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Abstract

Least-squares seismic migration (LSM) is a wave equation based linearized inversion problem
relying on the minimization of a least-squares misfit function, with respect to the medium
perturbation, between recorded and modeled wavefields. Today’s challenges in Hydrocarbon ex-
ploration are to build high resolution images of more and more complicated geological reservoirs,
which requires to handle very large systems of equations. The extreme size of the problem com-
bined with the fact that it is ill-conditioned make LSM not yet feasible for industrial purposes.
To overcome this "curse of dimensionality", dimension reduction and divide-and-conquer tech-
niques that aim to decrease the computation time and the required memory, while conserving
the image quality, have recently been developed. By borrowing ideas from stochastic optimiza-
tion and compressive sensing, the imaging problem is reformulated as an L1-regularized, sparsity
promoted LSM. The idea is to take advantage of the compressibility of the model perturbation
in the curvelet domain and to work on series of smaller subproblems each involving a small ran-
domized subset of data. We try two different subset sampling strategies, artificial randomized
simultaneous sources experiments ("supershots") and drawing sequential shots firing at random
source locations. These subsets are changed after each subproblem is solved. In both cases
we obtain good migration results at significantly reduced computational cost. Application of
these methods to a complicated synthetic model yields to encouraging results, underlining the
usefulness of sparsity promotion and randomization in time stepping formulation.

Keywords : Wave equation migration, sparsity promotion, compressive sensing, stochastic
optimization.
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Résumé

La migration par les moindres carrés de données de sismique réflexion au moyen de l’équation
d’onde est une procédure d’inversion linéarisée qui cherche à minimiser, au sens de la norme L2,
l’écart entre les champs d’ondes enregistrés et modélisés. Le défi aujourd’hui pour l’exploration
des hydrocarbures est d’être capable d’obtenir des images de hautes résolutions de réservoirs
situés dans des zones géologiques de plus en plus complexes. Cependant, la taille extrême des
données, couplée au fait que le problème est mal conditionné, rendent cette approche imprati-
cable dans l’industrie pour des modèles 3D encore aujourd’hui. Pour palier à cette limitation,
plusieurs méthodes ont récemment été développées afin de diminuer les temps de calculs ainsi
que la mémoire nécessaire, sans pour autant sacrifier la qualité des résultats. En empruntant des
idées venant de l’optimisation stochastique et de l’acquisition comprimée, le problème d’imagerie
peut être reformulé pour y inclure une régularisation au moyen de la norme L1 et pour prendre
en compte le fait que la perturbation du modèle peut être compressée en passant dans le domaine
des curvelettes. En travaillant avec des sous problèmes construits à partir d’un sous ensemble
des données, nous présentons ici deux méthodes d’échantillonnages du champ d’onde. La pre-
mière consiste à simuler artificiellement des "super-sources" construites comme étant la somme de
sources séquentielles munies d’un poids aléatoire dans la procédure d’inversion. L’autre méthode
consiste à utiliser des sources séquentielles déclenchées à des positions aléatoires le long du pro-
fil. Après que chaque sous problème ait été résolu, nous renouvelons l’échantillonnage. Dans les
deux cas nous obtenons de bons résultats pour des temps de calculs significativement inférieurs.
Ces méthodes sont appliquées à un modèle synthétique compliqué et mènent à des résultats
encourageants, ce qui montre l’utilité d’utiliser l’échantillonnage aléatoire ainsi que de prendre
en compte la compressibilité de la perturbation du modèle dans le domaine des curvelettes.

Mots-clefs : Migration par l’équation d’onde, optimisation stochastique, acquisition com-
primée.
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1 Introduction

Modern seismic exploration techniques rely on the collection of massive data volumes in order to
provide high resolution images of increasingly complicated regions of the Earth. Seismic inver-
sion extracts information about the subsurface from surface or borehole data, by adjusting model
parameters to predict this data via numerical simulation. The least-squares approach to inver-
sion, known as Full Waveform Inversion (FWI), is a non-linear data-fitting procedure that seeks
to minimize the root mean square difference between predicted and observed waveforms [10].
The simplest mathematical statement of this least-squares approach (ignoring regularization,
data and model representation details,...) is:

minimize
m

Φ(m) :=
{

1
2K

K∑
i=1
‖di −Fi[m,qi]‖

2
2 = 1

2 ‖D−F [m,Q]‖2F

}
(1)

with di representing the vectorized shot records, at the receivers positions, of the Earth response
to sources qi. The vectors qi encode the location and the signature of the ith shot experiment.
Fi[m,qi], i = 1...K, are the nonlinear forward operators of the wave equation composed with a
restriction of the full solution operators to the receivers positions, and K = Nt.Ns, with Nt, Ns

the number of time samples and sources, respectively. The modeling operator F : M→ D maps
the model space M ( a set of possible models of the subsurface) of dimension n to the data space
D, a Hilbert space of dimension Ns.Nr.Nt (with Nr the number of receivers) of possible data sets
with a Frobenius norm ‖.‖F that serves as an error measure (define as ‖A‖F =

