca/content/total-variation-regularization-strategies-full-waveform-inversion-improving-robustness-noise

WRI - outer iterations

Friday, March 18, 16

WRI method

for each source i

solve (
g =8 —+ )\2 leag 11@ 2\

Y

Heony = Hany + Mwdiag
end

_ —1
m-—=m — «all g

A

- N\

m) )“

u; ) *dlag (u;)

(qu)

)* uz)\ _qz)
(

p
dlagonal Hessian

L pseudo Hessian

~

Conventional method

%

replace by inner
loop that imposes

\convex constraints y

for each source i
solve A(m)u;
solve A(m)*v

— s

g =g+ wzdiag(ui)*vi

end
m=m — Qg

-

\_

dense Hessian
&
too expensive

~

%




Including convex constraints info WRI

- a - a - a
expensive but fixed cheap damped
N\ Y N\ Y N Y

V | |

1
Am = arg min Am* g" Am’ 1", Am + c¢,Am’ Am
AmeRN 2

such that m" + Am € C

» guarantees m"*' € C

» more difficult to compute

» feasible if it is easy to project onto

» naive projections m"T = lle (mn — (Hn)_lgn) are not
guaranteed to converge [Bertsekas '99]




[Oldenburg '83; Akcelik '08; Anagaw "11; Maharramov '14; Esser & FJH "14]

Projections onto convex sets
Umin = 1500, Umax = 5500, and 7 = {0.379, 0.6}

1
[Io(mg) = arg min §Hm —mgl||* subject to m; € [B;, B"] and |m|ry < T

Original Marmousi model Constrained to have .3 times original TV Constrained to have .6 times original TV
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Proposed algorithm

Solve
minimize ®(m) subject to m" "' € Cpox N Cry
by iterating
- T _n 1 1 n
Am = argIEmAm g 2Am (H" + ¢, ])Am

subject to m? 4+ Am,; € [B), B"] and |m"Aml|;y < 7

m"”" ! =m"” + Am



Solving the convex subproblems

Find saddle point of

1
L(Am,p) = Am’ g" 1 zAmT(H” + ¢, ])Am + gg(m" + Am)
+p' D(m" + Am) — 7||p||cc,2
with indicator functions for

Bound constraint TV-norm constraint

sup+p’ D(m"™ + Am) — 7(|p||o,2

o0  otherwise —

P
gp(m) = 0 if |[D(m"™ + Am)|j;2 <7
oo  otherwise



BP model

original model starting model
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WRI w/0 contraints

first sweep second sweep
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WRI w/ relaxed consiraints

first sweep second sweep
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Total Variation Regularized Wavefield Reconstruction Inversion [Read More] [GitHub]
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https://www.slim.eos.ubc.ca/SoftwareDemos/applications/WaveformInversion/2DWRI-TVconstrained
https://www.slim.eos.ubc.ca/SoftwareDemos/applications/WaveformInversion/2DWRI-TVconstrained
https://github.com/SINBADconsortium/SLIM-release-apps/tree/stable/applications/WaveformInversion/2DWRI-TVconstrained
https://github.com/SINBADconsortium/SLIM-release-apps/tree/stable/applications/WaveformInversion/2DWRI-TVconstrained
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Design criteria — including constraints

Flexible optimization framework that
» incorporates rudimentary properties of the geology via constraints
» uniquely imposes multiple constraints on each FWI model iterate
» is fast & leaves the main loop w/ wave-equation solves alone

» works as a “black box” w/ existing FWI code bases




A few regularization sirategies

Objective function: f(m) (differentiable, time or frequency)

Tikhonov penalty: d(m) = f(m) A gHleHQ | §\|R2m\|2
Gradient filtering: my,1 = mg — YFVyf(m)

Constrained formulation: min f(m) s.t. me G ﬂcz

Im
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A few regularization sirategies

Tikhonov:

o(m) = f(m) + 3| Rim|? + = || Rom]

