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Abstract
We propose an extended full waveform inversion formulation that includes convex constraints on the

model. In particular, we show how to simultaneously constrain the total variation of the slowness squared
while enforcing bound constraints to keep it within a physically realistic range. Synthetic experiments
show that including total variation regularization can improve the recovery of a high velocity perturbation
to a smooth background model, removing artifacts caused by noise and limited data. Total variation-like
constraints can make the inversion results significantly more robust to a poor initial model, leading to
reasonable results in some cases where unconstrained variants of the method completely fail. Numerical
results are presented for portions of the SEG/EAGE salt model and the 2004 BP velocity benchmark.

Disclaimer. This technical report is ongoing work (and posted as is except for the addition of another
author) of the late John “Ernie” Esser (May 19, 1980 - March 8, 2015), who passed away under tragic
circumstances. We will work hard to finalize and submit this work to the peer-review literature. Felix J.
Herrmann

1 Introduction
Acoustic full waveform inversion (FWI) in the frequency domain can be written as the following PDE
constrained optimization problem [Tarantola, 1984, Virieux and Operto, 2009, Herrmann et al., 2013]

min
m,u

∑
sv

1
2

∥Pusv − dsv∥2 s.t. Av(m)usv = qsv , (1)

where Av(m)usv = qsv denotes the discretized Helmholtz equation. Let s = 1, ..., Ns index the sources and
v = 1, ..., Nv index frequencies. We consider the model, m, which corresponds to the reciprocal of the velocity
squared, to be a real vector m ∈ RN , where N is the number of points in the spatial discretization. For each
source and frequency the wavefields, sources and observed data are denoted by usv ∈ CN , qsv ∈ CN and
dsv ∈ CNr respectively, where Nr is the number of receivers. P is the operator that projects the wavefields
onto the receiver locations. The Helmholtz operator has the form

Av(m) = ω2
v diag(m) + L , (2)

where ωv is angular frequency and L is a discrete Laplacian.
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The nonconvex constraint and large number of unknowns make (1) a very challenging inverse problem.
Since it is not always desirable to exactly enforce the PDE constraint, it was proposed in [van Leeuwen and
Herrmann, 2013b,a] to work with a quadratic penalty formulation of (1), formally written as

min
m,u

∑
sv

1
2

∥Pusv − dsv∥2 + λ2

2
∥Av(m)usv − qsv∥2 . (3)

Their method will be referred to as Wavefield Reconstruction Inversion (WRI) and has been further studied in
[Peters et al., 2014]. The objective in (3) is formal in the sense that a slight modification is needed to properly
incorporate boundary conditions, and this modification also depends on the particular discretization used for
L. As discussed in [van Leeuwen and Herrmann, 2013b, Peters et al., 2014], methods for solving the penalty
formulation seem less prone to getting stuck in local minima when compared to solving formulations that
require the PDE constraint to be satisfied exactly. The unconstrained problem is easier to solve numerically,
with alternating minimization as well as Newton-like strategies being directly applicable. Moreover, since
the wavefields are decoupled it isn’t necessary to store them all simultaneously when using alternating
minimization approaches.

The most natural alternating minimization strategy is to iteratively solve the data augmented wave
equation

ūsv(mn) = arg min
usv

1
2

∥Pusv − dsv∥2 + λ2

2
∥Av(mn)usv − qsv∥2 (4)

and then compute mn+1 according to

mn+1 = arg min
m

∑
sv

λ2

2
∥Lūsv(mn) + ω2

v diag(ūsv(mn))m − qsv∥2 . (5)

This can be interpreted as a Gauss Newton method for solving

min
m

F (m), (6)

where
F (m) =

∑
sv

Fsv(m) (7)

and
Fsv(m) = 1

2
∥Pūsv(m) − dsv∥2 + λ2

2
∥Av(m)ūsv(m) − qsv∥2 . (8)

Using a variable projection argument [Aravkin and van Leeuwen, 2012], the gradient of F at mn can be
computed by

∇F (mn) =
∑
sv

Re
(
λ2ω2

v diag(ūsv(mn))∗

(ω2
v diag(ūsv(mn))mn + Lūsv(mn) − qsv)

)
.

(9)

A scaled gradient descent approach [Bertsekas, 1999] for minimizing F can be written as

∆m = arg min
∆m∈RN

∆mT ∇F (mn) + 1
2

∆mT Hn∆m

mn+1 = mn + ∆m ,

(10)

where Hn should be a positive definite approximation to the Hessian of F at mn. This general form includes
gradient descent in the case when Hn = 1

∆t I for some time step ∆t and Newton’s method when Hn is the
true Hessian. In [van Leeuwen and Herrmann, 2013b], a Gauss Newton approximation is used with

Hn =
∑
sv

Hn
sv , (11)
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where
Hn

sv = Re(λ2ω4
v diag(ūsv(mn))∗ diag(ūsv(mn)) . (12)

Since the Gauss Newton Hessian approximation is diagonal, it can be incorporated into (10) with essentially
no additional computational expense. This corresponds to the alternating procedure of iterating (4) and (5)
at least for the formal objective that is linear in m, which it may not be in practice depending on how the
boundary conditions are implemented.

2 Including Convex Constraints
To make the inverse problem more well posed we can add the constraint m ∈ C, where C is a convex set,
and solve

min
m

F (m) s.t. m ∈ C . (13)

For example, a box constraint on the elements of m could be imposed by setting C = {m : mi ∈ [bi, Bi]}.
The only modification of (10) is to replace the ∆m update by

∆m = arg min
∆m∈RN

∆mT ∇F (mn) + 1
2

∆mT Hn∆m

s.t. mn + ∆m ∈ C ,

(14)

leading to a scaled gradient projection method [Bertsekas, 1999, Bonettini et al., 2009].
The constraint on ∆m ensures mn+1 ∈ C but makes ∆m more difficult to compute. Note that the simpler

iterations mm+1 = ΠC(mn − (Hn)−1∇(F (mn)) obtained by first taking a scaled gradient descent step and
then projecting onto C are not in general guaranteed to converge to a solution of (13) [Bertsekas, 1999]. The
problem in (14) is still tractable if C is easy to project onto or can be written as an intersection of convex
constraints that are each easy to project onto. As long as the projections can be computed efficiently, this
convex subproblem is unlikely to be a computational bottleneck relative to the expense of solving for ū(mn)
(4), and in fact it could even speed up the overall method if it leads to fewer required iterations.