√
trace(A†A),

with † the complex conjugate transpose). In the acoustic constant-density case, this operator
is parametrized by the unknown velocity model m and involves the inversion of a large system
of equations. Starting from an initial guess of the subsurface parameters, the fitting scheme is
repeated iteratively by updating the model and starting again the minimization procedure. It
can be written as

mk+1 = mk + αkδmk (2)

where the model residual δmk is called the searched direction in the model space and αk is
the step-length. In this report we are interested in the computation of the model residual δm.
This particular approach which geometrically re-locate seismic events in space to the location the
event occurred in the subsurface is called least-squares migration (LSM), it belongs to the family
of pre-stack depth wave equation migration. Within the framework of Born approximation we
write the unknown earth model m as the sum of an approximate model m0 known a-priori and
a small model perturbation δm. LSM then seeks to find a model perturbation that satisfies the
following linearized equation:

∂F [m0,Q]
∂m

δm ≈ δd. (3)

Here, we define the misfit vector δd ∈ RNsNrNt as δd = D −F [m0,Q]. This vector represents
the difference at the receiver positions between the recorded pressure field D and the modeled
pressure field F [m0,Q] for each source-receiver pair of the survey. The partial derivative of
the forward operator with respect to the model parameters are called the Fréchet derivatives or
sensitivity kernels.
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2 The Imaging Problem

2.1 Forward Modeling

The forward problem is dedicated to the estimation of seismic wavefields for a given subsurface
model. In our work we use the software framework IWAVE++ [9] to perform the modeling. In
the most general case we would have to deal with the anisotropic, visco-elastic wave equation
that links the model parameters corresponding to the 21 elastic moduli, the density and some
memory variables that characterizes the anelastic behavior of the subsurface. Because the for-
ward problem requires the solution of a very large system of PDEs we need to restrict ourselves
to the case of the acoustic approximation of the wave equation. Assuming the density variations
are negligible, the equation in the time domain writes as:

∇2p− 1
c2
∂2p
∂t2

= S (4)

where p(x, t) is the pressure field, S(x, t) is a time dependent source term known spatially
as punctual sources. In practice we used a Ricker wavelet to simulate the excitation of the
medium. For the medium density ρ(x) and the bulk modulus κ(x) we define the compressional
wave propagation velocity

c(x) =
√
κ

ρ
(5)

x and t denote the spatial coordinates and the time.
To numerically solve these PDEs, IWAVE uses a finite difference method where partial

derivatives are transform into finite difference expressions (we used a 2nd order in time and 4th

order in space) after having discretized the medium into a regular mesh. The computation is
done on parallel by distributing sources over processors.

Because seismic imaging in time domain requires the cross-correlation, for each source, of the
incident wavefield from source to receivers and the back propagated residues from the receivers
to the source [10] at each node of the mesh; IWAVE uses checkpoints that require to save the
incident wavefield only at some given nodes of the mesh and then evaluate it at the other nodes
via an interpolation method.

Free surfaces boundary conditions are implemented on the top side of the model to mimic
the interface solid-air or water-air and absorbing boundary conditions are implemented on the
other sides to simulate an infinite medium by avoiding numerical reflexion artifacts.

IWAVE requires the model parameters to be stored in the RSF format of Madagascar and
the acquisition geometry parameters in an SU file. Several functions were written to do the
interface between the Matlab Scripts and the IWAVE code written in C/C++.

2.2 Classical Least-Squares Local Optimization Approach

In this section we present the simplest approach toward least-squares migration, ignoring the
probabilistic maximum likelihood or generalized inverse formulations [13]. In our case, the model
m ∈M is real valued and represents the bulk modulus and the buoyancy defined at each node
of the numerical mesh.
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We start from the least-squares norm φ(m) of the misfit vector defined in equation 1 and
write it as:

φ(m) = 1
2δd

†δd. (6)

This is referred as the misfit function or the objective function. Here the symbol † denotes the
adjoint operator or transpose complex conjugate operator (although the misfit vector is real
valued in the time domain we will continue with this notation).

