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SUMMARY

In this note, we design new misfit functions for full-waveform
inversion by using interferometric measurements to reduce
sensitivity to phase errors. Though established within a com-
pletely different setting from the linear case, we obtain a simi-
lar observation: the interferometry can improve robustness un-
der certain modeling errors. Moreover, in order to deal with
errors on both source and receiver sides, we propose a higher
order interferometry, which, as a generalization of the usual
definition, involves the cross correlation of four traces. A proof
of principle simulations is included on a stylized example.

INTRODUCTION

Full waveform inversion
Full waveform inversion in the frequency domain aims to con-
struct high resolution seismic images by minimizing the misfit
function

χ = min‖F(m)−d‖2, (1)

where F is the forward operator, m is the squared slowness,
and d is the data. It is well recognized that suitable choice
of misfit function is crucial for the recovery. There are many
variations of the least-squares misfit function. For example,
in time domain inversion, ? proposed to minimize the time
difference of the observed and synthesis data which is reflected
in their cross-correlation. ? used a time-frequency misfits to
minimize both phase and envelop errors.
The least-squares solution of Eq. (1) seems unbeatable when
nothing is assumed about the noise. In this note, we aim at
designing misfit function to reduce the noise caused by two
types of uncertainties.

• the displacement of the sources and receivers (e.g., the
effects of statics)

• the inaccurate estimate of the background velocity

Under such noise, we will observe that

• in a common shot gather with closely located receivers,
all the traces are shifting to the same direction and by
a similar amount, or

• in a common receiver gather with closely located sources,
all the traces are shifting to the same direction and by
a similar amount.

This coherent shifting suggests a potential benefit of using in-
terferometric measurements.

Interferometry
Seismic interferometry generally refers to the usage of the cross-
correlation of two traces to fulfill inversion or imaging tasks.

Let u(xs,xr, t) be the full waveform that is sent from a source
located at xs and recorded by a receiver at xr, and let d(xs,xr,ω)=
F (u)(xs,xr,ω) be its Fourier transform along the time axis.

Let ns and nr be the number of sources and receivers, and as-
sume each pair is active. We store the nsnr traces in ui(t),
i = 1, ...,nsnr, and the nsnr Fourier coefficients of them at a
given frequency ω in a vector dω ∈ Cnsnr . Then the cross cor-
relation of the traces in time domain corresponds to the outer
product of the data in the frequency domain.

F (ui ?u j)≡F

(∫
ui(s)u j(s+ t)ds

)
= dω (i)dω ( j)

where (a?b)(t) :=
∫

a(s)b(t + s)ds with ā being the complex
conjugate of a, and F denotes the Fourier transform.
Besides its original usage of reconstructing the impulse re-
sponse of a given media, interferometry has recently found
more applications in the seismic area. In particular, for both
migration imaging ( ?) and inversion ( ?), fitting the interfero-
metric measurements dω was used to enhance the robustness of
the reconstructed image under modeling errors. Specifically, ?
proposed the following misfit function for least-squares migra-
tion:

R̂ = argmin
R
‖E ◦ (∇F̃RR∗∇F̃∗−dd∗)‖2

F +λ‖R‖2
F

subject to rank(R) = K.

where K ≥ 2 is some small integer less than the data dimen-
sion, d is the data which may contain one or more frequencies
d = {dω ,ω ∈Ω}, d∗ is the conjugate transpose of d, ∇F̃ is the
Jacobian of the perturbed forward operator, and E is a restric-
tion operator which selects a predefined subset of entries of
(∇F̃RR∗∇F̃∗−dd∗). The physical meaning is that for a given
frequency, data from only some of the source-receiver combi-
nations are used. The subset is chosen in a way that guarantees
the maximal theoretical stability with respect to general addi-
tive noise.
The purpose of this note is to modify this idea for it to be ex-
tendable to nonlinear waveform inversion settings and explore
its benefits.

