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Abstract

A framework is proposed for regularizing the waveform inversion problem by projections onto
intersections of convex sets. Multiple pieces of prior information about the geology are represented
by multiple convex sets, for example limits on the velocity or minimum smoothness conditions
on the model. The data-misfit is then minimized, such that the estimated model is always in the
intersection of the convex sets. Therefore, it is clear what properties the estimated model will have at
each iteration. This approach does not require any quadratic penalties to be used and thus avoids the
known problems and limitations of those types of penalties. It is shown that by formulating waveform
inversion as a constrained problem, regularization ideas such as Tikhonov regularization and gradient
filtering can be incorporated into one framework. The algorithm is generally applicable, in the sense
that it works with any (differentiable) objective function, several gradient and quasi-Newton based
solvers and does not require significant additional computation. The method is demonstrated on the
inversion of very noisy synthetic data and vertical seismic profiling field data.
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Introduction

Full-waveform inversion (FWI) involves solving a nonlinear optimization problem with the goal of
matching observed data with predicted data by iteratively updating the estimate of the subsurface
properties. This is an inverse problem and may require some form of regularization to yield solutions,
which conform with our knowledge about the Earth at the survey location.

In this expanded abstract we propose a regularization strategy based on solving constrained problems by
projection onto intersections of convex sets. We incorporate multiple pieces of prior information about
the Earth into the FWI optimization scheme, in an approach similar to Baumstein (2013). This avoids the
use of quadratic penalties. It is also shown how the constrained problem formulation incorporates several
preexisting regularization ideas. Synthetic and field data examples show the effectiveness of the method.

Waveform inversion with regularization by projection onto the intersection of convex sets

In search of a flexible and easy to use framework, which can incorporate most existing ideas in the
geophysical community to regularize the waveform inversion problem, we propose to base our framework
on solving constrained optimization problems of the form

min
m

f (m) s.t. m ∈ C1
⋂

C2. (1)

The model vector, m (often velocity), and the objective function can measure the difference between pre-
dicted data and observed data, f (m) = 1

2‖PH(m)−1q−d‖2
2 as is often used in FWI. H is the discretized

Helmholtz equation, P restricts the wavefield to the receiver locations, q is the vector containing source
function and location and d is the observed data. It is also possible to use other norms and objective func-
tions, for example the unconstrained objective function corresponding to the Wavefield Reconstruction
Inversion (WRI) approach (van Leeuwen and Herrmann, 2013): f (m) = 1

2‖Pū−d‖2
2+

λ 2

2 ‖H(m)ū−q‖2
2

with ū = (λ 2H∗H +P∗P)−1(λ 2H∗q+P∗d).

C1 and C2 are convex sets (more than 2 sets can be used). Intuitively, the line connecting any two points
in a convex set is also in the set: for all x,y ∈ C the following holds: cx+(1− c)y ∈ C , 0≤ c≤ 1. Each
set represents a known piece of information about the Earth; a constraint which the estimated model
has to satisfy. The model is required to be in the intersection of the two sets, denoted by C1

⋂
C2. The

intersection of convex sets is also convex. To summarize, solving Problem 1 means we try to minimize
the data misfit while satisfying constraints, which represent the known information about the geology.
Below are two useful convex sets which are also used in the examples. Bound-constraints can be defined
element-wise as

C1 ≡ {m |bl ≤m≤ bu}. (2)

If a model is in this set, then every model parameter value is between a lower bound bl and upper
bound, bu. These bounds can vary per model parameter and can therefore incorporate spatially-varying
information about the bounds. Bound constraints can also incorporate a reference model by limiting the
maximum deviation from this reference model as: bl = mref−δm. The projection onto C1, denoted as
PC1 , is the elementwise median: PC1(m) = median{bl,m,bu}.
The second convex set that is used here is a subset of the wavenumber domain representation of the model
(spatial Fourier transformed). This convex set can be defined as

C2 ≡ {m |E∗F∗(I−S)FEm = 0}. (3)