Potential problems:

squared norm is not an exact penalty

difficult/costly to determine penalty/tradeoff-parameters
potentially ill-conditioned Hessian

may not be obvious which constrained problem is solved for a
given penalty parameter

® no guarantees that all model iterates are regularized
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A few regularization strategies

qbuadratic penalty (2—norm squared) 5 2—norm penalty (not squared)

10 10
| | exact versus non-exact penalty
Toy problem:
.1 >
min — ||z — 1||5 s.t. x =2
r 2
S S
© O
Quadratic-penalty:
1
: 2 2
min - {|z — 1|5 + Allz — 2]3
r 2
10! . e . 2-norm penalty:
0 50 100 0 50 100 1
# of gradient descent iterations # of gradient descent iterations min — Hx —1 H% + )\HCU _ 2”2
r 2

119
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A few regularization strategies

%uadratic penalty (2—norm squared) ; 2—norm penalty (not squared)
0

1 10
A exact versus non-exact penalty
—— A =0.9
.l Toy problem:
107 | {10 1
min = ||z — 1||5 st. =2
r 2
S S
® ®
107"} {10 ,
Quadratic-penalty:
1
: 2 2
min [z — 1{]3 + Allz — 2]
r 2
1077 . ] 10 . 2-norm penalty:
0 50 100 0 50 100 1
# of gradient descent iterations # of gradient descent iterations min — Hx — 1 H% + )\HCU _ 2H2
r 2

120
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[A.J. Brenders & R.G. Pratt, 2007]

A few regularization sirategies

Gradient filtering:

my 1 = my — 7YF Vi f(m)

If the gradient filter F' is the inverse Hessian, this is just Newton’s method
Can work if F' is definite positive

Potential problems:

¢ filtered gradient may not be a gradient of the objective anymore
e no obvious way to include multiple filters
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A few regularization sirategies

Multiple constrained formulation:

minimize f(m) subject to m € (C; ﬂCQ
1041
“Find a model which satisfies all pieces of prior info simultaneously...”
e constraints can be satisfied at every iteration
e works w/ gradient/quasi-Newton/Newton-type methods as a black box
¢ can define more than two constraint-sets
® no weights or other parameters required, just define the sets

Challenge: to impose multiple constraints uniquely...
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POCS vs our method SLIM (red)  --> unique solution
POCS (green) --> depends on order

start
J Intersection of
3t - circle
&
og L square
26
>
2.4
2.2 T ] our solution
/
o : /o
Feasible set Feasible set
»
1.8 | - T T—— POCS _ —4+-8~ ! |
1.8 2 2.2 2.4 2.6 1.8 2 2.2 2.4 2.6

X X
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Prior information as intersection

Projections w/ proximal operators :

Pc(m) = argmin ||[x — ml|5 subject to x € ﬂCg

In words: find closest (Euclidean minimum-distance projection)
model subject to being in the intersection of the constraints.

Important property:  Pc(m) = Pe(Pe(m))
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Our method- finds closest
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Using projection onto convex sets to constrain full-wavefield inversion

Patent number: 9140812 by Anatoly Baumstein from Exxonmobil

Multiple-constrained formulation

Alternating Projections Onto Convex Sets (POCS) lead to
» new models that can be far from the original model

» project on each set separately => ambiguous results
(depends on the order)

Alternating projections w/ proximal operators
» finds the closest model subject to the constraints
» but needs extra work so we project onto the intersection

» get unique projections on these intersections



http://patents.justia.com/patent/9140812
http://patents.justia.com/patent/9140812

Algorithmic development

min f(m) s.t. m e ﬂCQ

Im

C1 ﬂ C2 is convex if C; and C, are convex
We would like the model to be in C; ﬂ C2 at every iteration