As this approach is local, we will seek a minimum of the objective function in the vicinity
of a starting model or a-priory model m0. In order to linearize the objective function we will
restrain our calculations to the Born approximation where a linear relationship between the
model and wavefield perturbations is assumed. Thus, we can write the model m as the sum of
the starting model m0 plus a perturbation model δm : m = m0 + δm. We also assume to be in
the constant density case therefore the model parameter is only the bulk modulus.

We can operate a second order Taylor-Lagrange development of the objective function in the
vicinity of m0 (for m is real valued)

φ(m) = φ(m0) + ∂φ(m0)
∂m

δm+ 1
2
∂2φ(m0)
∂m2 δm2 +O(m3). (7)

In order to find the minimum of this objective function upon all possible perturbation models
δm, we want to find the one that annuls its gradient. That is to say, we want to find δm such
that

∇φ(m) ≈ ∂φ(m0)
∂m

+ ∂2φ(m0)
∂m2 δm = 0. (8)

This gives us the perturbation model vector

δm = −
[
∂2φ(m0)
∂m2

]−1
∂φ(m0)
∂m

. (9)

The derivative of −φ(m0) with respect to the model parameters m leads us to the search of
the model perturbation in a descent direction of the misfit function at point m0. If we refer to
the definition of the misfit function (Eq.6) we obtain:

∂φ(m0)
∂m

= −Re
[
J†0δd

]
, (10)

where J0 = ∂F [m0,Q]
∂m is the sensitivity or Fréchet derivative matrix and Re denotes the real part.

The second derivative of the misfit function is the Hessian, it defines the curvature of the
misfit function at m0. From (6) we obtain the following expression of the Hessian:

∂2φ(m0)
∂m2 = Re

[
J†0J0

]
+Re

[
∂Jt0
∂mt

(δd∗...δd∗)
]
, (11)

where t and * denotes the transpose and the complex conjugate. Of the two terms of the
Hessian matrix, the first is straightforward to compute, whereas the second term is difficult to
compute. Moreover, if the residuals are small or if the forward equation is linearized this last
term is small [8]. Therefore, we introduce the approximate Hessian H0 = Re

[
J†0J0

]
. The term

J†0 can be seen as the reverse time migration operator and the term J0 as the linearized Born
scattering operator [10]. This approximate Hessian is an n × n real matrix (with n the number
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of parameters), symmetric (i.eHt
0 = H0) and positive definite (i.e x†H0x > 0 ∀x ∈M\{∅} ) [8].

The inversion of the Hessian corresponds to the physical idea of correcting for wrong amplitudes
in the subsurface image because of the uneven illumination by the incident waves.

From (10) and (11) we obtain the following expression of the perturbation model:

δm = −Re
{[
J†0J0

]−1
}
Re
[
J†0δd

]
. (12)

Because the size of the problem is very big (10 of millions of unknowns for 2D data) we must
resort to an iterative algorithm to find an approximate numerical solution of equation (12). We
use a conjugate gradient method to solve the system of linear equations H0δm = Re

{
J†0δd

}
with the unknown δm. By definition, two non-zero vectors u and v are said to be conjugate with
respect to the Hessian matrix if 〈u, v〉H0

= utH0v = 0. By symmetry of the inner product, if u
is conjugate to v then v is conjugate to u. We denote by δm0 the initial guess of the solution
and δm∗ the exact solution of the system. In practice we take δm0 = 0. If we consider that
P =

{
pk : ∀i 6= k, i, k ∈ [1, n] , 〈pi, pk〉H0

= 0
}
is a set of n mutually conjugate directions then P

is a basis of Rn. This means that we can express the exact solution as:

δm∗ =
n∑
i=1

αipi (13)

with αi a family of real coefficients. Here we want to choose wisely the conjugate vectors pi to
obtain a good approximate of δm∗ for i = 1..n′ with n′ << n. Starting with δm0 we search
for the solution and in each iterations we need a metric to tell us whether we are closer to the
unknown solution δm∗. This metric comes from the fact that δm∗ is also the unique minimizer
of the following quadratic function f(δm):

f(δm) = 1
2δm

tH0δm− δmtRe
{
J†0δd

}
, (14)

and therefore if f(δm) becomes smaller after an iteration it means that we are closer to δm∗. As
this quadratic function is convex we choose p0 to be the negative of the gradient of f at point
δm0. Its gradient is H0δm−Re

{
J†0δd

}
so we obtain p0 = Re

{
J†0δd

}
−H0δm0.