This set is defined by a series of matrix multiplications and means that we apply the mirror-extension
operator, E to the model m to prevent wrap-around effects due to applying linear operations in the
wavenumber domain. Next, the mirror extended model is spatially Fourier transformed using F . In
this domain we require the wavenumber content outside a certain range to be equal to zero. This is
enforced by the diagonal (windowing) matrix S. This represents information that the model should
have a certain minimum smoothness. In case we expect an approximately horizontally layered medium
without sharp contrasts, we can include this information by requiring the wavenumber content of the
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model to vanish outside of an elliptical zone around the zero wavenumber point (see also Brenders and
Pratt (2007)). In other words, more smoothness in one direction is required than in the other direction.
The adjoint of F , (F∗) transforms back from the wavenumber to the physical domain and E∗ goes from
mirror-extended domain to the original model domain. The projection onto C2, denoted as PC2 , is given
by PC2(m) = E∗F∗SFEm.

A basic way to solve Problem 1 is to use the projected-gradient algorithm, which has the main step
mk+1 = PC (mk− γ∇m f (m)), with a step length parameter γ . PC = PC1

⋂
C2 is the projection onto

the intersection of all convex sets the model is required to be in. “The projection onto” means we need
to find the point that is in both sets and closest to the current proposed model estimate generated by
(mk− γ∇m f (m)). To find such a point, defined mathematically as

PC (m) = argmin
x
‖x−m‖2 s.t. x ∈ C1

⋂
C2, (4)

we can use a splitting method such as Dykstra’s projection algorithm (Bauschke and Borwein, 1994).
This algorithm finds the projection onto the intersection of the two sets, by projecting onto each set
separately. This is a cheap and simple algorithm and enables projections onto complicated intersections
of sets. The algorithm is given by Algorithm 1.

Algorithm 1 Dykstra.
x0 = m, p0 = 0, q0 = 0
For k = 0,1, . . .

yk = PC1(xk + pk)
pk+1 = xk + pk− yk
xk+1 = PC2(yk +qk)
qk+1 = yk +qk− xk+1

End
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Figure 1: The trajectory of Dykstra’s algorithm for a toy example with constraints y≤ 2 and x2 + y2 ≤ 3.
Iterates 5, 6 and 7 coincide; the algorithm converged to the point closest to point number 1 and satisfying
both constraints. Note that the projection onto convex sets (POCS) algorithm would converge at point
number 3 and is clearly unsuitable for this type of projection problem.

While the gradient-projection algorithm is a solid approach, it can also be relatively slowly converging.
A potentially much faster algorithm is the class of quasi-Newton methods, which iteratively try to
approximate the Hessian by using just gradient and function value information. However, in general it is
not possible to straightforwardly project quasi-Newton steps onto a convex set. The use of second-order
information can cause the algorithm to converge to a solution which does not correspond to Problem 1.
There are slightly more complicated algorithms, which properly implement a second-order approach.
We select the projected-quasi-Newton (PQN) algorithm by Schmidt et al. (2009). This algorithm finds
a search direction which is in the intersection of the convex sets using the spectral projected gradient
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algorithm (SPG) as a sub-problem of an l-BFGS-like algorithm. It does not simply project an update.
This algorithm needs the objective function value, f (m) , its gradient and an algorithm to solve the
projection Problem 4. PQN has a very similar computational cost as the standard l-BFGS algorithm,
because the projections are cheap to compute. See Schmidt et al. (2009) for some examples of strong
empirical performance of PQN versus projected-gradient for some non-geophysical examples. The final
algorithm is given by Algorithm 2.

Algorithm 2 Projected-Quasi-Newton based waveform inversion with projections onto convex sets.
1. define convex sets C1, C2, . . .
2. Set up algorithm (for example Dykstra’s) to find the projection onto the intersection of C1, C2, . . .
3. minm f (m) s.t. m ∈ C1

⋂
C2 using the PQN algorithm

Example 1: Inversion of very noisy data

This is a synthetic example where the goal is to invert 10 Hz data with ‖noise‖2/‖signal‖2 = 0.3.
Inverting the noisy data will yield a noisy image, even if we use bound-constraints and a good start model.
When the bound-constraints are used together with the projection onto set C2, the inverted result is quite
satisfying. The projection method is very effective for this type of situation, because the noise in the
data induces highly oscillatory components in the model, which are outside the spatial Fourier spectrum
of the expected model. Therefore, those components are projected out and can never enter the model.
When used in this way, the projection onto C2 can be interpreted as an image-domain noise filter. Besides
the model-domain noise filter interpretation, the projection also keeps the model within the range of
physically acceptable models. This restriction of the space, from m ∈ RN to m ∈ C1

⋂
C2 ⊂ RN may

prevent the optimization of f (m) to get stuck in local minimizers. Note that f (m) is unaltered by the
projection approach, just the space where the model can be. The true model, initial model and results
with and without projection onto C2 are shown in Figure 2
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Figure 2: Models corresponding to Example 1, inversion of very noisy data, 10 Hertz only.