One possibility:
min f(m) + tc, (m) + t¢, (m) () = {o

In
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Algorithmic development

min f(m) s.t. m e ﬂCQ

Im

min f(m) T L, (m) T LC, (m) — not differentiable

104

Can use forward-backward splitting / proximal-gradient algorithmes.
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Algorithmic development

min f(m) s.t. m e ﬂCQ

Im

Project onto an intersection of convex sets:
¢ sometimes known analytically
e otherwise compute numerically; Dykstra’s algorithm is used in this work

Friday, March 18, 16



POCS vs our method

0 crossection, bound constraints and minimum-smoothness constraints
| e | | | | | | -

e / A

. . . 500 e -
Projection of a noisy Marmousi M-

model onto the intersection of A

. . 1000 - EITimee _
bound constraints & minimum- T

smoothness constraints et

- e
also shows the POCS results which :
are very different. 2000 - N ~f S -
'''''' T o =I=a=-
2500 |- =N _
_f:-: _______ o=
-:",': “ — POCS result,:order1

3000 | e ——POCS result, order2 |~

—— Dykstra result

—=-—=-model before projection
bound constraint

3500 | | | | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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Dyksira splitting

Toy example:
find projection onto intersection of a circle and a square

Algorithm 1 Dykstra.
xo=m, pp=0,g0=0
Fork=0,1, ...

vk = Pc, (xk + p)
Pk+1 — Xk T Pk — Yk
X1 = e, (Vi + qi)

dk+1 = Yk T 4k — Xk+1
End

Friday, March 18, 16
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Dyksira splitting

Toy example:
find projection onto intersection of a circle and a square

Algorithm 1 Dykstra. 1
xo=m, po=0,qg0=0 ;
Fork=0,1, ... R

Cw=Zamtn) 0
D1 = Xk + Pk — Vi N

- e = Po, 0k +a0) 3 g
dk+1 = Yk T 4k — Xk+1 o

End

only need projection onto each set separately
132




Dyksira splitting

Toy example:
find projection onto intersection of a circle and a square start
Algorithm 1 Dykstra. - 11/
xo=m, po=0,g0=0 D
Fork=0,1, ... N
Yk = P, (% + pr) ::
Pk+1 = Xk + Pk — Yk N k.
Xi+1 = ¢, (Ve + qx) e
dk+1 = Yk T Gk — Xk+1 N AN
Fnd converged
1.8

1.8 1.9 2 21 22 23 24
X
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Dyksira splitting

Toy example:
find projection onto intersection of a circle and a square start
o J/
2.97 10
2.4 ,f/
23f
~22F
%
21 . 7 !
.3 8
) % "\
/ converged
1.8 ' ' ' ' '
1.8 1.9 2 2.1 22 23 24

X

POCS would converge here,

3 feasible point, not the projection onto
134
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POCS vs Dykstira

0 crossection, bound constraints and minimum-smoothness constraints
| e | | | | | | - =

. . . . 500 - qt'_:'___‘_'.:'.'a- —
Projection of a noisy Marmousi M-

model onto the intersection of A

. . 1000 - EITimee _
bound constraints & minimum- T

smoothness constraints i,

- e
also shows the POCS results which :
are very different. 2000 - N ~f S -
'''''' T -=I=m=-
2500 |- =N _
_f:-: _______ o=
-:",': “ — POCS result,:order1

3000 | e ——POCS result, order2 |~

—— Dykstra result

—=-—=-model before projection
bound constraint

3500 | | | | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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Dyksira splitting

Projection-onto-convex-sets (POCS) solves the convex feasibility problem:

find x € (Cq mCQ

Dykstra’s algorithm solves:

. 1
min ic, (@) + te, (@) + 5 |1z — y|
with indicator function: 0 if el
Le(x) = . |
+oo if x ¢ C.

Friday, March 18, 16



Dyksira splitting

Projection-onto-convex-sets (POCS) solves the convex feasibility problem:

find x € (Cq mCQ

Dykstra’s algorithm solves:

|z — yl|?