The scaled gradient projection framework includes a variety of methods depending on the choice of Hn.
For example, if Hn = 1

∆t I, (14) becomes a gradient projection iteration with a time step of ∆t. Projected
Newton like methods are included when Hn is chosen to approximate the Hessian of F at mn. A good
summary of some of the possible methods in this framework can be found in [Schmidt et al., 2012]. In
particular, a robust projected quasi Newton method proposed in [Schmidt, 2009] uses a limited memory
BFGS approximation of the Hessian and solves the convex subproblems for each update with a spectral
projected gradient method.

For the particular application of minimizing the WRI objective subject to additional convex constraints
(13), we will prefer to use projected Gauss Newton or Levenberg Marquardt type iterations because the
Gauss Newton Hessian approximation for the WRI objective is diagonal. Projected gradient based methods
for solving the convex subproblems are reasonable when the constraint sets are easy to project onto. However,
since one of the constraints we would like to impose is a bound on the total variation (TV) of the model
m, the resulting convex subproblems for computing the updates can be more naturally solved by methods
that incorporate operator splitting to simplify the projection. Another consideration when solving (13) is
that line search can potentially be expensive because evaluating F (m) requires first solving a large linear
system for ū(m). Instead of doing a line search for each search direction, we prefer to introduce a damping
parameter by replacing Hn with Hn + cnI and adaptively adjust cn at each iteration, rejecting iterations
that don’t lead to a sufficient decrease in the objective.

If ∇F is Lipschitz continuous, so that for some K

∥∇F (x) − ∇F (y)∥ ≤ K∥x − y∥ for all x, y ∈ C,
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and if H is a symmetric matrix, then c can be chosen large enough so that

F (m + ∆m) − F (m) ≤ ∆mT ∇F (m) + 1
2

∆mT (H + cI)∆m (15)

for any m ∈ C and ∆m such that m + ∆m ∈ C. So for large enough cn, F (mn + ∆m) ≤ F (mn) when ∆m
is defined by (14). In particular since

F (m + ∆m) − F (m) ≤ ∆mT ∇F (m) + K

2
∥∆m∥2 ,

it follows that
F (m + ∆m) − F (m) ≤ 1

2
(K − λmin

H − c)∥∆m∥2+

∆mT ∇F (m) + 1
2

∆mT (H + cI)∆m ,

where λmin
H denotes the smallest eigenvalue of H. So choosing c > K −λmin

H would ensure that (15) is satisfied.
This would, however, be an extremely conservative choice of the damping parameter c, which could lead to
a slow rate of convergence. We can also adaptively choose cn to be as small as possible while still leading to
iterations that decrease the objective by a sufficient amount, namely such that

F (m + ∆m) − F (m) ≤ σ(∆mT ∇F (m) + 1
2

∆mT (H + cI)∆m) , (16)

for some σ ∈ (0, 1]. Using the same framework as in [Esser et al., 2013], the resulting method is summarized
in Algorithm 1.

Algorithm 1 A Scaled Gradient Projection Algorithm for (13)
n = 0; m0 ∈ C; ρ > 0; ϵ > 0; σ ∈ (0, 1];
H symmetric with eigenvalues between λmin

H and λmax
H ;

ξ1 > 1; ξ2 > 1; c0 > max(0, ρ − λmin
H );

while n = 0 or ∥mn−mn−1∥
∥mn∥ > ϵ

∆m = arg min∆m∈C−mn ∆mT ∇F (mn) + 1
2 ∆mT (Hn + cnI)∆m

if F (mn + ∆m) − F (mn) > σ(∆mT ∇F (mn) + 1
2 ∆mT (Hn + cnI)∆m)

cn = ξ2cn

else
mn+1 = mn + ∆m

cn+1 =

{
cn

ξ1
if cn

ξ1
> max(0, ρ − λmin

H )
cn otherwise

Define Hn+1 to be symmetric Hessian approximation
with eigenvalues between λmin

H and λmax
H

n = n + 1
end if

end while

The particular choice of Hn we will use is the Gauss Newton Hessian defined by Equations 11 and 12.
Other choices are also possible, but if Hn is a poor approximation to the Hessian of F at mn, then a larger
damping parameter cn may be needed. Note that cn will remain bounded because any cn > K − λmin

H would
guarantee a sufficient decrease of F .

In addition to assuming ∇F is Lipschitz continuous, suppose F (m) is coercive on C so that for any
m ∈ C, {m̃ ∈ C : F (m̃) ≤ F (m)} is bounded. Then it follows that any limit point m∗ of the sequence of
iterates {mn} defined by Algorithm 1 is a stationary point of (13) in the sense that (m − m∗)T ∇F (m∗) ≥ 0
for all m ∈ C.
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When Hn + cnI is diagonal and positive, which it is for the Gauss Newton Hessian defined by (11), it’s
straightforward to add the spatially varying bound constraint mi ∈ [bi, Bi]. In fact

∆m = arg min
∆m

∆mT ∇F (mn) + 1
2

∆mT (Hn + cnI)∆m

s.t. mn
i + ∆mi ∈ [bi, Bi]

(17)

has the closed form solution

∆mi = max
(
bi − mn

i , min
(
Bi − mn

i , −[(Hn + cnI)−1∇F (mn)]i
))

.

