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SUMMARY

In this work we propose a stochastic quasi-Newton Markov
chain Monte Carlo (McMC) method to quantify the uncertainty
of full-waveform inversion (FWI). We formulate the uncer-
tainty quantification problem in the framework of the Bayesian
inference, which formulates the posterior probability as the
conditional probability of the model given the observed data.
The Metropolis-Hasting algorithm is used to generate samples
satisfying the posterior probability density function (pdf) to
quantify the uncertainty. However it suffers from the challenge
to construct a proposal distribution that simultaneously provides
a good representation of the true posterior pdf and is easy to
manipulate. To address this challenge, we propose a stochastic
quasi-Newton McMC method, which relies on the fact that
the Hessian of the deterministic problem is equivalent to the
inverse of the covariance matrix of the posterior pdf. The l-
BFGS (limited-memory Broyden–Fletcher–Goldfarb–Shanno)
Hessian is used to approximate the inverse of the covariance
matrix efficiently, and the randomized source sub-sampling
strategy is used to reduce the computational cost of evaluat-
ing the posterior pdf and constructing the l-BFGS Hessian.
Numerical experiments show the capability of this stochastic
quasi-Newton McMC method to quantify the uncertainty of
FWI with a considerable low cost.

INTRODUCTION
Uncertainty is present in each procedure of seismic exploration,
from acquisition to modeling and processing. Because of this,
quantifying the uncertainty of inversion results has become
increasingly important in order to inform decisions in industry.
Traditionally, the uncertainty can be quantified in the frame-
work of Bayesian inference, which formulates the posterior
probability distribution ρpost(v) of the velocity model v as the
conditional probability ρ(v|dobs) of the velocity given the ob-
served data dobs. The conditional probability ρ(v|dobs) is pro-
portional to the product of the prior on the model ρprior(v) and
the probability of the observed data given the model ρ(dobs|v)
– i.e., we have:

ρpost(v) = ρ(v|dobs) ∝ ρlike(dobs|v)ρprior(v). (1)

However, quantifying the uncertainty of FWI based on the for-
mula (1) is challenging, because of the high dimension of the
velocity model and the huge computational cost of calculating
the likelihood probability density function ρlike(dobs|v). Mar-
tin et al. (2012) proposed a stochastic Newton type McMC
method using a low-rank approximated Gauss-Newton Hessian
of the likelihood probability density function to improve the
convergence speed. An application of this McMC method to
solving a 3D seismology problem can be found in Bui-Thanh
et al. (2013). Unfortunately, the low-rank assumption of the

Gauss-Newton Hessian may not be valid in the seismic ex-
ploration, because of the fully sampled sources and receivers.
Additionally, challenges like the high computational cost of the
calculation of the low-rank representative and the posterior pdf
still remain.

The limited-memory Broyden–Fletcher–Goldfarb–Shanno (l-
BFGS) method is a popular quasi-Newton method for solving
non-linear optimization problems. Instead of using the full
Hessian or Gauss-Newton Hessian, the l-BFGS method con-
structs an approximated Hessian and its inverse based on the
information of the model updates and gradients of the previous
iterations, and thus it does not require additional computational
costs. The application of the l-BFGS method on FWI can be
found in Virieux and Operto (2009). Recently, with the devel-
opment of the randomized source sub-sampling method, van
Leeuwen and Herrmann (2013) proposed a stochastic l-BFGS
method, in which only few sources were used per iteration to
reduce the computational cost of evaluating the misfit function,
gradient and quasi-Newton Hessian. The authors showed that
instead of using all sources and few iterations, using few sources
but many iterations could significantly improve the quality of
the result. In our previous work (Fang et al., 2014), we applied
the randomized source sub-sampling strategy to the McMC
method that Martin et al. (2012) proposed and significantly
reduced the computational cost of evaluating the posterior pdf.