SOURCE OR RECEIVER DISPLACEMENT

Suppose either the sources or receivers have displacement but
not both. Without loss of generality, we assume the uncertainty
is on the source locations.
Let N = {(i, j), i = 1, ...,ns, j = 1, ...,nr} be the indices of all
the source-receiver pairs and let P : N→ Znsnr be a one to one
map that vectorizes N. Let E ε

1 ⊆ Znsnr ×Znsnr consists the
indices of pairs of source-receiver pairs whose

• sources are the same

• receivers are ε-close to each other.

More specifically, let {(i, j),(i′, j′)} be a pair of source-receiver
pair, then {P(i, j),P(i′, j′)}∈ E ε

1 , if xsi = xs′i
and d(xr j ,xr′j

)≤ ε

(see Figure 1), where in the usual Euclidean space, we can take
the distance d(·, ·) to be the two norm ‖ ·‖2, and where xsi and
xri are the locations of the ith source and receiver. For the sake
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of simplicity, when there is no confusion, we write E ε
1 as E1

for short.
We propose to replace the misfit function in Eq (1) with

min‖E ◦ (F̃(m)F̃(m)∗−dd∗)‖F (2)

for some E ⊆ E ε
1 . Here F̃ denotes the forward operator cor-

responding to the presumed model while the true F that gen-
erated d = F(m) is unknown due to the source perturbation.
When ε = 0, we have E 0

1 = {(i, i), i ∈ Znsnr}, where we only
try to fit the magnitude |d|, which is exactly the phase retrieval
problem. However, only fitting the magnitude may lead to non
uniqueness of the solution. This can usually be avoided by
increasing ε .

Theoretical motivation
A common understanding of the seismogram says that a rela-
tively small change in the source or receiver location (compar-
ing to the distance between the source and the receiver) will
cause a time shift in the trace.
Fix a source s0 and two adjacent receivers xr1 and xr2 . Assume
that when the source location xs is accurate, the two traces are
f (t) and g(t). When the location is inaccurate x̃s = xs + δ ,
a phase shift will appear in the traces: f̃ (t) ≈ f (t + t1) and
g̃(t) ≈ g(t + t2). Since xr1 ≈ xr2 , we have t1 ≈ t2. It is easy
to see by that the cross correlation of f and g is then nearly
unchanged

F ( f ?g)(ω)≈ eiω(t1−t2)F ( f̃ ? g̃)(ω)≈F ( f̃ ? g̃)(ω).

The equation implies that F ( f ? g)(w) as an element in dd∗,
is more robust that d. This justifies why dd∗ is a right quantity
to be fitted.

INACCURATE BACKGROUND VELOCITY

Inaccurate background velocity can cause similar effect in the
trace as if there were source or receiver displacements. So we
follow a similar logic as in the previous section except that the
definition of E ε

2 is modified to include all the pairs of source-
receiver pairs that have one of the following properties

• the pair have the same source and ε-close receivers,

• the pair have the same receiver and ε-close sources
We minimize

min‖E ◦ (F(m)F(m)∗−dd∗)‖F (3)

with some E ⊆ E ε
2 . The problem can be solved by any gradient

based iterative solver.
To provide a theoretical error bound for the above algorithm,
we need to recall the definition in ? of the graph Laplacian for
a given index set E, i.e.,

(L|d|)i j =


∑

k:(i,k)∈E

|dk|2 if i = k

−|di||d j| if (i, j) ∈ E;

0 otherwise

Theorem 1 Let F and F̃ be the accurate an inaccurate for-
ward operators, respectively, and let m be the squared slow-
ness. Assume ‖F − F̃‖ ≤ δ for some δ ∈ R+ and |F̃(m)| =

|F(m)| with | · | meaning taking absolute value of each entry.
Then the solution m̂ to

min‖E ◦ (F̃(m̃)F̃T (m̃)−bbT )‖F , s.t. |F̃(m̃)|= |b|, (4)

satisfies

‖F̃(m̂)− eiα b‖ ≤ 4
√

2

√
‖F̃‖2 +‖F‖2‖x‖2δ√

λ2

where λ2 is the second smallest eigenvalue of L|b| and α is
some number in [0,2π).