Let rk be the residual of the gradient of f at the kth step:

rk = Re
{
J†0δd

}
−H0δmk (15)

we want to build the directions pk to be conjugate to each other. This gives the following
expression:

pk = rk −
∑
i<k

ptiH0rk
ptiH0pi

pi (16)

and the next optimal location is given by

δmk+1 = δmk + αkpk (17)

with
αk = ptkrk−1

ptkH0pk
(18)

the iterations are repeated until a satisfactory small enough residual is obtained.

SLIM 10 Juin 2014



Rapport de stage de fin d’étude M2-STE EOST

The results obtained on a simple horizontally layered model (1D case) are shown below. The
dimensions are 1000 m × 1000 m. The buoyancy is set to be constant and the bulk modulus is
parametrized on a 200× 200 grid with a grid size of 5 m, it varies from 25GPa to 33GPa. The
synthetic data are computed with IWAVE from 20 source positions sampled at an interval of
50 m and 100 receivers sampled with an interval of 10 m. The time of the simulation is 0.805 s
with a time step of 0.00115 s, and the shot impulsion is modeled by a 30 Hz Ricker wavelet. The
data residuals are given by the difference between simulations with the true and smoothed bulk
models. The migration took 6h10min to compute on the cluster, using 2 nodes and 4 processors
per node (ppn).

Figure 1: True model perturbation

Figure 2: Model perturbation reconstructed by a conjugate gradient method

In figure 2 we can see that the perturbation is well recovered and that the resolution at the
boundaries of the model is good. However, we notice some pretty strong artifacts in the shallow
and deep interfaces.
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Because of the size of the problem this approach to LSM isn’t suitable for 3D or even
large 2D models. In the following we present an other formulation that aims to make LSM
computationally more affordable.

2.3 Dimensionality Reduction

2.3.1 Stochastic Optimization

The purpose of reformulating the LSM as a stochastic optimization problem is to reduce the
cost involved in the evaluation of the gradient of the misfit by randomly drawing a batch of real-
izations of the objective function. When replacing the simple shot data by random simultaneous
shots (see section 2.4.1) we can dramatically reduce the number of PDE solves (see e.g [12]).
Two different approaches can be combined to formulate this problem, stochastic approximation
techniques and sampled average approximation.

The stochastic formulation is based on the following identity [12] :

‖A‖2F = Ew
(
wTATAw

)
= lim

K→∞

1
K

K∑
k=1

wTk A
TAwk, (19)

where Ew denotes the expectation over the random vectors w. This vectors need to be chosen
such that Ew(wwT ) = I, the identity matrix. The objective function as defined in equation (1)
is now formulate as

Φ(m,Q,D) = EwΦ(m,Qw,Dw). (20)

The Sampled Average Approximation replaces the expectation over w by an ensemble average

ΦK(m) = 1
K

K∑
k=1

Φ(m,Qwk,Dwk). (21)

The batch size K will determine the computation cost and the amount of artifacts introduced
during the inversion. Stochastic Approximation algorithms are centered on the idea of picking a
new random realization in each iteration of the algorithm. The random vector w is changed over
iterations. While decreasing the size of the problem, these techniques might introduce source
cross-talk in the image and the noise in the data may be amplified by randomly combining shots.
An other problem is that the well known results of these approaches are derived for the case of
a convex misfit function which isn’t the case for seismic imaging problems.

2.3.2 Sparsity and Curvelet Transform

We call sparse matrix a matrix populated primarily with zeros coefficients. A signal is said to be
compressible when it has only a few large coefficients after being transform in a carefully chosen
domain basis. Finding a good sparsifying domain can allow the use of sophisticated sparsity-
promoting solvers that reduce the required computational resources for imaging purposes [5].

The wave equation reduced Hessian H0 (i.e the demigration/migration operator) has a null
space because of the constrains in the acquisition geometry, the limited band-width of the
recorded signal and the complexity of the subsurface and therefore requires regularization to
stabilize its inversion (at least for 3D data). The transform domain sparsity leads to a concen-
tration of the update’s energy into few large transform domain coefficients. It serves as a prior
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that fills the null-space. To guarantee a fast decay for the magnitude sorted coefficients on the
updates, we require the transform to detect wavefronts, possibly with conflicting dips, and to
be nearly invariant under wave propagation. Rigorously, we would need to measure the sparsity
of a matrix by counting each one of it’s non-zero coefficients. Such a problem belongs to the
class of NP-hard (Non-deterministic Polynomial-time hard) problems. However in practice we
prefer to use the l1 norm which is more suitable for algorithmic use. Using the l1 norm turns
the sparsity promotion into a convex problem wich is easier to solve than a NP-hard and that
can lead to the same solution under certain conditions (see e.g [4]).