In this work, we apply the l-BFGS method and the randomized
source sub-sampling strategy to the McMC method and propose
a stochastic quasi-Newton McMC algorithm. This algorithm
does not require additional computational cost for estimating
the Hessian and reduces the computational cost of estimating
the posterior pdf, gradient and Hessian by sub-sampling sources.
In the numerical experiment, we use this method to quantify
the uncertainty of FWI and obtain statistical parameters like
standard deviation and confidence interval.

METROPOLIS-HASTING METHOD
The posterior distribution (1) is complex and difficult to sample,
as the forward operator requires a PDE solve for each source.
Many sampling methods, such as McMC method, have been de-
veloped to sample complex posterior distributions using many
fewer samples than the grid-based sampling method. In particu-
lar, the Metropolis-Hasting (M-H) method (Algorithm 1) (Kai-
pio and Somersalo, 2004) generates a chain of samples from
the posterior pdf ρpost(v) by employing a proposal distribution
q(vk,y) at kth sample in the Markov chain. The proposal sam-
ple y is firstly generated from the proposal distribution q(vk,y)
and accepted or rejected by the M-H criterion.

A simple choice of the proposal distribution is q(vk,y) =
1

(2π)n/2 exp
[ 1

2
(
‖‖vk−y‖‖2)], which results in the well-known

random walk Metropolis method. This proposal distribution is
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easy to sample, but since it does not contain any information
of the true posterior distribution, the proposal sample y
may be accepted with a low probability, which leads to a
slow convergence of the Markov chain. If a better proposal
distribution is chosen, the accepted probability can be larger,
but constructing such a good proposal distribution and sampling
from it may require significantly larger computational cost.
Therefore the main challenge of M-H method is to devise the
proposal distribution q(vk,y), so that it can be easily sampled
while still constituting a good approximation of the posterior
pdf ρpost(v).

Algorithm 1 Metropolis-Hasting method to sample ρpost.
Choose initial parameter v0
Compute ρpost(v0) based on formula (1)
for k = 0, ...,N−1 do

1. Draw sample y from the proposal density q(vk, �)
2. Compute ρpost(y)
3. Compute α(vk,y) = min

(
1, ρpost(y)q(y,vk)

ρpost(vk)q(vk ,y)

)
4. Draw u ~ U ([0,1])
5. if u < α (vk,y) then
6. Accept: Set vk+1 = y
7. else
8. Reject: Set vk+1 = vk
9. end if

end for

STOCHASTIC QUASI-NEWTON MCMC ALGO-
RITHM WITH RANDOMIZED SOURCE SUB-
SAMPLING
In order to construct a good proposal distribution, an analysis
of the posterior pdf (1) is necessary. Assume the observed
data dobs has a Gaussian noise with zero mean and covariance
matrix Σnoise. Meanwhile, assume the prior model distribution
can be also modeled as a Gaussian distribution with vprior mean
and covariance matrix Σprior. The posterior pdf of velocity can
be expressed as follows:

ρpost(v) ∝ exp[−1
2
‖ f (v)−dobs‖2

Σ
−1
noise
− 1

2
‖v−vprior‖2

Σ
−1
prior

],

(2)
where, f (v) is the forward operator. To devise the proposal dis-
tribution, we analyze the negative log function of the posterior
pdf,

− log(ρpost(v)) =
1
2
‖ f (v)−dobs‖2

Σ
−1
noise

+
1
2
‖v−vprior‖2

Σ
−1
prior

,

(3)
which is equivalent to the objective function of the deterministic
problem with weighting matrix Σ

−1
noise and Σ

−1
prior. In fact, the

Hessian H(vk) of − log(ρpost(vk)) at a certain point vk is the
inverse of the covariance matrix of the approximated Gaussian
distribution q(vk, �) at the same point. Additionally, the mean
of the approximated Gaussian distribution is equivalent to the
result of one Newton type update: vmean = vk−H−1

k gk. Martin
et al. (2012) suggested the use of the approximated Gaussian
distribution N (vk−H−1

k gk,H−1
k ) to speed up the convergence.