The theorem demonstrates how a small fitting error to the in-
terferometric measurements leads to a small fitting error to the
original data up to some global phase eiα .

Remark 2 Following our assumption in the previous section,
that a small change in the source location will cause a time
shift in the trace. In the frequency domain, this means the data
has a large phase error and smaller magnitude error. This the-
orem deals with the extreme case of purely phase error, which
is reflected in the assumption |F̃(m)|= |b|.

Trying to fit the outer product dd∗ instead of d is called a
“Phaselift” by ?. It is know that the Phaselift will cause a loss
of global phase information. This can be seen by observing
that two different vectors d and eαid (α 6= 0) are lifted to the
same matrix dd∗ = (eiα d)(eiα d)∗. In order words, using only
the lifted data, we cannot distinguish d and eαid. Therefore,
to have any hope of recovering m, it is necessary rule out those
F that map another variable m̃ to eiα F(m) with any α . This
motivates the following definition.

Definition 3 Let F be an operator from Cm → Cn. Define
Dx = {eiα F(x),α = [0,2π]}. If there exists a c > 0 such that
c|x−y| ≤ dist(Dx,Dy) for any x,y ∈Domain(F), we call such
an F a liftable operator with constant c. Here for any closed
sets A, B, we denote dist(A,B) = min

x∈A,y∈B
‖x− y‖2.

For a forward operator F to be liftable, we need to place enough
sources and receivers so that no two slowness models will pro-
duce seismograms that only differ by a global time delay. Once
this is satisfied, the following theorem guarantees the recon-
structions from Eq. (4) to be robust to modeling errors.

Theorem 4 Assuming the forward operator F is a liftable op-
erator with constant c, and ‖F−F̃‖≤ δ < c. Then the solution
m̂ to Eq. (4) satisfies

‖m̂−m‖ ≤ 4
√

2

√
‖F̃‖2 +‖F‖2‖m‖2δ
√

λ 2(c−δ )
+

δ‖m‖
c−δ

where δ and λ2 is the same as in Theorem 1.

HIGH ORDER INTERFEROMETRY

When both sources and receivers have displacements, the usual
interferometric measurement dd∗ is no longer a robust quan-
tity. To deal with the increased uncertainty, we explore the
fourth order cross correlation.
Assume there are four traces f1(t), f2(t), f3(t), f4(t). We de-
fine their cross correlation by

f1 ◦ f2 ◦ f3 ◦ f4 := ((( f1 ? f2)? f3)? f4)
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where ? is the cross correlation as defined in the first sec-
tion. With this definition, we choose a set of certain quadru-
ples as fitting indices. Specifically, for any fixed ε , the set
Eε ⊆Znsnr×Znsnr×Znsnr×Znsnr are defined by (see Figure 1)

E ε
3 ={(P(i1, j1),P(i2, j2),P(i3, j3),P(i4, j4)),

xsi1
= xsi2

,xsi3
= xsi4

,xr j1
= xr j3

,xr j2
= xr j4

d(xsi1
,xsi3

)≤ ε,d(xr j1
,xr j2

)≤ ε}

Similar to above, we fit

min‖E1 ◦ (F̃(m)F̃(m)∗−dd∗)‖2
F (5)