A sparsity operator that is suitable for seismic problems [4] is the mirror extended discrete
curvelet transform [1]. Curvelets decompose wavefields as a superposition of highly anisotropic
localized and multiscaled waveforms. In the Figures 3a and 3b are ploted the sorted absolute
value coefficients of the model residual δm and of the transformation of δm in the curvelet
domain. We can see that the proportion of significant coefficients is much less for the curvelet-
transformed model residual.

(a) (b)

Figure 3: Absolute value of the coefficients of (a) δm. (b) the transformed coefficients of δm in
the curvelet domain.

2.3.3 Compressive Sensing

Compressive sensing (CS) is a signal processing technique for efficiently recovering a signal by
finding a solution to an under-determined linear system. This takes advantage of the signal’s
sparseness or compressibility in some domain, allowing the entire signal to be reconstructed
with fewer samples than the Shannon-Nyquist theorem requires [2],[3]. The number of spatial
samples required by CS to achieve a certain accuracy scales logarithmically with the sampling
grid size. Thus, in seismic exploration where the number of measurements that need to be
obtained (according to Shannon-Nyquist sampling theory) is prohibitively large, the theory of
CS is especially invaluable. The success of the dimensionality reduction according to CS hinges
on an incoherent sampling strategy where coherent aliases are turned into relatively harmless
white Gaussian noise.
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2.4 L1 Regularized, Sparsity-Promoting Least-Squares Migration

In this section we seek an approximate solution for the l1-regularized least-squares problem by
promoting sparsity in a transform domain. We take advantage of the sparsity of the model
perturbation in the curvelet domain and define δc = Cδm the transform of the model residual,
where C is the curvelet transform operator. We now reformulate equation 3 as the following
constrained convex optimization problem [7][6]:

minimize
δc

‖δc‖1 subject to
∥∥∥δd−∇F [m0,Q]CHδc

∥∥∥
F
≤ σ, (22)

with CH the inverse of the curvelet transform, σ is an estimation of the noise level and δd
as defined in section 2.2. ∇F [m0,Q] is the linear Fréchet derivative of the forward operator
(or first order Born scattering operator).This operator is generally overdetermined and has a
null space caused by complex overburdens. This problem is known as the Basis Pursuit Denoise
(BPDN).

Because the objective function formulated from equation 22 is non-differentiable, we do not
solve it directly. Instead, this problem is solved with SPGl1 [11]. SPGl1 is a high performance
large scale solver for sparsity promoting problems. It alternatively solves a series of non-linear
sub-problems known as Least Absolute Shrinkage and Selection Operator (LASSO):

minimize
δc

1
2

∥∥∥δd−∇F [m0,Q]CHδc
∥∥∥2

F
subject to ‖δc‖1 ≤ τ, (23)

where the parameter τ is increased intelligently at each new LASSO solving. In this method,
the Pareto boundary (i.e the trade-off curve delineating feasible and infeasible solutions as a
function of the l2 norm of the data misfit and the model’s l1 norm) is exploited to compute the
relaxations coefficient τk (that causes the LASSO and BPDN to share the same solution) by
an inexact Newton root finding method that uses the convexity and smoothness (i.e continuous
differentiability) of the Pareto curve [11]. The figures 4a and 4b illustrates this principle and the
corresponding solution path(with the notations of [5]). The red dotted line in figure 4b shows a
realization of one solve of a BPDN problem, starting with an initial guess of zero. At this stage
the reader should consider that the linear systems of figure 4b are the same for every steps and
that only the τ ’s are updated.

Each iteration of the Newton root-finding method requires the approximate evaluation of the
Pareto curve at point τk. This evaluation involves the minimization of the LASSO problem for
τk. For solving these individual LASSO problems, SPGl1 uses a Spectral Projected Gradient
method (SPG). SPG includes projecting iterates onto the feasible set

{
δc | ‖δc‖1 ≤ τk

}
via the

projection operator:

Pτk(v) = arg min
δc

‖v − δc‖2 subject to ‖δc‖1 ≤ τ
k (24)

which gives the projection of a n-vector v onto the one-norm ball with radius τk. Each iteration
of the algorithm searches the projected gradient path Pτk(δck − αgk), where gk is the current
gradient of the function