In this work, instead of using the low-rank approximated Gauss-
Newton Hessian to construct the proposal distribution as in

Martin et al. (2012), we use the l-BFGS Hessian to build the pro-
posal distribution. As a result, we do not require the low-rank
assumption and the additional computational cost associated
with the low-rank representative of the Gauss-Newton Hessian
in each iteration. In order to construct the l-BFGS hessian close
enough to the true Hessian, we start the construction from a
pseudo Gauss-Newton Hessian (Choi et al., 2008), which is a
diagonal matrix with properly scaling. The pseudo Hessian is
then continuously updated by the addition of two 1-rank ma-
trices in each iteration. Additionally, during each iteration, we
use the randomized source sub-sampling method to reduce the
computational cost of evaluating the posterior pdf, gradient and
l-BFGS Hessian, and these limit the number of PDE solves.
Friedlander and Schmidt (2012) provided an extensive compar-
ison and analysis between the sub-sampling gradient and the
full gradient. In our previous work (Fang et al., 2014), we also
showed that the randomized source sub-sampling method only
introduced a small relative error (Figure 1).

After constructing the local l-BFGS Hessian Hk and gradient
gk, we define the local Gaussian

q(vk,y)∝ exp
(
−1

2

(
y−vk +H−1

k gk

)T
Hk

(
y−vk +H−1

k gk

))
(4)

as the proposal distribution. The proposal sample y from this
distribution can be generated as follows:

y = vk−H−1
k gk +H−1/2

k γ, (5)

where γ is a random vector from the normal distribution
N (0,I). Finally, we use the M-H criterion to accept or reject
the proposal sample y. The pseudocode for the stochastic
quasi-Newton McMC algorithm is given in Algorithm 2.

Algorithm 2 Stochastic Quasi Newton McMC Algorithm to
sample ρpost.

Choose initial v0
Compute ρpost(v0), g(v0), H(v0) (H is the l-BFGS Hessian)
for k = 0, ...,N−1 do

1. Define q(vk,y) based on formula (4)
2. Draw sample y from the proposal density q(vk, �) with

formula (5)
3. Compute ρpost(y), g(y), H(y) with a random subset Isub

of all sources
4. Compute α(vk,y) = min

(
1, ρpost(y)q(y,vk)

ρpost(vk)q(vk ,y)

)
5. Draw u ~ U ([0,1])
6. if u < α (vk,y) then
7. Accept: Set vk+1 = y
8. else
9. Reject: Set vk+1 = vk
10. end if

end for

NUMERICAL EXPERIMENT
To illustrate the capability of the stochastic quasi-Newton
McMC method to quantify the uncertainty of FWI with a
considerable small cost, we consider the following experiment
on a domain of 2 km by 4.5 km shown in Figure 2a. The
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Figure 1: Ratio of pdf using sub-set sources over pdf using all
sources. The relative error is below 3%.
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Figure 2: (a) True model and (b) Initial model. The model is 2
km deep and 4.5 km wide. There is no special structure in the
initial model. The prior model is the same as the initial model.

synthetic observed data dobs is generated by solving the
Helmholtz equation using an optimal 9-points finite difference
method (Jo and Suh, 1996) in 15 equally-spaced frequencies
ranging from 3 Hz to 17 Hz. Both sources and receivers are
located at depth z = 20 m with 50 m and 10 m horizontal
sampling interval, respectively. The source wavelet is a Ricker
wavelet with central frequency of 12 Hz.

For this numerical experiment, we set the noise covariance
matrix to a diagonal matrix whose standard deviation is 0.1. We
assume we do not have any special prior information, thus we
set the prior model vprior to the initial model (c.f. Figure 2b),
which is obtained by smoothing the true model followed by
a horizontal stack. The prior covariance matrix is set as a
diagonal matrix with relative standard deviation of 0.1.

In the uncertainty quantification procedure, we first invert the
maximum a posterior (MAP) estimate of the posterior distribu-
tion. As a custom strategy of FWI, We invert the MAP estimate
in consecutive (five) frequency bands and use the previous re-
sult as a warm start for the inversion of the next frequency
band. We use the stochastic l-BFGS method (van Leeuwen and
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Figure 3: (a) MAP model and (b) Standard Deviation map. The
MAP model is the model that maximize the posterior pdf. The
standard deviation map shows the standard deviation of the
velocity at each grid. Larger uncertainties are found at the deep
areas, strong velocity contrast areas and boundaries.

