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SUMMARY

A framework is proposed for regularizing the waveform in-
version problem by projections onto intersections of convex
sets. Multiple pieces of prior information about the geology are
represented by multiple convex sets, for example limits on the
velocity or minimum smoothness conditions on the model. The
data-misfit is then minimized, such that the estimated model is
always in the intersection of the convex sets. Therefore, it is
clear what properties the estimated model will have at each iter-
ation. This approach does not require any quadratic penalties
to be used and thus avoids the known problems and limitations
of those types of penalties. It is shown that by formulating
waveform inversion as a constrained problem, regularization
ideas such as Tikhonov regularization and gradient filtering can
be incorporated into one framework. The algorithm is generally
applicable, in the sense that it works with any (differentiable)
objective function and does not require significant additional
computation. The method is demonstrated on the inversion of
the 2D marine isotropic elastic synthetic seismic benchmark
by Chevron using an acoustic modeling code. To highlight the
effect of the projections, we apply no data pre-processing.

INTRODUCTION
Full-waveform inversion (FWI) involves solving a nonlinear
optimization problem and it is an inverse problem which may
require some form of regularization to yield solutions which
conform with our knowledge about the Earth at the survey lo-
cation. In this expanded abstract we propose a regularization
strategy based on solving constrained problems by projection
onto intersections of convex sets. We incorporate multiple
pieces of prior information about the Earth into the FWI opti-
mization scheme, in an approach similar to Baumstein (2013).
This avoids the use of quadratic penalties. It is also shown
how the constrained problem formulation incorporates several
preexisting regularization ideas. Application of the method to
the blind-test data by Chevron for the 2014 SEG conference
illustrates the effectiveness of the proposed approach.

FWI WITH REGULARIZATION BY PROJECTION
ONTO THE INTERSECTION OF CONVEX SETS
In search of a flexible and easy to use framework, which can
incorporate most existing ideas in the geophysical community
to regularize the waveform inversion problem, we propose to
solve constrained optimization problems of the form

min
m

f (m) s.t. m ∈ C1
⋂

C2. (1)

The model vector, m (often velocity), and the objective func-
tion can measure the difference between predicted data and
observed data, f (m) = 1

2‖PH(m)−1q−d‖2
2 as is often used

in FWI. H is the discretized Helmholtz equation, P restricts

the wavefield to the receiver locations, q is the vector contain-
ing source function and location and d is the observed data.
It is also possible to use other norms and objective functions,
for example objective functions corresponding to the Wave-
field Reconstruction Inversion (WRI, van Leeuwen and Her-
rmann, 2013): f (m) = 1

2‖Pū−d‖2
2 +

λ 2

2 ‖H(m)ū−q‖2
2 with

ū = (λ 2H∗H +P∗P)−1(λ 2H∗q+P∗d).

C1 and C2 are convex sets (more than 2 sets can be used). Intu-
itively, the line connecting any two points in a convex set is also
in the set: for all x,y ∈C the following holds: cx+(1−c)y∈C ,
0 ≤ c ≤ 1. Each set represents a known piece of information
about the Earth; a constraint which the estimated model has to
satisfy. The model is required to be in the intersection of the
two sets, denoted by C1

⋂
C2. The intersection of convex sets

is also convex. To summarize, solving Problem 1 means we try
to minimize the data misfit while satisfying constraints, which
represent the known information about the geology. Below are
two useful convex sets which are also used in the examples.
Bound-constraints can be defined element-wise as

C1 ≡ {m |bl ≤m≤ bu}. (2)

If a model is in this set, then every model parameter value
is between a lower bound bl and upper bound, bu. These
bounds can vary per model parameter and can therefore
incorporate spatially varying information about the bounds.
Bound constraints can also incorporate a reference model by
limiting the maximum deviation from this reference model as:
bl = mref− δm. The projection onto C1, denoted as PC1 , is
the elementwise median: PC1(m) = median{bl ,m,bu}.
The second convex set that is used here is a subset of the
wavenumber domain representation of the model (spatial
Fourier transformed). This convex set can be defined as

C2 ≡ {m |E∗F∗(I−S)FEm = 0}. (3)

This set is defined by a series of matrix multiplications and
means that we apply the mirror-extension operator, E to the
model m to prevent wrap-around effects due to applying linear
operations in the wavenumber domain. Next, the mirror ex-
tended model is spatially Fourier transformed using F . In this
domain we require the wavenumber content outside a certain
range to be equal to zero. This is enforced by the diagonal
(windowing) matrix S. This represents information that the
model should have a certain minimum smoothness. In case we
expect an approximately horizontally layered medium without
sharp contrasts, we can include this information by requiring
the wavenumber content of the model to vanish outside of an
elliptical zone around the zero wavenumber point (see also
Brenders and Pratt (2007)). In other words, more smoothness
in one direction is required than in the other direction. The
adjoint of F , (F∗) transforms back from the wavenumber to the

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2015 SLIM group @ The University of British Columbia.



physical domain and E∗ goes from mirror-extended domain to
the original model domain. The projection onto C2, denoted as
PC2 , is given by PC2(m) = E∗F∗SFEm.