∥∥∥δd−∇F [m0,Q]CHδck
∥∥∥2

F
. The step length α is selected by a non

monotone line search algorithm.
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Projected gradient. Our application of the SPG algorithm to solve (LSτ ) follows
Birgin, Mart́ınez, and Raydan [5] closely for the minimization of general nonlinear
functions over arbitrary convex sets. The method they propose combines projected-
gradient search directions with the spectral step length that was introduced by Barzilai
and Borwein [1]. A nonmonotone line search is used to accept or reject steps. The
key ingredient of Birgin, Mart́ınez, and Raydan’s algorithm is the projection of the
gradient direction onto a convex set, which in our case is defined by the constraint
in (LSτ ). In their recent report, Figueiredo, Nowak, and Wright [27] describe the
remarkable efficiency of an SPG method specialized to (QPλ). Their approach builds
on the earlier report by Dai and Fletcher [18] on the efficiency of a specialized SPG
method for general bound-constrained quadratic programs (QPs).

2. The Pareto curve. The function φ defined by (1.1) yields the optimal value
of the constrained problem (LSτ ) for each value of the regularization parameter τ .
Its graph traces the optimal trade-off between the one-norm of the solution x and
the two-norm of the residual r, which defines the Pareto curve. Figure 2.1 shows the
graph of φ for a typical problem.

The Newton-based root-finding procedure that we propose for locating specific
points on the Pareto curve—e.g., finding roots of (1.2)—relies on several important
properties of the function φ. As we show in this section, φ is a convex and differentiable
function of τ . The differentiability of φ is perhaps unintuitive, given that the one-
norm constraint in (LSτ ) is not differentiable. To deal with the nonsmoothness of
the one-norm constraint, we appeal to Lagrange duality theory. This approach yields
significant insight into the properties of the trade-off curve. We discuss the most
important properties below.

2.1. The dual subproblem. The dual of the Lasso problem (LSτ ) plays a
prominent role in understanding the Pareto curve. In order to derive the dual of
(LSτ ), we first recast (LSτ ) as the equivalent problem

(2.1) minimize
r,x

‖r‖2 subject to Ax + r = b, ‖x‖1 ≤ τ.
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

min
x

�A1x − b1�2 s.t �x�1 ≤ τ1

min
x

�A2x − b2�2 s.t �x�1 ≤ τ2

min
x

�A3x − b3�2 s.t �x�1 ≤ τ3

(b)

Figure 4: SPGl1. (a) Newton root finding using convexity and smoothness of the Pareto curve [11].
(b) Path followed by solving series of LASSO, the region above the Pareto curve is the feasibility
region for the BPDN problem [11].

Before exploiting some interesting concepts of randomized dimensionality-reduction and
divide-and-conquer techniques, we show the results obtained using the same configuration as
in section 2.2.

Figure 5: Model perturbation reconstructed with SPGl1 for the initial model of Fig.1

We can see on figure 5 that the perturbation is well recovered even on the edge of the model.
We notice that there are less artifacts than in figure 2. The computation time was 5h55min on
the cluster, using 2 nodes and 8 ppn.

In the next subsection we present dimension reduction techniques to decrease the problem
size and reduce the computational complexity of the least-squares migration. By combining
ideas from stochastic optimization and compressed sensing, we take advantage of the sparsity-
promoting solver SPGl1 to work on a series of smaller subproblems each involving a randomized
subset of data [5][7]. The idea is to work with compressive seismic experiments that consist
of collections of small number of simultaneous shots, called supershots (see Fig.6a). These
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supershots are made of randomized superpositions of sequential sources.

2.4.1 Randomly weighted simultaneous sources

Equation 23 is dimensionally reduced by the subsampling matrices W. We choose W ∈
R(N ′

s)×(Ns) to be a Gaussian matrix with WWH near unitary with incoherent off-diagonals.
We now replace δd ∈ R(Ns,NrNt) and Q ∈ R(Ns,Nt) by Wδd ∈ R(N ′

sNrNt) and WQ ∈ R(N ′
sNt).

Equation 23 may know be reformulated as:

minimize
δc

1
2

∥∥∥Wδd− ∇F [m0,WQ]CHδc
∥∥∥2

F
subject to ‖δc‖1 ≤ τ. (25)

By constructing the supershots using N ′s � Ns we reduce significantly the problem size, in
fact the number of PDE solves for each iteration of the solution of equation 25 is slimmed
down by a factor of K ′/K [5]. In theory the reduced Born-scattering operator should now be
undetermined, however for time stepping formulation the very large size of the time series may
cause this operator to still be overdetermined and therefore we may not take full advantage
of sparse recovery. This approach takes advantage of the linearity of equation 25 with respect
to the source experiments. When multiplying the wavefield residual and the source terms by a
Gaussian matrixW, we shape the subsampling artifacts (e.g aliasing and sources cross-talk) into
white noise that we can separate from the signal using sparsity-promoting recovery (this idea
comes from CS, see e.g [12]). Physically, it’s like if we gave a random weight to the amplitude
of each source wavelet. The N ′s supershots are then consider as the simultaneous firing of Ns

sequential sources (see Fig.6a).
In addition, we take advantage of the way SPGl1 works (see Fig.4b) to redefine the matrix