. 1
IIla}Il Ley (ZE) L, (CE) 9

IS equivalent to: 1
; min - ||z —y||° st. z el ﬂCg
r 2
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Dyksira splitting
Projection-onto-convex-sets (POCS):

find z € ﬂ Co find any point in the mtersgctmn,
may be the closest point

Dykstra’s algorithm solves: 2.5/ 24

| 1 2.4 ! .
min e, () + i, (z) + 5l = I T
=

X
ool
o %
s equivalent to: aql 10
1 3
min [z —y[* st z el mCQ :
r 2
1.9r
1.8

1.8 1.9 2 21 22 23 24

138
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Prior information as convex sets

example 1: (spatially varying) bound constraints:

ClE{m|bl§meu}

Projector: (element-wise)

Pec, (m) = median{b;, m, b, }
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Bound consiraints on vertical derivative

C={m;|b' < Am; < b¥} with A =1, ® D,

Interpretation: D.
Limit the medium parameter
variation per distance unit.

Can select different bounds for each gridpoint.
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Smoothness & bound consiraints

On Verlllcql derlvqilve True Ve|ocity mode| 4500
4000
3500
3000
2500
2000
1500
0 1000 2000 3000 4000 5000
X [m]
constraint on vertical derivative
0 4500
4000
. . . 500
arbitrary medium parameter increase, _ 3500
l. . d d d £ 1000 3000
imited medium parameter decrease —> '~ o e G -
with depth - induces monotonicity 2000
2000 1500
0 1000 2000 3000 4000 5000
X [m]
srraoothness (through constraint on vertical derivative) 4500
4000
500
. . . . . — 3500
limited increase and limited decrease E 1000 3000
o o > N
induces vertical smoothness 1500 zg’gg
2000 1500
0 1000 2000 3000 4000 5000
141 x [m]
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Frequency domain FWI example 1 - noisy data

Frequency batches:

(3,3.33,3.67,4},{4,4.33,4.67,5},{... },{12,12.33,12.67, 13}

|noise||2/||signal|ls =1

Initial velocity model True velocity model

0 4500 0 4500
4000 4000
500
3500 3500
£ 1000 3000 3000
N 2500 2500
1500
2000 2000
2000 1500 1500
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

x [m] x [m]
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Frequency domain FWI example 1 - noisy data

model estimate only bound constraints 4500 EStimate cardinality on vertical gradient, bounds on horizontal gradidt-:,-sr:)tO

4000 4000

3500 3500

3000 3000

2500 2500

2000 2000

1500 1500

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
X [m] x [m]
model estimate Fourier smoothness constraint 4500 model estimate Fourier smoothness and rank 4500
0

4000 4000

3500 3500

3000 ., 1000 3000

2500 " 2500

1500
2000 2000
1500 2000 1500
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
x [m] X [m]
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Frequency domain FWI example 2 - Salt structure

Frequency batches: {3,3.33,3.67,4},{4,4.33,4.67,5},4{... },{12,12.33,12.67, 13}

Strategy: 1st cycle bounds only -> 2nd cycle bounds & transform-
domain bounds -> 3rd cycle bounds only

Bounds on vertical gradient set to allow arbitrary velocity jumps
up & require smooth decrease of velocity with depth.

Initial velocity model True velocity model

4500 0 =
4000 A

1 000 3500 = .,

= 2000 W= —— -
2500 il

3000 2000
1500 — S

2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
X [m] X [m]
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Frequency domain FWI example 2 - Salt structure

Bounds only, cycle 1 0 Bounds and transform domain bounds, cycle 1
— 4500 -

4000
3500
3000
2500
2000

- 1500 ;
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000

x [m] x [m]

Bounds only, cycle 2 0 Bounds and transform domain bounds, cycle 2
e 4500

4000
3500 1000
3000 £

2500

2000 3000
1500

0 2000 4000 6000 8000 10000 12000
x [m]

