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1 Summary:
This note provides an overview on strategies for modeling and inversion with the anisotropic wave equation.
Since linear and non-linear inversion methods like least squares RTM and Full Waveform Inversion depend on
matching observed field data with synthetically modeled data, accounting for anisotropy effects is necessary
in order to accurately match waveforms at long offsets and propagation times. In this note, the two main
strategies for anisotropic modeling by solving either a pseudo-acoustic wave equation or a pure quasi-P-wave
equation are discussed and an inversion workflow using the pure quasi-P-wave equation is provided. In
particular, we derive the exact adjoint of the anisotropic forward modeling and Jacobian operator and give a
detailed description of their implementation. The anisotropic FWI workflow is tested on a synthetic data
example.

2 Introduction
Seismic imaging and inversion of large scale data sets require an accurate and efficient modeling kernel
for numerically solving the wave equation. Especially for seismic field data with large offsets, the acoustic
approximation of wave propagation is no longer appropriate to accurately match the waveforms of the observed
data, since travel times and amplitudes are influenced by anisotropy effects. In exploration seismology, these
effects are mostly related to the fact that a wave that travels through several layers of (isotropic) rocks, at
which the layer thickness is much smaller than the dominant wavelength, behaves like a wave propagating
through a homogeneous but anisotropic medium. For this reason, anisotropy in sedimentary settings is
primarily observed in the vertical direction and can be approximated by vertical transverse isotropic (VTI) or
tilted transverse isotropic (TTI) models. Because the effects of anisotropy in sedimentary layers are usually
also small (no more than 10-20 percent), a weak anisotropy approximation has been derived at which the
effects of anisotropy are described by the Thomsen parameters ε and δ [Thomsen, 1986]

Derived from the dispersion relation in terms of the Thomsen parameters, Alkhalifah [2000] introduced
a pseudo-acoustic wave equation to describe wave propagation in transverse isotropic media such as VTI
and TTI with forth order partial derivatives in space and time. Based on this equation, mainly two different
approaches for modeling VTI and TTI wave equations have evolved. The first equation that is commonly
used in the literature for seismic imaging (RTM) is a pseudo-acoustic wave equation, expressed as a coupled 2
by 2 system of equations with a pseudo-pressure field P and an auxiliary field Q. This approach is followed for
example by Zhang et al. from CGG [2011]. The alternative approach is a purely quasi-P wave equation that
completely decouples the pressure wavefield from the full elastic wavefield. Modeling and imaging workflows
based on this equation have been developed by Chu et al. from Conoco Philips [2011], Xu and Zhou from
Statoil [2014], Zhan et al. [2013] and Zhang et al. [2005]. The main advantage of the pure P-wave equation
is that is is completely free of S-wave artifacts and is computationally less expansive and more memory
efficient, since the pseudo-acoustic wave equation requires the computation and (possibly) the storage of two
wavefields. Also, the pure P-wave equation is numerically more stable for strongly varying angles in TTI
media [Zhan et al., 2013], since the presence of S-wave artifacts decreases the stability of the pseudo-acoustic
wave equation. On the other hand, the pseudo-acoustic equation can be solved with both finite difference
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(FD) as well as pseudo spectral (PS) methods, whereas the pure P-wave equation requires the high accuracy
of PS operators, making this approach computationally expensive, as each time step involves a large number
of forward and inverse FFTs.

For incorporating anisotropy in the time-domain modeling kernel of the SLIM inversion workflow, we
use the pure quasi-P-wave equation in the time-spacenumber domain as derived by Zhang et al. [2005] or
Chu et al. [2011]. Their discretized TTI wave equation is second order in time and uses the PS method
for the Laplacian operator. The main advantage of this formulation is that the anisotropy parameters only
appear in the expression for the Laplacian, which allows us to use our functions for forward modeling and
back propagation, as well as the application of forward and adjoint Jacobians from our existing workflow by
simply replacing the Laplacian operator.

3 Isotropic modeling and inversion in the time domain
Since the anisotropic modeling and inversion workflow is completely based on our isotropic implementation,
we first outline the discretization for the isotropic acoustic wave equation and then derive the anisotropic
Laplacian operator based on the TTI equation of Zhang et al [2005]. Our existing workflow is then easily
extended to anisotropy by swapping out the Laplacian operator.