W each time the Pareto curve is reached and solve a new LASSO problems using the current
(curvelet-domain transformed) model residual (hence the upper indices for A and b in Fig.4b).
This idea, coming from stochastic-average approximations, leads to better results because these
renewals remove possible correlations between the sampling matrix and the current estimate of
the curvelet-domain bulk perturbation and introduce more information in the migration [5].

(a) Randomly weighted pressure field
residual.

(b) Migration with randomly weighted si-
multaneous shots.

Figure 6
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For the migration we used 5 supershots and run the job on the cluster using 1 node and 6
processors. The computing time was 2h17min. The quality of the results of Fig.6b compare to
Fig.5 is good. The computation time is much less than for the classic approach and the amount
of cross-talk intoduced during the inversion is reasonably low. We can also see on Fig.7 the
improvement brought when doing redraws.

Figure 7: Migration results with weighted supershots with (left) and without (right) redraws.

2.4.2 Randomly phase encoded simultaneous sources

An other possible way of doing compressive experiments is to work with supershots composed of
sequential sources with random phase encoding. For θ ∈ [0, 2π]Nt,Ns,N ′

s we define our encoding
operator by P = F(Re(FH(exp(i∗ θ)))) where F denotes the Fourier transform along time. We
keep only the real part of the time transform of the complex exponential to not introduce terms
that are incoherent with the physics of the problem. After applying this operator to the source
terms and the wavefiel residuals in the Fourier domain and stacking along the sources, we come
back in the time domain and take the real part of our signals. We also apply a random sign to
each time series measured for a given source/receiver couple. Figures 8 and 9 show exemples of
such encoding.

Figure 8: Original and phase encoded Ricker wavelet.
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Fig.10a shoes that this way of doing migration can be efficient, very few artifacts are intro-
duced during the inversion and results have reasonable quality when compare with figures 5 ans
2.

Figure 9: Phase encoded common shot gather.

(a) (b)

Figure 10: Migration results by phase encoding with (left) and without (right) redraws.

Unfortunately, these methods relie on fixed-spread acquisition where each source sees the
same receivers, limiting this approach to land and ocean bottom acquisitions. In the next
section we present a technique which allows dimensionality reduction for marine data.

2.4.3 Random Subsets of Sequential Shots

Instead of working with simultaneous shots, we can work with random subsets of sequential
sources [7]. We now use single sources firing at random positions along the profile. We define the
restriction matrix R by the Kronecker product: R = RΣ⊗ INr ⊗ INt ∈ R(N ′

s,Ns)×(Nr,Nr)×(Nt,Nt).
RΣ selects N ′s � Ns rows uniform randomly amongst [1...Ns]. The same way we redraw the
subsampling matrix for the construction of the supershots, we choose a new subset of sequential
shots each time the Pareto curve is reached and a new BP problem is being solved (see Fig.4b).
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Figure 11: Migration with random subsampling.

Using the model described for the figure 1 we run the algorithm using 5 shots ( that is 25%
of the total number) fired at random locations on the profile. The computing time with 1 nodes
and 6 ppn was 2h29min. Compare to the migrated image obtained using all the shots (Fig.5
and 2), the recovering of the model perturbation in this case can be considered as good, with a
computation much faster.

2.5 Comparison of the results

All the images of figure 12 are plotted with the same color scale. We first see that the results
are similar for the classic migration solved with a conjugate gradient method (Fig.12b) and
the reformulated migration with sparsity constrain using all the shots (Fig.12c). The migrated
images are close to the true perturbation but we note that there are some strong artifacts that
could be problematic if performing a migration on a complicated model. In figure 12d is plotted
the migration done with random shot locations. The results are good even if the amplitude
recovery is a beat low. We can even see an improvement in term of quality compare to the
migration with all the shots since most of the strong artifacts have disappeared. The migration
with simultaneous random shots in figures 12e and 12f also give good results even if the top part
of these images are a bit noisy.
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(a) True perturbation (b) Conjugate gradient method

(c) SPG method with all the shots (d) SPG method with random shots

(e) SPG method with weighted super-
shots

(f) SPG method with phase encoded su-
pershots

Figure 12: Migration results for a simple 1D model.
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3 Results with the BG Compass model

The velocity model Compass was provided to SLIM by the British Gas.