0 2000 4000 6000 8000 10000 12000
x [m]

Bounds and transform domain bounds, cycle 3

Bounds only, cycle 3

4500 0
4000

3500 1000
3000 £

2500

2000 3000

a L g - il 1500 = ‘n = |
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000

x [m] x [m]
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Algorithmic development

min f(m) s.t. m e ﬂCQ

Im

Projected-gradient: my1 = Pe(my — vV f(myg))

Friday, March 18, 16



Algorithmic development

min f(m) s.t. m e ﬂCQ

Im

Projected-gradient: my; = Pe(my — YV f(myg))

Can this simply be accelerated using Hessian approximation B(my)?

my1 = Pe(my, — vB(my) ™ Vi f(my))

Friday, March 18, 16



Algorithmic development

min f(m) s.t. m e mCQ

104

Projected-gradient: my; = Pe(my — vV, f(my))

Can this simply be accelerated using Hessian approximation B(my)?

my | = Poi==B{m; )]  Vmf(myg))

Generally not, when using the Euclidean projection and general B(my)
149



Algorithmic development

Projected-gradient: my41 = Pe(my — YV f(myg))

Projected Quasi-Newton [M.schmidt et. al., 2009]

¢ solves quadratic sub-problem with constraints using the spectral projected-
gradient algorithm (inexactly)

e |-BFGS Hessian

Projected Newton-type:
¢ solves quadratic sub-problem with constraints
o efficient if approximate Hessian is ‘easy to invert’
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Algorithmic development

Projected Newton-type:
e solves quadratic sub-problem with constraints:

Q(m) = f(mg) + (m —my) "V, f(mg) + (m — my)" By (m — my,)

m =  min m
k+1 mel. 1 Co Q( )

o efficient if approximate Hessian is ‘easy to invert’ (factored Hessian, sparse &
well conditioned, diagonal)

Multiple algorithms can solve the constrained sub-problem

e We use Alternating Direction Method of Multipliers (ADMM)



Algorithmic development

Projected Newton-type:
e solves quadratic sub-problem with constraints:

m —  min m
= min  Q(m)

e can bereformulatedas: [M.Schmidtet. al., 2011]

Vi = My — Bk_lvmf(mk) (unconstrained Newton-step)

. 1 5
Myg1q1 = méfalrﬁCQ 9 HYk — mHBk

(projection w.r.t. metric induced
by the approximate Hessian)

152
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Algorithmic development

Projection methods do not modify the gradient or Hessian.

Instead, they find an updated model which still satisfies the constraints.
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Workflow summary

1. Define convex feasible sets, possibly velocity & frequency dependent
2.Set up Dykstra’s algorithm for projection onto intersections of sets

3.Set up an algorithm to solve the quadratic sub-problem with constraints
(ADMM)

4.Solve waveform inversion problem using the a Projected Newton-type
algorithm
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Observations

Constraints are a powerful method to regularize FWI
» imposed on every iteration
» parameters intuitive to choose

» unambiguous results

s leading to major breakthroughs as long we can design clever
constraints...




Relation to other work

Using projection onto convex sets to constrain full-wavefield inversion
Patent number: 9140812 by Anatoly Baumstein from Exxonmobil

General Optimization Framework for Robust and Regularized 3D FWI

by S.R. Becker, L. Horesh, A.Y. Aravkin, E. van den Berg and S. Zhuk from IBM

The SEISCOPE optimization toolbox: A large-scale nonlinear optimization library based
on reverse communication by Ludovic Métivier and Romain Brossier
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Conclusions

Randomizations in acquisition make
p seismic surveys more economic
» reduces the environmental impact
» allows for recovery of fully-sampled data volumes

Randomization in computations make
» wave-equation based inversions more economic
» but still rely on underlying fold

Open problems
» combine randomized acquisition w/ wave-equation inversions to mitigate
acquisition imprints
» build in adaptive sampling
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