A basic way to solve Problem 1 is to use the projected-
gradient algorithm, which has the main step mk+1 =
PC (mk− γ∇m f (m)), with a step length γ . PC = PC1

⋂
C2

is the projection onto the intersection of all convex sets the
model is required to be in. “The projection onto” means we
need to find the point that is in both sets and closest to the cur-
rent proposed model estimate generated by (mk− γ∇m f (m)).
To find such a point, defined mathematically as

PC (m) = argmin
x
‖x−m‖2 s.t. x ∈ C1

⋂
C2, (4)

we can use a splitting method such as Dykstra’s projection
algorithm (Bauschke and Borwein, 1994). This algorithm finds
the projection onto the intersection of the two sets, by projecting
onto each set separately. This is a cheap and simple algorithm
and enables projections onto complicated intersections of sets.
The algorithm is given by Algorithm 1.

Algorithm 1 Dykstra.
x0 = m, p0 = 0, q0 = 0
For k = 0,1, . . .

yk = PC1(xk + pk)
pk+1 = xk + pk− yk
xk+1 = PC2(yk +qk)
qk+1 = yk +qk− xk+1

End
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Figure 1: The trajectory of Dykstra’s algorithm for a toy exam-
ple with constraints y≤ 2 and x2 + y2 ≤ 3. Iterates 5, 6 and 7
coincide; the algorithm converged to the point closest to point
number 1 and satisfying both constraints.

While gradient-projections is a solid approach, it can also be rel-
atively slowly converging. A potentially much faster algorithm
is the class of projected Newton-type algorithms (PNT) (see for
example Schmidt et al., 2012). Standard Newton-type methods
iterate, mk+1 = mk− γB−1∇m f (m), with B an approximation
of the Hessian. At every iteration, the PNT method finds the
new model by solving the constrained quadratic problem

mk+1 = argmin
m∈C1

⋂
C2

Q(m) (5)

where the local quadratic model is given by Q(m) = f (mk)+
(m−mk)

∗∇m f (mk)+(m−mk)
∗Bk(m−mk). No additional

Helmholtz problems need to be solved. This method does
not simply project an update. The PNT algorithm needs the
objective function value, its gradient, approximation to the
Hessian and an algorithm to solve the constrained quadratic
sub-problem (Problem 5), which in turn needs an algorithm
(Dykstra) to solve the projection problem (Problem 4). The
PNT sub-problem can be solved in many ways; we select the
alternating direction method of multipliers (ADMM) algorithm,
see for example Eckstein and Yao (2012). ADMM can solve
Problem 5 very efficiently provided the approximate Hessian,
B, is easy to invert. The Hessian approximation is assumed
to be diagonal or sparse-banded and a lot easier to invert than
a discrete Helmholtz system. Examples of this type of Hes-
sian approximation can be found in Shin et al. (2001) and van
Leeuwen and Herrmann (2013). The Dykstra-splitting algo-
rithm solves a sub-problem inside the ADMM algorithm, which
is also a splitting-algorithm.

PNT has a similar computational cost as the standard projected-
Newton algorithm; the same number of Helmholtz systems need
to be solved. The additional cost is low, because the projections
are cheap to compute and the inversion of the Hessian matrix is
assumed cheap by the assumptions listed above.

The final optimization algorithm is given by Algorithm 2 and
can best be described as Dykstra’s algorithm within ADMM
within a projected-Newton type method. At every iteration, the
constraints are satisfied exactly.

Algorithm 2 Projected-Newton type based waveform inversion
with projections onto convex sets.

1. define convex sets C1, C2, . . .
2. Set up Dykstra’s algorithm to solve Problem 4
3. Set up ADMM to solve Problem 5
4. minm f (m) s.t. m ∈ C1

⋂
C2 using PNT

Practical considerations
The above projected Newton-type of approach with convex con-
straints provides the formal optimization framework with which
we will carry out our experiments. Before demonstrating the
performance of our approach, we discuss a number of practical
considerations to make the inversion successful.

Frequency continuation. We divide the frequency spectrum
into overlapping frequency bands of increasing frequency. This
multiscale continuation makes the approach more robust against
cycle skips.