Even with bound constraints, the model recovered using the penalty formulation can still contain artifacts
and spurious oscillations, as shown for example in Figure 4. A simple and effective way to reduce oscillations
in m via a convex constraint is to constrain its total variation to be less than some positive parameter τ .
TV penalties are widely used in image processing to remove noise while preserving discontinuities [Rudin
et al., 1992]. It is also a useful regularizer in a variety of other inverse problems, especially when solving
for piecewise constant or piecewise smooth unknowns. For example, TV regularization has been successfully
used for electrical inverse tomography [Chung et al., 2005] and inverse wave propagation [Akcelik et al., 2002].
Although the problem is similar, the formulation in [Akcelik et al., 2002] is different in that they directly
penalize the total variation of the velocity instead of constraining the total variation of the slowness squared.
Total variation regularization has also been successfully used in other recent extensions of full waveform
inversion. It is used to regularize the inversion of time lapse seismic data in [Maharramov and Biondi, 2014].
It is also embedded in model updates to encourage blocky models in an FWI method that includes shape
optimization in [Guo and de Hoop, 2012].

3 Total Variation Regularization
If we represent m as a N1 by N2 image, we can define

∥m∥T V = 1
h

∑
ij

√
(mi+1,j − mi,j)2 + (mi,j+1 − mi,j)2

=
∑

ij

1
h

∥∥∥∥[
(mi,j+1 − mi,j)
(mi+1,j − mi,j)

]∥∥∥∥ ,

(18)

which is a sum of the l2 norms of the discrete gradient at each point in the discretized model. Assume
Neumann boundary conditions so that these differences are zero at the boundary. We can represent ∥m∥T V

more compactly by defining a difference operator D such that Dm is a concatenation of the discrete gradients
and (Dm)n denotes the vector corresponding to the discrete gradient at the location indexed by n, n =
1, ..., N1N2. Then we can define

∥m∥T V = ∥Dm∥1,2 :=
N∑

n=1
∥(Dm)n∥ . (19)

Returning to (10), if we add the constraints mi ∈ [bi, Bi] and ∥m∥T V ≤ τ , then the overall iterations for
solving

min
m

F (m) s.t. mi ∈ [bi, Bi] and ∥m∥T V ≤ τ (20)

have the form
∆m = arg min

∆m
∆mT ∇F (mn) + 1

2
∆mT (Hn + cnI)∆m

s.t. mn
i + ∆mi ∈ [bi, Bi] and ∥mn + ∆m∥T V ≤ τ

mn+1 = mn + ∆m .

(21)

5



To illustrate the effect of the TV constraint, consider projecting the Marmousi model shown in Figure 1a
onto two sets with total variation constraints using different values of τ . Let m0 denote the Marmousi model
and let τ0 = ∥m0∥T V . For the bound constraints, set Bi = 4.4444 × 10−7 everywhere, which corresponds to
a lower bound of 1500 on the velocity. Taking advantage of the fact that these constraints can vary spatially,
let bi = 4.4444 × 10−7 in the water layer and bi = 3.3058 × 10−8 everywhere else, which corresponds to an
upper bound of 5500 on the velocity. The orthogonal projection of m0 onto the intersection of these box and
TV constraints is defined by

ΠC(m0) = arg min
m

1
2

∥m − m0∥2

s.t. mi ∈ [bi, Bi] and ∥m∥T V ≤ τ .
(22)

Results with τ = .6τ0 and τ = .3τ0 are shown in Figure 1. The vertical lines at x = 5000m indicate the
location of the 1D depth slices shown in Figure 2 for both slowness squared and velocity.

(a) (b) (c)

Figure 1: Marmousi model (a) and projected Marmousi model for τ = .6τ0 (b) and τ = .3τ0 (c).

(a) (b)

Figure 2: Comparison of slices from the Marmousi model and its projections onto different TV constraints
both in terms of slowness squared (a) and velocity (b).

A weighted version of the TV constraint can be obtained by replacing D with ΓD for some positive
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diagonal matrix Γ. This could for instance be used to make the strength of the TV constraint vary with
depth.

4 Solving the Convex Subproblems
An effective approach for solving the convex subproblems in (21) for ∆m is to use a modification of the
primal dual hybrid gradient (PDHG) method [Zhu and Chan, 2008] studied in [Esser et al., 2010, Chambolle
and Pock, 2011, He and Yuan, 2012, Zhang et al., 2010] to find a saddle point of

L(∆m, p) = ∆mT ∇F (mn) + 1
2

∆mT (Hn + cnI)∆m + gB(mn + ∆m)

+ pT D(mn + ∆m) − τ∥p∥∞,2

(23)

where gB is an indicator function for the bound constraints,

gB(m) =

{
0 if mi ∈ [bi, Bi]
∞ otherwise

.

Here, ∥ · ∥∞,2 is using mixed norm notation to denote the dual norm of ∥ · ∥1,2. It takes the max instead
of the sum of the l2 norms so that ∥Dm∥∞,2 = maxn ∥(Dm)n∥ in the notation of Equation 19. The saddle
point problem can be derived from the convex subproblem in (21) by representing the TV constraint as

sup
p

pT D(mn + ∆m) − τ∥p∥∞,2 , (24)

which equals the indicator function {
0 if ∥D(mn + ∆m)∥1,2 ≤ τ

∞ otherwise
.

To find a saddle point of (23), the modified PDHG method requires iterating

pk+1 = arg min
p

τ∥p∥∞,2 − pT D(mn + ∆mk) + 1
2δ

∥p − pk∥2

∆mk+1 = arg min
∆m

∆mT ∇F (mn) + 1
2

∆mT (Hn + cnI)∆m

+ ∆mT DT (2pk+1 − pk) + 1
2α

∥∆m − ∆mk∥2

s.t. mn
i + ∆mi ∈ [bi, Bi] .