The isotropic acoustic wave equation in continuous form is given by

m
∂2u

∂t2
−∇2u = q (1)

where m is the (spatially varying) squared slowness, u is the pressure wave field and q is the source term. We
discretized this equation using a second order leap frog scheme for the time derivative

∂2u

∂t2
(t) ≈ uk+1 − 2uk + uk−1

δt2
(2)

and a finite difference star stencil for the spatial derivative. Along one dimension, the second order Laplacian
operator is given by

∂2u

∂x2 ≈
1
h2

p
2∑

i=− p
2

αiui = Dxx (3)

where p is the space discretization order and αi are the coefficients of the FD stencil. Using Kronecker
products, the operator can be extended to act on a three-dimensional space of dimensions Nx x Ny x Nz:

Lx = Dxx ⊗ Iyy ⊗ Izz (4)

The three-dimensional Laplacian is then given as the sum of the 1D Laplacians in each direction L =
Lx + Ly + Lz . Finally, we write the fully discretized acoustic wave equation as

A1uk+1 + A2uk + A3uk−1 = qk+1 (5)

where qk is the source term at time step k and the matrices are define as

A1 = diag( m
4t2

)

A3 = diag( m
4t2

)

A2 = −L− 2diag( m
4t2

)

(6)

One time step of either the forward wavefield u or the adjoint wavefield v is calculated by

uk+1 = A1
−1(−A2uk −A3uk−1 + qk+1) (7)
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and
vk−1 = A3

−T (−A2
Tvk −A1

Tvk+1 + δd) (8)

respectively, at which δd is the adjoint source.
For calculating an RTM image or gradient updates of the FWI objective function, we furthermore require

the action of the (adjoint) Jacobian of the forward modeling operator. Writing Equation 5 as one large
system of equations, denoting the modeling matrix as a nonlinear operator A(m) and taking the partial
derivative with respect to the model parameter yields

∂

∂m

(
A(m)u = q

)
⇐⇒ ∂A(m)

∂m u +A(m) ∂u
∂m = 0 (9)

which gives us the expression for the Jacobian and its adjoint

J = ∂u
∂m = −A(m)−1

(∂A(m)
∂m u

)
(10)

JT = −
(∂A(m)

∂m u
)T
A(m)−T (11)

and the action of the adjoint Jacobian on the vector δm, which corresponds to the gradient of the FWI least
squares objective function:

JT δm = −
(∂A(m)

∂m u
)T
A(m)−T δd (12)

where the second part of this equation is the solution of the adjoint wave equation given by Equation 8 . The
derivative of A(m) with respect to m is just the temporal derivative of the forward wavefield u. Calculating
the gradient of the FWI objective in the time stepping manner is therefore done by

1. Modeling the forward wavefield u for all time steps k = 1, ..., nt and storing the wavefields (Equation 7)
2. Modeling the adjoint wavefield v in reverse order k = nt, ..., 1 (Equation 8) and multiplying the adjoint

wavefields of each time step with 1
∆t2 (for vk+1 and vk−1) or −2

∆t2 (for vk). This corresponds to applying
a time derivative operator D to the wavefield.

3. Multiplying the wavefields and updating the gradient within the reverse time loop: g =
g − (uk−1)Tdiag(Dvk−1)

4 Extension to anisotropy
For the incorporation of anisotropy we start from the two-dimensional pure P-wave-equation for TTI media
with weak anisotropy by Zhan et al. [2005]:

m
∂2U(kx, kz, t)

∂t2
=
[
k2
x + k2

z+(2δ sin2 θ cos2 θ + 2ε cos4 θ) k4
x

k2
x + k2

z

+

(2δ sin2 θ cos2 θ + 2ε sin4 θ) k4
z

k2
x + k2

z

+

(−δ sin2 2θ + 3ε sin2 2θ + 2δ cos2 2θ) k2
xk

2
z

k2
x + k2

z

+

(δ sin 4θ − 4ε sin 2θ cos2 θ) k3
xkz

k2
x + k2

z

+

(−δ sin 4θ − 4ε sin 2θ sin2 θ) kxk
3
z

k2
x + k2

z

]
U(kx, kz, t)

(13)