Selection of the smoothing parameter. Although there is no
penalty parameter to select in our method, we do need to de-
fine the convex sets onto which we project. The minimum-
smoothness constraints require two parameters; one which
indicates how much smoothness is required and one which
indicates the difference between horizontal and vertical smooth-
ness. At the start of the first frequency batch, these parameters
are chosen such that the minimum smoothness constraints cor-
respond to the smoothness of the initial guess and we add some
‘room’ to update the model to less smooth model. This is the



only user intervention of our regularization framework. Subse-
quent frequency batches multiply the selected parameters by
the empirical formula d fmax

vmin
, where d is the grid-point spacing,

fmax the maximum frequency of the current batch and vmin the
minimum velocity in the current model. This automatically
adjusts the selected parameters for changing grids, frequency
and velocity.

Data fit for Wavefield Reconstruction Inversion. Our inver-
sions are carried out with Wavefield Reconstruction Inversion
that solves for wavefields that fit both the data and the wave
equation for the current model iterate in a least-squares sense.
Since the data is noisy, we chose a relatively large λ so we
not fit noise that lives at high source-coordinate wave numbers.
In this way, the equation at the current model acts as a regu-
larization term that does prevents fitting the noise at the low
frequencies.

Source estimation. Although a normalized source wavelet was
provided, we estimate the source wavelet on the fly using the
method described in Fang and Herrmann (2015).

APPLICATION TO THE 2D CHEVRON 2014 BLIND-
TEST DATASET

While waveequation based inversion techniques have received
a lot of attention lately, their performance on realistic blind syn-
thetics exposes a number of challenges. The best results so far
have been obtained by experienced practitioners from industry
and academia who developed labour intensive workflows to
obtain satisfactory results from noisy synthetic data sets that are
representative of complex geological areas. Our aim is to create
versatile and easy to use workflows that reduce user input by
using projections on convex sets.

Specifically, we will demonstrate the benefits from a combina-
tion of convex box and minimal smoothness constraints that
require minimal parameter selection. We invert the 2D Chevron
2014 marine isotropic elastic synthetic blind-test dataset with
two different settings: with and without the minimum smooth-
ness constraints. (In fact there is one additional difference
between the two experiments and that is that the approach with-
out smoothing did a restart for the lower half of the frequencies.)
The dataset contains 1600 shots located from 1km to 40km. The
maximum offset is 8km. Both source and receiver depths are
15m. We use 16 frequency bands ranging from 3Hz to 19Hz
with overlap. Each frequency band contains three different
frequencies. For each frequency band, we perform 5 Projected
Newton-type iterations. For each iteration, we randomly jit-
tered selected 360 sources from the 1600 sources to calculate
the misfit, gradient and Hessian approximation. The lower and
upper bound of velocity are 1510m/s and 4500m/s, respectively.

The inversion results are shown in Figure 3. Figure 2, 3a, and 3b
correspond to the initial model, inversion result without mini-
mum smoothness constraint and inversion result with minimum
smoothness constraints, respectively. At the depth of 1.5km,
both inversion results have the gas clouds at x = 1km, 2km and
2.4km. Both results also obtain the low-velocity layer from
depth of 2km to 3km. Comparing the two results, the inversion
without smoothness constraint has many vertical artifacts due to
the data noise and subsampled sources. While with the smooth-

ness constraint, there are fewer vertical artifacts in Figure 3b,
which demonstrates that the smoothness constraint is able to
remove artifacts and improve the quality of inversion result.
The results with smoothness constraints misses some of the low
frequencies because we did not have the resources to run the
lower half of the frequencies twice before moving to the higher
frequencies as was done for the result without the smoothness
constraint.

Figure 4 shows the comparison between the estimated source
wavelet and the true source wavelet provided by Chevron.
Aside from an obvious amplitude scaling, both the frequency-
dependent phase and amplitude characteristics are extremely
well recovered from this complex elastic data set. This is re-
markable because our modeling engine is the scalar constant-
density wave equation and this result is a clear illustration of
the benefits of having a formulation where the physics and data
are fitted jointly during the inversion. Considering both the
difference between the inversion results and the true model and
errors from the discretization, these slight differences between
the true and estimated wavelet are acceptable.

Lateral [km]

D
ep

th
 [k

m
]

 

 

0 5 10 15 20 25 30 35 40 45

0

1

2

3

4

5

m/s

2000

2500

3000

3500

4000

Figure 2: Initial model

RELATION TO EXISTING WORK, DISCUSSION AND
SUMMARY
Discussion. Conceptually, the approach presented is related to
the work of Baumstein (2013). There too, projections onto con-
vex sets are used to regularize the waveform inversion problem.
The optimization, computation of projections, as well as the
sets are different. However, in that approach convergence may
not be guaranteed because the projections are not guaranteed
to be onto the intersections and because they only project at
the end and do not solve constrained sub-problems. This is a
problem when incorporating second-order information.