(25)

These iterations can be written more explicitly as

pk+1 = pk + δD(mn + ∆mk) − Π∥·∥1,2≤τδ(pk + δD(mn + ∆mk))
∆mk+1

i = max ((bi − mn
i ), min ((Bi − mn

i ),

[(Hn + (cn + 1
α

)I)−1(−∇F (mn) + ∆mk

α
− DT (2pk+1 − pk))]i

))
,

(26)

where Π∥·∥1,2≤τδ(z) denotes the orthogonal projection of z onto the ball of radius τδ in the ∥ · ∥1,2 norm.
Computing this projection involves projecting the vector of l2 norms onto a simplex, which can be done
in linear time [Brucker, 1984]. An easy way to compute the orthogonal projection of a vector z onto
the unit simplex {x : xi ≥ 0,

∑
i xi = 1} is to simply use bisection to find the threshold a such that∑

i max(0, zi − a) = 1, in which case max(0, zi − a) is the ith component of the projection.
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The step size restriction required for convergence is αδ ≤ 1
∥DT D∥ . If h is the mesh width, then the

eigenvalues of DT D are between 0 and 8
h2 by the Gershgorin Circle Theorem, so it suffices to choose positive

α and δ such that αδ ≤ h2

8 . In the weighted TV case, the same bound works as long as the weights are
normalized so that they are all less than or equal to one in magnitude. Then the step size restriction αδ < h2

8
that was used for the unweighted TV constraint will also satisfy αδ < 1

∥ΓD∥2 , which is the step size restriction
when the TV constraint is weighted by the diagonal matrix Γ.

The relative scaling of α and δ can have a large effect on the convergence rate of the method. A reasonable
choice of fixed step size parameters is α = 1

max(Hn+cnI) and δ = h2 max(Hn+cnI)
8 ≤ max(Hn+cnI)

∥DT D∥ . However,
this choice may be too conservative. The convergence rate of the method can be improved by using the
iteration dependent step sizes proposed in [Chambolle and Pock, 2011]. The adaptive backtracking strategy
proposed in [Goldstein et al., 2013] can also be a practical way of choosing efficient step size parameters.

5 Curvelet Sparsity
The total variation constraint penalizes the l1 norm of the gradient of m in order to promote sparsity of
the gradient. Sparsity in other domains can also be encouraged using the same framework. For example,
if C denotes a curvelet transform, we can replace the discrete gradient D in the TV constraint with C and
encourage the curvelet coefficients of m to be sparse via the constraint ∥Cm∥1 ≤ τ , which limits the sum of
the absolute values of complex curvelet coefficients.

6 One-Sided TV Constraint
Since velocity generally increases with depth, it is natural to penalize downward jumps in velocity. This can
be done with a one-sided, one dimensional total variation constraint that penalizes increases in the slowness
squared in the depth direction. Such a constraint naturally fits in the same framework previously used to
impose TV constraints. Define a forward difference operator Dz that acts in the depth direction so that
Dzm is a concatenation of differences of the form 1

h (mi+1,j − mi,j). To penalize the sum of the positive
differences in m, we can include the constraint

∥ max(0, Dzm)∥1 ≤ ξ , (27)

where max is understood in a componentwise sense so that ∥ max(0, Dzm)∥1 =
∑

ij max(0, 1
h (mi+1,j −mi,j)).

This constraint is closely related to the hinge loss penalty commonly used for example in machine learning
models such as support vector machines.

It’s also possible to include positive depth weights γi in the one-sided TV constraint, so that it becomes∑
ij

max(0,
γi

h
((mi+1,j − mi,j)) ≤ ξ , (28)

which also corresponds to replacing Dz by ΓDz for a positive, diagonal matrix Γ with γi repeated along
the diagonal. Using weights that decrease with depth may for example encourage deeper placement of
discontinuities that still fit the data.

The constraint in (27) doesn’t penalize model discontinuities in the horizontal direction, only in the depth
direction. It’s therefore likely to lead to vertical artifacts unless combined with additional regularization. It
can for example be combined with a TV constraint.

The combination of TV and one-sided TV constraints still fits in same basic framework. Problem (20)
becomes

min
m

F (m) s.t. mi ∈ [bi, Bi] , ∥m∥T V ≤ τ and ∥ max(0, Dzm)∥1 ≤ ξ (29)
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and the convex subproblems (21) that need to be solved are the same except for the added one-sided TV
constraint,

∆m = arg min
∆m

∆mT ∇F (mn) + 1
2

∆mT (Hn + cnI)∆m

s.t. mn
i + ∆mi ∈ [bi, Bi] , ∥mn + ∆m∥T V ≤ τ

and ∥ max(0, Dz(mn + ∆m))∥1 ≤ ξ .

(30)

The same method for solving the convex subproblems can be used. Analogous to (23), we want to find a
saddle point of the Lagrangian

L(∆m, p1, p2) = ∆mT ∇F (mn) + 1
2

∆mT (Hn + cnI)∆m + gB(mn + ∆m)

+ pT
1 D(mn + ∆m) − τ∥p1∥∞,2

+ pT
2 Dz(mn + ∆m) − ξ max(p2) − g≥0(p2) ,

(31)

where g≥0 denotes an indicator function defined by

g≥0(p2) =

{
0 if p2 ≥ 0
∞ otherwise

.

The extra terms in this Lagrangian compared to (23) follow from replacing the one-sided TV constraint by

sup
p2

pT
2 Dz(mn + ∆m) − ξ max(p2) − g≥0(p2) , (32)

which equals the indicator function{
0 if ∥ max(0, Dz(mn + ∆m)∥1 ≤ ξ

∞ otherwise
.

This can also be seen by noting that ξ max(p) + g≥0(p) is the Legendre transform of the indicator function{
0 if ∥ max(0, p)∥1 ≤ ξ

∞ otherwise
.

The modified PDHG iterations are also similar. The update for p1 is the same as in (26). The update for
p2 is very similar, and there is an extra term involving p2 in the ∆m update. Altogether, the iterations are
given by

pk+1
1 = pk

1 + δD(mn + ∆mk) − Π∥·∥1,2≤τδ(pk
1 + δD(mn + ∆mk))

pk+1
2 = pk

2 + δDz(mn + ∆mk) − Π∥ max(0,·)∥1≤ξδ(pk
2 + δDz(mn + ∆mk))

∆mk+1
i = max ((bi − mn

i ), min ((Bi − mn
i ),

[(Hn + (cn + 1
α

)I)−1(−∇F (mn) + ∆mk

α
−

DT (2pk+1
1 − pk

1) − DT
z (2pk+1

2 − pk
2))]i

))
.