U is the wavefield in the time-wavenumber domain and kx and kz are the spatial wave numbers in x and z
direction respectively. ε and δ are the Thomsen parameters and θ is the angle of the symmetry axis measured
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against the vertical direction and for θ = 0 the equation reduces to the VTI equation. Using a second order
leap frog scheme in time and including the source term q, this equation can be written as

diag( m
∆t2 )

(
un+1 − 2un + un−1

)
− Lun = qn+1 (14)

which corresponds exactly to Equations 5 and 6, only that the Laplacian is now given by:

L = real
(

F∗diag(kani)F
)

(15)

L is a matrix free operator that can be transposed in order to calculate the backprogagated wavefield. F
represents the matrix for the (multidimensional) Fourier transformation and kani is the term within the
square brackets in Equation 13 that contains the (spatially varying) anisotropy parameters. The pseudo-code
for building the Laplacian is given in the appendix. In our anisotropic workflow we still want to invert for the
squared slowness only, but we want to use the TTI wave equation for the forward and back propagations.
Because the Laplacian is independent of the slowness, differentiating the modeling operator with respect
to m does not change the expression for the adjoint Jacobian (Equation 12). Therefore we can obtain the
true Jacobian and it’s adjoint of the anisotropic Modeling operator by using the same code as before by just
swapping the operator for the Laplacian.

5 Data example
We test the anisotropic FWI workflow by inverting the two-dimensional BG velocity model. We generate
observed data with anisotropy effects using an epsilon and a delta model, as well as a tilt angle that is derived
from the velocity model (Figure 2). We then perform two FWI runs of 30 iterations each, both starting
from the same initial model. In the first run, the (anisotropic) data is inverted with the isotropic engine,
i.e. the Thomsen parameters are set to zero, whereas in the second run, we invert with the true model for the
Thomsen parameters.
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Figure 1: True and initial velocity model.

6 Alternative derivative operators
The main problems in our current implementation are numerical stability and computational efficiency.
Experiments with the modeling kernel show that sharp and large contrasts within the models of the anisotropy
parameters cause artifacts in wavefields. More importantly, using pseudo-spectral methods for the spatial
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Epsilon Model

Lateral Position [km]
0 1 2 3 4 5

D
ep

th
 [k

m
]

0

1

2

[k
m

/s
]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Tilt Angle
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Figure 2: Epsilon and tilt angle model. The delta model has the same shape as the epsilon model, with
slightly smaller values (maximum δ value is 0.18 )

Result without anisotropy
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Result with anisotropy
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Figure 3: Inversion results with isotropic and anisotropic workflow

derivative requires a forward and inverse Fourier transform of the entire wavefield at each time step, which
becomes especially problematic in 3D FWI. For these reasons, we are investigating in alternatives for the
derivative matrices, as the Eigen-decomposition Pseudo-Spectral (EPS) method [Sandberg and Wojciechowski,
2011] which is based on integral operators with a kernel function K(x, y)

Lf(x) =
∫ b

a

K(x, y)f(y)dy (16)

where K(x, y) is constructed from a set of orthonormal functions {um}∞m=1, {vm}∞m=1 and constants λm:

K(x, y) =
∞∑
m=1

λmum(x)vm(y) (17)

To construct the discrete operator, the sum of the Kernel function is truncated after Nc terms and the integral
is replaced by quadratures on nodes {θk}Nk=1 with weights {wk}Nk=1:

Lf(θk) =
Nc∑
m=1

λmum(θk)
N∑
l=1

wlvm(θl)f(θl) (18)
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Possibilities for the quadratures are Gauss-Legendre quadratures or prolate spherical wave functions (PSWFs),
which have been shown to allow exact numerical integration of band limited function on an interval [Beylkin
and Sandberg, 2005]. The derivative Matrix itself is given by

Lkl =
Nc∑
m=1

λmum(θk)wlvm(θl) (19)

Due to the truncation of the Kernel sum, the resulting operator has a small matrix norm, allowing larger
time steps and an optimal spatial sampling rate close to two grid points per wavelength. However, the
truncated elements are responsible for absorbing high frequency oscillations, which is highly desirable for
wave propagation in which the functions are typically not truly band limited (Sandberg et. al, 2011). A full
rank operator which still has a small matrix norm, can be constructed by adding a tail to the operator

Lkl =
Nc∑
m=1

λmum(θk)wlvm(θl) +
N∑

m=Nc+1
λmũm(θk)wlṽm(θl) (20)

where {ũm(θl)}Nm=Nc+1 are the last N −Nc vectors that have been orthogonalized with respect to the inner
product