Tikhonov regularization is a well known regularization
technique and adds quadratic penalties to objectives such as
minm f (m)+ α

2 ‖R1m‖2
2 +

β

2 ‖R2m‖2
2, where two regularizers

are used. The constants α and β are the scalar weights,
determining the importance of each regularizer. The matrices
R represent properties of the model, which we would like to
penalize. This method should in principle be able to achieve
similar results as the projection approach, but it has a few
disadvantages. The first one is that it may be difficult or
costly to determine the weights α and β . Multiple techniques
for finding a ‘good’ set of weights are available, including
the L-curve, cross-validation and the discrepancy principle,
see Sen and Roy (2003) for an overview in a geophysical
setting. A second issue with the penalty approach is the
effect of the penalty terms on the condition number of the
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(a) Inversion result without smoothness constraint
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(b) Inversion result with smoothness constraint

Figure 3: Comparison of inversion result with and without smoothness constraint. a) Inversion result without smoothness constraint;
b) Inversion result with smoothness constraint.
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Figure 4: Comparison of the final estimated source wavelet
with the true source wavelet

Hessian of the optimization problem, see Nocedal and Wright
(2000). This means that certain choices of α , β , R1 and R2
may lead to an optimization problem which is infeasibly
expensive to solve. A third issue is related to the two-norm
squared, ‖ · ‖2

2 not being a so called ‘exact’ penalty function
Nocedal and Wright (2000). This means that constraints can
be approximated with the penalty functions, but generally
not satisfied exactly. Note that the projection and quadratic
penalty strategies for regularization can be easily combined as
minm f (m)+ α

2 ‖R1m‖2
2 +

β

2 ‖R2m‖2
2 s.t. m ∈ C1

⋂
C2.

Multiple researchers, for example Brenders and Pratt (2007),
use the concept of filtering the gradient. A gradient filter can be
represented as applying a linear operation to the gradient step

as mk+1 = mk− γF∇m f (m). Brenders and Pratt (2007) apply
a low-pass filter to the gradient to prevent high-wavenumber
updates to the model while inverting low-frequency seismic
data. A similar effect is achieved by the proposed framework
and using the set defined in 3. The projection-based approach
has the advantage that it generalizes to multiple constraints
on the model in multiple domains, whereas gradient filtering
does not. Restricting the model to be in a certain space is quite
similar to reparametrization of the model.

Summary. To arrive at a flexible and versatile constrained
algorithm for FWI, we combine Dyksta’s algorithm with a
projected-Newton type algorithm capable of merging several
regularization strategies including Tikhonov regularization, gra-
dient filtering and reparameterization. While our approach
could in certain cases yield equivalent results yielded by stan-
dard types of regularization, there are not guarantees for the
latter. In addition, the parameter selections become easier be-
cause the parameters are directly related to the properties of
the model itself rather than to balancing data fits and regular-
ization. Application of Wavefield Reconstruction Inversion to
van Leeuwen and Herrmann (2013) to the blind-test Chevron
2014 dataset show excellent and we believe competitive results
that benefit from imposing the smoothing constraint. While
there is still a lot of room for improvement, these results are
encouraging and were obtained without data preprocessing, ex-
cessive handholding and cosmetic “tricks”. The fact that we
recover the wavelet accurately using an acoustic constant den-
sity only modeling kernel also shows the relative robustness of
the presented method.



REFERENCES

Baumstein, A., 2013, Pocs-based geophysical constraints in
multi-parameter full wavefield inversion: Presented at the ,
EAGE.

Bauschke, H., and J. Borwein, 1994, Dykstras alternating pro-
jection algorithm for two sets: Journal of Approximation
Theory, 79, 418 – 443.

Brenders, A. J., and R. G. Pratt, 2007, Full waveform tomogra-
phy for lithospheric imaging: results from a blind test in a
realistic crustal model: Geophysical Journal International,
168, 133–151.

Eckstein, J., and W. Yao, 2012, Augmented lagrangian and
alternating direction methods for convex optimization: A tu-
torial and some illustrative computational results: RUTCOR
Research Reports, 32.

Fang, Z., and F. J. Herrmann, 2015, Source estimation for
Wavefield Reconstruction Inversion. (to be presented at the
EAGE Conference).

Nocedal, J., and S. J. Wright, 2000, Numerical optimization:
Springer.

Schmidt, M., D. Kim, and S. Sra, 2012, 11, in Projected
Newton-type Methods in Machine Learning: MIT Press,
35, 305–327.

Sen, M., and I. Roy, 2003, Computation of differential seis-
mograms and iteration adaptive regularization in prestack
waveform inversion: GEOPHYSICS, 68, 2026–2039.

Shin, C., S. Jang, and D.-J. Min, 2001, Improved amplitude
preservation for prestack depth migration by inverse scatter-
ing theory: Geophysical Prospecting, 49, 592–606.

van Leeuwen, T., and F. J. Herrmann, 2013, Mitigating local
minima in full-waveform inversion by expanding the search
space: Geophysical Journal International, 195, 661–667.