(33)

The projection Π∥ max(0,·)∥1≤ξδ(z) can be computed by projecting the positive part of z, max(0, z), onto the
simplex defined by {z : zj ≥ 0 ,

∑
j zj = ξδ} if it doesn’t already satisfy the constraint.
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7 Adjoint State Formulation
All the above constraints can also be incorporated into an adjoint state formulation the PDE constrained
problem in (1) in which the Helmholtz equation must be exactly satisfied. The overall problem including a
general convex constraint m ∈ C is given by

min
m,u

∑
sv

1
2

∥Pusv − dsv∥2 s.t. Av(m)usv = qsv and m ∈ C . (34)

In place of F (m) defined by (8), define

F̃sv(m) = 1
2

∥Pũsv(m) − dsv∥2 , (35)

where ũ(m) solves the Helmholtz equation Av(m)ũsv = qsv. The objective can again be written as a sum
over frequency and source indices,

F̃ (m) =
∑
sv

F̃sv(m) . (36)

Using the adjoint state method, the gradient of F̃ (m) can be written as

∇F̃ (m) =
∑
sv

Re [(∂mAv(m))ũsv(m)]∗ ṽsv(m) , (37)

where
Av(m)∗ṽsv(m) = P T (dsv − Pũsv(m)) .

Formally, with Av(m) defined by (2),

∇F̃ (m) =
∑
sv

Re(ω2
v diag(ũsv(m))∗ṽsv(m)) , (38)

but this may require modification depending on how the boundary conditions are implemented. When
designing a scaled gradient projection method analogous to (14) for minimizing F̃ (m) subject to m ∈ C we
can choose

Hn =
∑
sv

Re(ω4
v diag(ũsv(mn))∗ diag(ũsv(mn)) (39)

even though it no longer corresponds to the Gauss Newton Hessian. Since we expect the structure of this
positive diagonal Hessian approximation to be good but possibly scaled incorrectly, we may want to modify
how the adaptive damping parameter cn is implemented so that it automatically finds a good rescaling of
Hn. One possibility is to replace every instance of Hn + cnI in Algorithm 1 with cn(Hn + νI) for some small
positive ν. With this substitution, the convex subproblems are exactly the same as in the WRI quadratic
penalty formulation.

8 Numerical Experiments
We consider four 2D numerical FWI experiments based on synthetic data. All examples use a frequency
continuation strategy that works with small subsets of frequency data at a time, moving gradually from low
to high frequency batches.

In the first example, noisy data is generated based on a simple synthetic velocity model with sources and
receivers placed vertically on the left and right sides of the model respectively, analogous to the transmission
cross-well example in [van Leeuwen and Herrmann, 2013c]. Here the TV constraint is effective in removing
artifacts caused by the added noise.
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In the second example, very few simultaneous shots are used to simulate data based on the SEG/EAGE
salt model. With a good initial model, the TV constraint is helpful in removing artifacts caused by the use
of so few simultaneous shots.

The third example is based on top left portion of the 2004 BP velocity benchmark data set [Billette and
Brandsberg-Dahl, 2005]. Due to the large salt body, the inversion results tend to have artifacts even when
the initial model is good. In particular, the deeper part of the estimated model tends to have incorrect
discontinuities. The TV constraint helps smooth out some of these artifacts while still recovering the most
significant discontinuities. It can also help to compute multiple passes through the frequency batches while
relaxing the TV constraint. A stronger TV constraint may initially result in an oversmoothed model estimate,
but such an estimate can still be a good initial model when computing another pass with a weaker TV
constraint.

The fourth example is based on the top middle portion of the same BP velocity model and shows how
the one-sided TV constraint can be used to make the inversion results robust to a poor initial model. A
continuation strategy that at first strongly discourages downward jumps in the estimated velocity helps
prevent the method from getting stuck in bad local minima. By gradually relaxing the constraint, downward
jumps in velocity are more tolerated during later passes through the frequency batches.

Before presenting the numerical examples, we first provide additional details about the discretization,
boundary conditions and frequency continuation strategy.

8.1 Discretization and Boundary Conditions
The discrete Laplacian L in the Helmholtz operator (2) is defined using a simple five point stencil. We use
a Robin boundary condition that can be written in the frequency domain as

∇usv · n = −iωv

√
musv . (40)

To implement this, L is defined with Neumann boundary conditions, which effectively removes the differences
at the boundary. Using the Robin boundary condition, these differences are then replaced by −iω

√
mu. The

boundary condition is incorporated into the objective (3) by replacing the PDE misfit penalties

λ2

2
∥Lusv + ω2

v diag(m)usv − qsv∥2

with
λ2

2
∥Lusv + ω2

vXint diag(m)usv − iωvXbnd diag(
√

m)usv − qsv∥2 ,

where Xint is a mask represented as a diagonal matrix with ones corresponding to points in the interior and
zeros corresponding to points on the boundary. Similarly, Xbnd is a diagonal matrix with values of zero for
interior points, 1

h for boundary edges and 2
h at the corners. This boundary condition is used when computing

ūsv(mn) (4). The formulas for the gradient (9) and the diagonal Gauss Newton Hessian (11) corresponding
to (8) are also modified accordingly. The gradient becomes

∇F (mn) =
∑
sv

Re
(
λ2ωv diag(ūsv(mn))∗(ω3

vXint diag(ūsv(mn))+

ωvXint(Lūsv(mn) − qsv) + i

2
Xbnd diag(m

−1
2 )(Lūsv(mn) − qsv)+

ωv

2
X2

bndūsv(mn))
)

,

(41)

and the Gauss Newton Hessian becomes

Hn =
∑
sv

Re
(
λ2ω4

vXint diag(ūsv(mn))∗ diag(ūsv(mn))−

iwλ2

4
Xbnd diag(m

−3
2 ) diag(conj(ūsv(mn))) diag(Lūsv(mn) − qsv)

)
.