+‖E2(F̃(m)⊗ F̃(m)⊗ F̃∗(m)⊗ F̃(m)−d⊗d⊗d⊗d)‖2
V

where E1 ∈ E 0
1 (defined in Section 2), E2 ∈ E ε

3 , ⊗ is the high
order tensor product and ‖A‖V denote the l2 norm of vec(A),
the vectorization of A.
Rationale
Any quadruple in E3 involves only two sources and two re-
ceivers and is actually the exhaustive combination of them (see
Figure 1). Suppose with accurate source-receiver locations, the
four traces of of a quadruple in E3 are f1(t), f2(t), f3(t), f4(t).
Now the perturbation of sources and receivers are added: x̃ri =
xsi +δsi , x̃r1 = xr1 +δri . The traces are then shifted to

f̃1(t)≈ f̃1(t + tδs1
+ tδr1

), f̃2(t)≈ f̃1(t + tδs1
+ tδr2

)

f̃3(t)≈ f̃1(t + tδs2
+ tδr1

), f̃4(t)≈ f̃1(t + tδs2
+ tδr2

)

where tδsi
(tδri

) denote the time delay caused by the displace-
ment of the i’th sources (receivers). Noting that the fourth or-
der correlation satisfies

F ( f2(t + t2)◦ f1(t + t1)◦ f3(t + t3)◦ f4(t + t4))(ω)

= eiω(t1−t2−t3+t4)F ( f2(t)◦ f1(t)◦ f3(t)◦ f4(t))(ω).

We can use it to deduce that

F ( f̃2(t)◦ f̃1(t)◦ f̃3(t)◦ f̃4(t))≈F ( f2(t)◦ f1(t)◦ f3(t)◦ f4(t))

= dk1 d̄k2 d̄k3 dk4 (6)

where for any i= 1,2,3,4, ki is the index of the source-receiver
pair that was used to obtain the trace fi.
Eq. (6) says that dk1 d̄k2 d̄k3 dk4 with (k1,k2,k3,k4) ∈ E ε

3 is a
more robust variable than d under the source-receiver displace-
ments.

NUMERICAL ILLUSTRATION
We test our algorithm on the constant velocity synthetic model.
In the first experiment, we assume the modeling error is on the
perturbation of the sources. The white pluses in the upper left
image of Figure 2(a) are the intended positions of the sources
while the yellow pluses are their true locations. The white cir-
cles are both the intended and true positions of the receivers.
We assume the perturbations are horizontal and uniformly dis-
tributed from -4 to 4 meters. The interferometric solution is
obtained by solving Eq. (2) with E chosen to be

E ={(P(i, i),P(i, j)) , i = 1, ...,ns,ri and r j are neighbours}
∪{(P(i, i),P(i, i)), i = 1, ...,ns}}

From Figure 2(a), we observe that the source perturbation gen-
erates a weak interference wave on the left half of the image
of the least-squares solution, while the interferometric solver
does a good job to avoid it.
In the second experiment, we assume both sources and re-
ceivers have displacements. Each displacement is horizontal,
independent, and uniformly distributed between -4m to 4m.
We obtain the interferometric solution by minimizing Eq. (5)
with E1 and E2 defined by

E1 ={(P(i, i),P(i, i)), i = 1, ...,ns}
E2 ={(P(i, i),P(i, j),P(i,k)) , i = 1, ...,ns,

ri,r j and rk are neighbours}

Again, we find that the interferometric solution is more robust
than the least-squares one.
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Figure 1: Sources s1-s5 and receivers r1-r5 are placed corre-
sponding to their true physical locations. As such, neighbors
in this graphs are also physical neighbors. The vertical red
pairs share the same source and neighborhood receivers, so is
a member of E1. Both red pairs are members of E2, and the
green quadruple is a member of E3.

CONCLUSION
We proposed several alternatives to the least-squares misfit
function to increase robustness of the full waveform inversion
under certain types of modeling errors. Theoretical bound on
reconstruction errors of the interferometric fittings is estab-
lished, which allows us to predict the quality of the final im-
age.
We also introduced a high order interferometry to further in-
crease the robustness when the uncertainty lies in both sources
and receivers. As the first step, we only include the neigh-
bouring points into the fitting indices (as in Figure 1 ) in the
simulation. A more careful way to do this is to include more
points but with less weight if two points are farther away. This
will certainly be a future research direction.
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Figure 2: (a) Least squares and interferometric solution under unknown source displacements. (b) Least squares and interferometric
solution under both source and receiver displacements.
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