Example 2: Land data in a vertical seismic profiling experiment

Vertical Seismic Profiling (VSP) data was acquired with receivers on the surface and in part of the well.
The sources are on the surface only. Available data has a frequency content of 8 to 15.75 Hertz and
all frequencies were used simultaneously in one batch. No density, elastic and attenuation effects are
accounted for in the modeling. No significant anisotropy is expected in this type of geology from the
Permian Basin.

The results are obtained by solving Problem 1. The set C2 is specified as follows. First the spatial
Fourier spectrum of the initial model is analyzed. Then the filter S in Equation 3 is designed to allow the
spatial Fourier spectrum of the initial model plus a bit higher spatial frequency content, based on what
wavenumber spectrum can be expected from the startmodel in combination with the frequency content of
the data. The results are shown in Figure 3.

Relation to existing work, discussion and summary

Conceptually, the approach presented is related to the work of Baumstein (2013). There too, projections
onto convex sets are used to regularize the waveform inversion problem. The optimization, computation
of projections, as well as the sets are different.

Tikhonov regularization is a well known regularization technique and adds quadratic penalties to an
objective as minm f (m)+ α

2 ‖R1m‖2
2 +

β

2 ‖R2m‖2
2, where two regularizers are used. α and β are the
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Figure 3: Models corresponding to example 2. Inversion of field data.

scalar weights, determining the importance of each regularizer. The matrices R represent properties
of the model, which we would like to penalize. This method should in principle be able to achieve
similar results as the projection approach, but it has a few disadvantages. The first one is that it may
be difficult or costly to determine the weights α and β . Multiple techniques for finding a ‘good’ set
of weights are available, including the L-curve, cross-validation and the discrepancy principle, see Sen
and Roy (2003) for an overview in a geophysical setting. A second issue with the penalty approach
is the effect of the penalty terms on the condition number of the Hessian of the optimization problem,
see Nocedal and Wright (2000). This means that certain choices of α , β , R1 and R2 may lead to an
optimization problem which is infeasibly expensive to solve. A third issue is related to the two-norm
squared, ‖ · ‖2

2 not being a so called ‘exact’ penalty function Nocedal and Wright (2000). This means
that constraints can be approximated with the penalty functions, but generally not satisfied exactly.
Note that the projection and quadratic penalty strategies for regularization can be easily combined as
minm f (m)+ α

2 ‖R1m‖2
2 +

β

2 ‖R2m‖2
2 s.t. m ∈ C1

⋂
C2.

The concept of filtering the gradient is used by multiple researchers, for example Brenders and Pratt
(2007). A gradient filter can be represented as applying a linear operation to the gradient step as
mk+1 = mk− γF∇m f (m). Brenders and Pratt (2007) apply a low-pass filter to the gradient to prevent
high-wavenumber updates to the model while inverting low-frequency seismic data. A very similar effect
is achieved by the framework proposed in this abstract and using the set defined in 3. The projection based
approach has the advantage that it straightforwardly generalizes to multiple constraints on the model in
multiple domains, whereas gradient filtering does not. Restricting the model to be in a certain space is
quite similar to reparametrization of the model in, for example the (partial) spatial Fourier domain.

In summary, in this abstract we combine Dyksta’s algorithm with the projected quasi-Newton algorithm in
order to merge several regularization strategies for waveform inversion, such as Tikhonov regularization,
gradient filtering and reparameterization into one framework, which is simple to use and extend. Although
the projection onto the intersection of multiple convex sets strategy does not necessarily yield better
results than other regularization strategies, it may be easier to obtain improved results, because the
projection approach makes is clear what constraints are satisfied exactly at every iteration.
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