(42)
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8.2 Frequency Continuation
We choose to work with small batches of frequency data at a time, moving from low to high frequencies
in overlapping batches of two. This frequency continuation strategy does not guarantee that we solve the
overall problem after a single pass from low to high frequencies. But it is far more computationally tractable
than minimizing over all frequencies simultaneously, and the continuation strategy of moving from low to
high frequencies helps prevent the iterates from tending towards bad local minima.

For example, if the data consists of frequencies starting at 3Hz sampled at intervals at 1Hz, then we
would start with the 3 and 4Hz data, use the computed m as an initial guess for inverting the 4 and 5Hz
data and so on. For each frequency batch, we will compute at most 25 outer iterations, each time solving
the convex subproblem to convergence, stopping when max( ∥pk+1−pk∥

∥pk+1∥ , ∥∆mk+1−∆mk∥
∥∆mk+1∥ ) ≤ 1 × 10−4.

Since the magnitude of the data depends on the frequency, it may be a good idea to compensate for this
by incorporating frequency dependent weights in the definition of the objective (7). However, if we only
work with small frequency batches in practice, then these weights don’t have a significant effect.

8.3 Sequential Shot Example with Noisy Data
Consider a 2D synthetic experiment with a roughly 200 by 200 sized model and a mesh width h equal to 10
meters. The synthetic velocity model shown in Figure 3a has a constant high velocity region surrounded by
a slower smooth background. We use an estimate of the smooth background as our initial guess m0. Similar
to Example 1 in [van Leeuwen and Herrmann, 2013b], we put Ns = 39 sources on the left and Nr = 96
receivers on the right as shown in Figure 3b. The sources qsv correspond to a Ricker wavelet with a peak
frequency of 30Hz.

(a) (b) (c)

Figure 3: Synthetic velocity model (a), source and receiver locations (b) and initial velocity (c).

Data is synthesized at 18 different frequencies ranging from 3 to 20 Hertz. Random Gaussian noise is
added to the data dv independently for each frequency index v and with standard deviations of .05∥dv∥√

NsNr
. This

may not be a realistic noise model, but it can at least indicate that the method is robust to a small amount
of noise in the data.

Two different choices for the regularization parameter τ are considered: τ = .875τtrue, where τtrue is
the total variation of the true slowness squared, and τ = 1000τtrue, which is large enough so that the total
variation constraint has no effect. Note that by using the Gauss Newton step from (17) as an initial guess,
the convex subproblem in (21) converges immediately in the large τ case. The parameter λ for the PDE
penalty is fixed at 1 for all experiments.

Results of the two experiments are shown in Figure 4. Including TV regularization reduced oscillations
in the recovered model and led to better estimates of the high velocity region. Choosing τ too large could
make the TV constraint have no effect on the result, but there is also a risk of oversmoothing and completely
missing small discontinuities when τ is chosen to be too small.
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(a) (b)

Figure 4: Results for τ = 1000τtrue (a) and τ = .875τtrue (b)

8.4 Simultaneous Shot Example with Noise Free Data
Total variation regularization, in addition to making the inversion more robust to noise in he data, can also
remove artifacts that arise when using few simultaneous shots. We consider a synthetic experiment with
simultaneous shots where the true velocity model is a 170 by 676 2D slice from the SEG/EAGE salt model
shown in Figure 5a. A total of 116 sources and 676 receivers are placed near the surface, and a very good
smooth initial model is used. We use frequencies between 3 and 33 Hz and the same frequency continuation
strategy as before that works with overlapping batches of two.

(a) (b) (c)

Figure 5: Synthetic velocity model (a), source and receiver locations (b) and initial velocity (c).

The problem size is reduced by considering Nss < Ns random mixtures of the sources qsv defined by

q̄jv =
Ns∑
s=1

wjsqsv j = 1, ..., Nss , (43)

where the weights wjs ∈ N (0, 1) are drawn from a standard normal distribution. We modify the synthetic
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data according to d̄jv = PA−1
v (m)q̄jv and use the same strategy to solve the smaller problem

min
m,u

∑
jv

1
2

∥Pujv − d̄jv∥2 + λ2

2
∥Av(m)ujv − q̄jv∥2

s.t. mi ∈ [bi, Bi] and ∥m∥T V ≤ τ .

(44)

Results using two simultaneous shots with no added noise and for two values of τ are shown in Figure 6. With
only two simultaneous shots the number of PDE solves is reduced by almost a factor of 60. TV regularization
helps remove some of the artifacts caused by using so few simultaneous shots. In this case it mainly reduces
noise under the salt and produces a smoother estimate of the salt body.

(a) (b)

Figure 6: Recovered velocity from noise free data consisting of two simultaneous shots with τ = 1000τtrue
(a) and τ = .5τtrue (b).

8.5 Benefit of Multiple Passes
The results of the WRI method with frequency continuation can be improved by computing multiple passes
through the frequencies, each time using the model estimated after the previous pass as a warm start [CITE
BAS’S BG EXAMPLE]. The constrained WRI method also benefits from multiple passes. [INCLUDE
SECOND PASS FOR PREVIOUS EXAMPLE] To illustrate this, consider the 150 by 600 model shown in
Figure 7a, which corresponds to a downsampled upper left portion of the 2004 BP velocity benchmark data
set [Billette and Brandsberg-Dahl, 2005]. We will start with the smooth model shown in 7c and again loop
through the frequencies ranging from 3 to 20 Hertz from low to high in overlapping batches of two. The
bound constraints on the slowness squared are defined to correspond to minimum and maximum velocities
of 1400 and 5000 m/s respectively. The τ parameter for the TV constraint is chosen to be .9 times the TV
of the ground truth model. To reduce computation time, we again use two simultaneous shots, but now with
new Gaussian weights wsj redrawn every time the model is updated. The estimated model after computing
25 outer iterations per frequency batch is shown in Figure 8a. Using this as a warm start for a second pass
through the frequency batches from low to high yields the improved result in Figure 8b.