〈um(θl), un(θl)〉 =
N∑
l=1

wlum(θl)un(θl) (21)

The second derivative operator D2 of rank N with Dirichlet boundary conditions can be constructed from its
eigen decomposition {

− m2π2

4 , sin
(mπ

2 (x+ 1)
)}N

m=1
(22)

The rank completed operator is then given by

D2
kl = −π

2

4

(
Nc∑
m=1

m2 sin
(mπ

2 (θk + 1)
)
wl sin

(mπ
2 (θl + 1)

)
+

N∑
m=Nc+1

m2ũm(θk)wlṽm(θl)
) (23)

The one-dimensional second derivative operator can be used to construct the 2D Laplacian in the same way
as before by using Kronecker products. The advantage of the EPS derivative operator is its high accuracy in
the range of machine precision, as well as allowing close to optimal sampling in space and time. However,
the 1D operator itself is a dense matrix and in order to allow fast matrix vector multiplications needs to be
represented in e.g. the partitioned low rank (PLR) or hierarchical semi-separable (HSS) format. Whether the
EPS method can be extended to anisotropy and is computationally more efficient in this context than the PS
method, is currently under investigation.

7 Outlook: 3D Extension
Extension of the described method to 3D is straight forward. The isotropic modeling and inversion workflow
itself is already implemented for 3D, therefore only the 3D anisotropic Laplacian needs to be added. The
operator is constructed in the same manner as before, only that F now is the 3D discrete Fourier transform
and the central term diag(kani) is constructed from the 3D pure P-wave equation, which is given in Chu et
al. [2011].
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8 Appendix
The following algorithm shows construction of the anisotropic Laplacian operator (Equation 15). We use the
SPOT toolbox (http://www.cs.ubc.ca/labs/scl/spot/) which allows us to represent the Fourier transform as
matrix free operators. This means the 2D Fourier operator F is never explicitly formed, but can be used like
a matrix, i.e. it can be transposed or applied to a vector. Furthermore, SPOT operators can be combined
to perform multiple operations consecutively. This is used for the Laplacian operator, whose application
on a vector consists of a forward Fourier transform, multiplication with the diagonal matrix containing
the anisotropy parameters (kani) and the inverse Fourier transform. The (matrix-free) operator L can be
transposed as well in order to calculate the adjoint wavefields (Equation 8).

Algorithm 1 Construction of the anisotropic Laplacian operator in Matlab style notation.
% 1D wavenumbers (row vectors)
kz = 2π

bz−az ∗ [0 : (nz2 − 1), 0, (−nz2 + 1) : −1]
kx = 2π

bx−ax ∗ [0 : (nx2 − 1), 0, (−nx2 + 1) : −1]
% Construct 2D wavenumber field from 1D vectors
Kz = enx ⊗ kTz % e denotes an all ones row vector of length nx
Kx = eTnz ⊗ kx
% Mixed wavenumber fields by entrywise products (�), division ( ./ ) and exponantiation
K1 = K4

x ./ (K2
x + K2

z)
K2 = K4

z ./ (K2
x + K2

z)
K3 = K2

x �K2
z ./ (K2

x + K2
z)

K4 = K3
x �Kz ./ (K2

x + K2
z)

K5 = Kx �K3
z ./ (K2

x + K2
z)

% 2D gridded Thomsen parameters in tilted medium
T1 = 2δ � sin2 θ � cos4 θ + 2ε� cos4 θ
T2 = T1
T3 = −δ � sin2 2θ + 3ε� sin2 2θ + 2δ � cos2 2θ
T4 = δ � sin 4θ − 4ε� sin 2θ � cos2 θ
T5 = −δ � sin 4θ − 4ε� sin 2θ � sin2 θ
% Combine all terms and vectorize
kani = vec

(
−K2

x −K2
z + T1 �K1 + T2 �K2 + T3 �K3 + T4 �K4 + T5 �K5

)
% 2D Fourier transform
F = (Inx ⊗Fz) · (Fx ⊗ Inz) % where Ix is the Identity matrix and Fx is the 1D Fourier matrix of the respec-
tive dimension.
% Laplacian operator
L = real

(
F∗diag(kani)F

)
% where ∗ is the conjugate transpose
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