Herrmann, 2013) to obtain the MAP estimate vMAP plotted in
Figure 3a. Then we start from the vMAP and use the stochastic
quasi-Newton McMC algorithm (Algorithm 2) to sample the
posterior distribution ρpost. During each iteration, only 5 of all
91 shots are randomly selected to calculate the posterior pdf,
gradient and l-BFGS Hessian. We quantify the uncertainties
based on these samples and obtain the standard deviation of
velocity at each grid (Figure 3b) and the confidence interval
(Figure 4) at three different horizontal position (x = 1490 m,
2240 m, and 2990 m).

DISCUSSION

The l-BFGS Hessian is used to construct the proposal distribu-
tion, so the computational cost in each iteration only involves
the calculation of the posterior pdf and the gradient. Compar-
ing with the random walk Metropolis method, the stochastic
quasi-Newton McMC method only requires an additional com-
putational cost for generating the gradient during each iteration,
while it is able to construct a much better proposal distribution
containing more information about the true posterior distribu-
tion to speed up the convergence of the Markov chain. Com-
paring with the original Newton type McMC method (Martin
et al., 2012), although the l-BFGS Hessian may be less accurate,
the additional computational cost for estimating the low-rank
approximation is eliminated, which results in a significant com-
putational cost reduction. Moreover, without the requirement of
the low-rank assumption of the misfit Gauss-Newton Hessian,
this method will not suffer from the instability introduced by
violating the low-rank assumption. As a result this method may
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Figure 4: Confidence interval with confidence level α = 90% at different horizontal positions (a) x = 1490 m, (b) x = 2240m, and (c)
x = 2990 m. Red line - true velocity, yellow line - inverted velocity, blue line - confidence interval. Wider confidence intervals are
found at the deep areas and high velocity contrast areas.

be more suitable for seismic exploration.

Moreover, since the randomized source sub-sampling method
is used, in each iteration, only 5 randomly selected sources
are used to calculate the approximated posterior pdf and gra-
dient, and thus the computational cost is only 1/18 of that
using all sources, effectively speeding up the computation by
a factor of 18. In addition, the total computational cost for
each iteration is considerably less than that of only evaluating
the posterior pdf with all sources, which means the stochastic
quasi-Newton McMC is even cheaper than the random walk
Metropolis method with all sources.

Due to the computational capability, we only generate 1000
samples and accept 289 samples, which results in the noise
in the standard deviation map (Figure 3b). Comparing results
of the MAP estimate (Figure 3a) and standard deviation (Fig-
ure 3b), we observe that the velocity of deep areas, strong
contrast areas and boundaries has larger uncertainties than that
of shallow areas, weak contrast areas and central areas, as ex-
pected. A similar observation can be drawn for confidence
interval (Figure 4). Here the probability is more concentrated
at shallow areas and low velocity contrast areas than deep areas
and strong velocity contrast areas.

Finally, the artifacts associated with the poor prior model still
can be observed in the MAP estimate, which implies us the im-
portance of selecting a good prior model. For the situation that
no special prior information exists in advance, one alternative
solution may be to update the prior model after the inversion of
each frequency band.

CONCLUSION

In this work, we formulate the uncertainty quantification prob-
lem of FWI in the Bayesian inference framework, and propose

a stochastic quasi-Newton McMC method to solve this prob-
lem. Using the l-BFGS Hessian as the inverse of the covariance
matrix, we release the low-rank assumption and reduce the
computational cost for constructing the proposal distribution
of the Metropolis-Hasting method. Additionally, we use the
randomized source sub-sampling strategy to speed up the evalu-
ation of the posterior pdf, gradient and Hessian. As a result, we
obtain a fast McMC method to quantify the uncertainty of FWI.
While initial results are encouraging, several challenges remain
such as the credence of the l-BFGS as a good approximation of
the true Hessian.
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