We run the same experiment using a weighted TV constraint with weights that decrease in depth as
shown in Figure 9. The results shown in Figure 10 are similar, although some differences are apparent due
to the weighted TV constraint being weaker in the deeper part of the model.

For comparison, two passes through the frequency batches are computed without any TV constraint, just
the bound constraints. The results shown in Figure 11 appear much noisier. The estimated result after just
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(a) (b) (c)

Figure 7: Top left portion of BP 2004 velocity model (a), source and receiver locations (b) and initial velocity
(c).

(a) (b)

Figure 8: Recovered velocity with a TV constraint from noise free data and a good smooth initial model
after one pass with τ = .9τtrue(a) and a second pass with τ = .99τtrue (b) through small frequency batches
from 3 to 20 Hz.

Figure 9: Decreasing depth weights used in the weighted TV experiments.
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(a) (b)

Figure 10: Recovered velocity with a depth weighted TV constraint from noise free data and a good smooth
initial model after one pass with τ = .9τtrue(a) and a second pass with τ = .99τtrue (b) through small
frequency batches from 3 to ‘20“ Hz.

one pass is notable because it has an oscillation just below the top of the salt on the left side. This mostly
disappears after the second pass but isn’t present at all after one pass with either the TV or weighted TV
constraints.

(a) (b)

Figure 11: Recovered velocity without TV constraint from noise free data and a good smooth initial model
after one pass (a) and after two passes (b) through small frequency batches from 3 to 20 Hz.

Figure 12 shows a comparison of the relative model errors defined by ∥m−mtrue∥
∥m−minit∥ . The TV constrained

examples both have lower model error than the unconstrained example.
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(a) (b) (c)

Figure 12: Relative model error versus frequency batch over two passes through frequency batches with a
TV constraint (a), a depth weighted TV constraint (b) and no TV constraint (c).

8.6 One-Sided TV Constraint for Recovering Salt Bodies from Poor Initial
Models

The inversion results shown in Figures 6b and 8b relied heavily on having good initial models, which for
those examples were defined by smoothing the ground truth models. Consider the 150 by 600 velocity model
shown in Figure 13a, which is the top middle portion of the same 2004 BP velocity benchmark data set,
also downsampled. The same strategy that worked well for the top left portion of the model again works
well if we initialize with a smoothed version of the true model. However, if we instead start with the poor
initial model shown in Figure 20a, then the method appears to get stuck near a local minimum for which
the inversion result is poor.

(a) (b) (c)

Figure 13: Top middle portion of BP 2004 velocity model (a), source and receiver locations (b) and initial
velocity (c).

As shown in Figure 14, the WRI method with just bound constraints yields a very noisy result and fails
to improve significantly even after multiple passes through the frequency batches.

With a TV constraint added, the method still tends to get stuck at a poor solution, even with multiple
passes and different choices of τ . Figure 15 shows the estimated velocity models after three passes, where
increasing values of τ were used so that the TV constraint was weakened slightly after each pass.

Using a depth weighted TV constraint with the weights defined as in Figure 9 can slightly improve the
solution because weights that decrease in depth prefer placing discontinuities in deeper parts of the model
where the jumps are not as penalized, thus encouraging the lower boundary of the salt to move deeper as
long at it continues to fit the data. The depth weighted TV result using Figure 15c as a starting model
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(a) (b) (c)

Figure 14: Recovered velocity with a no TV constraint from noise free data and a poor initial model after
one pass (a) after a second pass (b) and after a third pass (c) through small frequency batches from 3 to 20
Hz.

(a) (b) (c)

Figure 15: Recovered velocity with a TV constraint from noise free data and a poor initial model after one
pass with τ = .75τtrue(a), a second pass with τ = .825τtrue (b) and a third pass with τ = .9τtrue.

and τ = .9τtrue is shown in Figure 16. While it’s an improvement, it doesn’t significantly update the initial
model.

To discourage getting stuck in local minima that have spurious downward jumps in velocity, we consider
adding the one-sided TV constraint and implementing a continuation strategy in the ξ parameter that starts
with a small value and gradually increases it for each successive low to high pass through the frequency
batches. This encourages the initial velocity estimate to be nearly monotonically increasing in depth. As
ξ increases, more downward jumps are allowed. Again starting with the poor initial model in Figure 20a,
Figure 17 shows the progression of velocity estimates over eight passes. The sequence of ξ parameters as
a fraction of ∥ max(0, Dzmtrue)∥1 is chosen to be {.01, .05, .10, .15, .20, .25, .40, .90}. The τ parameter is
fixed at .9τtrue throughout. Although small values of ξ cause vertical artifacts, the continuation strategy is
surprisingly effective at preventing the method from getting stuck at a poor solution. As ξ increases, more
downward jumps in velocity are allowed, and the model error continues to significantly decrease during each
pass.

Figure 18 shows a comparison of the relative model errors for the previous three examples. Only the
one-sided TV continuation results continue improving significantly after several passes.

Even with a poor initial model, the one-sided TV constraint with continuation is able to recover the main
features of the ground truth model. Poor recovery near the left and right boundaries is expected because
the sources along the surface start about 1000m away from these boundaries.
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Figure 16: Recovered velocity using depth weights from Figure 9, the starting model from Figure 15c and
τ = .9τtrue.

8.7 Constrained Adjoint State Method Comparisons
The TV and one-sided TV constraints can also be used to improve the results of the adjoint state method.
We still apply Algorithm 1 to the adjoint state formulation of (34), but with Hn +cnI replaced by cn(Hn +νI)
where Hn is defined by (39). Since this doesn’t approximate the Hessian as well as the Gauss Newton Hessian
used in the quadratic penalty approach, some iterations are occasionally rejected as cn is updated.

If we consider again the model in Figure 13a and start with the initial model in Figure 20a, the adjoint
state methods with only bound constraints fails completely. The first update moves the model away from
the ground truth, and the method quickly stagnates at the very poor result shown in Figure 19

On the other hand, if we include TV and one-sided TV constraints and use the same continuation
strategy used to generate the results in Figure 17, the results are nearly as good. The constrained adjoint
state results are shown in Figure 20. Compared to the constrained WRI method, the results are visually
slightly worse near the top and sides of the model. Additionally, the model error doesn’t decrease as much,
but it’s encouraging that it once again continues to decrease during each pass instead of stagnating at a poor
solution. Continuation in the ξ parameter for the one-sided TV constraint appears to be a promising strategy
for preventing both the constrained WRI and adjoint state methods from stagnating in a poor solution when
starting from a bad initial model.

Figure 21 shows a comparison of the relative model errors for the previous two adjoint state examples.
As in Figure 18 the one-sided TV continuation results continue improving significantly after several passes.

9 Ongoing Work
Many more experiments are required to answer lingering questions.

The numerical examples should be recomputed without inverse crime. Currently the same modeling
operator was used both for inversion and for generating the synthetic data. In combination with the simplistic
Robin boundary condition, this may conspire to make the inverse problem easier. However, the comparisons
between methods and the relative benefits of the TV constraints are still meaningful. An interesting test
would be to simply generate the data using more sophisticated modeling and boundary conditions while
continuing to use the simple variants for inversion.

To remove any effect of randomness, the examples should be recomputed using sequential shots instead of
simultaneous shots with the random weights redrawn every model update. This will be more computationally
expensive, but it’s doable and is not expected to significantly alter the results.

The numerical examples using the one-sided TV continuation should be recomputed without the depth
weighting. This is expected to have only a small effect on the results. It’s possible, however, that different
parameter choices may be required.

It may be possible to improve the results shown in Figure 15 with different continuation strategies in the
τ parameter. Experiments that started with very small values of τ were not initially promising, but so few
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 17: Initial velocity (a) and recovered velocity with one-sided TV continuation corresponding to ξ
ξtrue

=
.01 (a), .05 (b), .10 (c), .15 (d), .20 (e), .25 (f), .40 (g), .90 (h).

experiments have been computed that the parameter selections are certainly not optimal.
More practical methods for selecting the parameters and more principled ways of choosing continuation

strategies are needed. Currently the τ and ξ parameters are chosen to be proportional to values corresponding
to the true solution. Although the true solution clearly isn’t known in advance, it may still be reasonable
base the parameter choices on estimates of its total variation (or one-sided TV). It would be even better
to develop continuation strategies that don’t rely on any assumptions about the solution but that are still
effective at regularizing early passes through the frequency batches to prevent the method from stagnating
at poor solutions.

There is a lot of room for improvement in the algorithm used to solve the convex subproblems. There
are for example methods such as the one in [Chambolle and Pock, 2011] that have better theoretical rates
of convergence and are straightforward to implement.
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(a) (b) (c)

Figure 18: Relative model error versus frequency batch without TV constraints (a), with TV constraints
(including depth weights in the last pass) (b) and with both TV and one-sided TV constraints (including
depth weights in all passes) (c).

(a) (b)

Figure 19: Recovered velocity using the adjoint state method with no TV constraints from noise free data
and a poor initial model after one pass (a) and after a second pass through small frequency batches from 3
to 20 Hz.

It will be important to study how the method scales to larger problems. One effect is that the convex
subproblems are likely to require more iterations. If they become too computationally expensive, then it
may be better to replace the adaptive step size strategy in Algorithm 1 with a more standard line search. It
would be good in any case to compare the efficiency of some other line search tecnhiques.

Continuation strategies that take advantage of the ability to enforce spatially varying bound constraints
have still not been explored here. It should be possible for example to control what parts of the model are
allowed to update. Other constraints can be considered that keep the updates closer to the initial model in
places where it is more trusted.

If possible, it would also be good to experiment with different frequency continuation and sampling
strategies as well as methods that attempt to minimize over all frequencies simultaneously.

10 Conclusions and Future Work
We presented a computationally feasible scaled gradient projection algorithm for minimizing the quadratic
penalty formulation for full waveform inversion proposed in [van Leeuwen and Herrmann, 2013b] subject to
additional convex constraints. We showed in particular how to solve the convex subproblems that arise when
adding TV, one-sided TV and bound constraints on the model. The proposed framework is general, and the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 20: Initial velocity (a) and recovered velocity for the constrained adjoint state method with one-sided
TV continuation corresponding to ξ

ξtrue
= .01 (a), .05 (b), .10 (c), .15 (d), .20 (e), .25 (f), .40 (g), .90 (h).

TV constraint can for instance be straightforwardly replaced by an l1 constraint on the curvelet coefficients
of the model or combined with other convex constraints.

Synthetic experiments suggest that when there is noisy or limited data, TV regularization can improve
the recovery by eliminating spurious artifacts. Experiments also show that a one-sided TV constraint that
encourages velocity to increase with depth helps recover salt structures from poor initial models. In combi-
nation with a continuation strategy that gradually weakens the one-sided TV constraint, it can prevent the
method from getting prematurely stuck at a bad solution when starting with a poor initialization.

In future work, we want to find a more practical way of selecting the regularization parameters τ and ξ as
well as more principled continuation strategies for adjusting them during multiple passes through frequency
batches. It would be interesting if a numerical framework along the lines of the SPOR-SPG method in
[van den Berg and Friedlander, 2011] could be extended to this application. Another direction we want to
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(a) (b)

Figure 21: Relative model error versus frequency batch without TV constraints (a) and with both TV and
one-sided TV constraints (b) for the adjoint state examples.

pursue is to consider nonconvex sparsity penalties on the gradient of the model, penalizing for instance the
ratio of the l1 and l2 norms of the gradient. We also intend to study more realistic numerical experiments
and investigate how to better take advantage of the proposed constrained WRI framework.
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