(a) (b)

Figure 13: (a) Compass acoustic model. (b) True perturbation.

The simulations are done with 91 shots and 226 receiver positions sampled at 50m and 20m
interval, yielding a maximum offset of 4550m. The source pulse are modeled using a Ricker
wavelet with a central frequency at 20Hz, and the simulations are carried out over 4s with a
time sample of 0.004s. The grid is 901× 409 with a grid size of 5m.

(a) (b)

Figure 14: Synthetic shot gathers obtain with the (a) true velocity model. (b) Smooth model.

The model we use here is a 2D slice taken from the 3D synthetic one. It contains details in
all dimensions at many spatial frequencies from seismic down to log scale. A variety of dipping
and faulted beds where included as well as a gas cloud. As we are still working to improve
the workflow, we present here temporary results. For quality improvement, we do some post-

SLIM 21 Juin 2014



Rapport de stage de fin d’étude M2-STE EOST

processing such as taking the vertical derivative, doing depth weighting and mute coarse scale
curvelet coefficients (for attenuation of low frequency artifacts introduced by curvelets).

(a) True perturbation (b) Reverse Time Migration

(c) Migration with 15 random shots with
redraws (d) 15 weighted supershots with redraws

Figure 15: Migration results for the BG model.
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4 Conclusion

During this internship a framework to perform time stepping least-squares migration with
IWAVE has been built. By following previous work done in the frequency domain, we have
tried different dimension reduction methods to decrease the computational burden of wave
equation based linearized imaging while aiming for high resolution. By combining random
sub/compressive sampling with curvelets properties, we reduce the size of the problem and aim
to concentrate information about seismic events in few large number of coefficients while dis-
tributing coherent noise uniformly over numerous small coefficients. Then, by using a sparsity
promoting solver we restore the amplitudes of geological reflectors while removing crosstalk and
aliasing artifacts. Additionally, we highlight the improvement brought when renewing the ran-
dom sampling after each sub-problem is solved in order to remove possible correlations between
the subsampling and the model perturbation update. Both randomized subsets and compressive
simultaneous experiments led to encouraging results while significantly decreasing the compu-
tation time and the memory requirement. Results obtained on the BG model are temporary
and we will continue working on this project. Other methods such as continuous random-noise
sources experiments are to be investigated. It will also be interesting to do a careful comparison
between time-harmonic and time LSM dimension reduction techniques.
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Appendices

A - Spectral projected gradient for LSτ [11]

Algorithm 1 SPGl1, for solving min
x
‖Ax− b‖2 s.t ‖x‖1 ≤ τ

Require: x, τ, δ
Set minimum and maximum step lengths 0 < αmin < αmax

Set initial step length α0 ∈ [αmin, αmax] and sufficient descent parameter γ ∈ (0, 1)
Set an integer line search history length M ≥ 1
Set initial iterates: x0 ← Pτ [x], r0 ← b−Ax0, g0 ← −AT r0

l← 0
while not converged do

δl ← ‖rl‖2 − (bT rl − τ ‖gl‖∞)/ ‖rl‖2 // Compute duality gap
if δl < δ then

break // exit if converged

end if
α← αl // initial step length
while not converged do

x← Pτ [xl − αgl] // candidate line search iterate
r ← b−Ax // update the corresponding residual
if ‖r‖22 ≤ max

j∈[0,min{k,M−1}]
‖rl−j‖22 + γ(x− xl)T gl then

break // exit line search
else

α← α/2 // decrease step length

end if
end while
xl+1 ← x, rl+1 ← r, gl+1 ← −AT rl+1 // update iterates
∆x← xl+1 − xl,∆g ← gl+1 − gl
if ∆xT∆g ≤ 0 then // update the Barzilai-Borwein step length

αl+1 ← αmax

else
αl+1 ← min

{
αmax,max[αmin, (∆xT∆x)/(∆xT∆g)]

}
end if
l← l + 1

end while
return xτ ← xl, rτ ← rl
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B - Dimensionality-reduced LSM with sparsity promotion (adapted from [7])

Algorithm 2 Dimensionality-reduced LSM with sparsity promotion
k ← 0; δck ← δc0 // initial perturbation (often 0)
while not converge do{

Dk,Qk
}
← {SD,SQ} with S random sampler // indep. draw.

δdk ← Dk −∇F [m,Qk] // residual
τk ←

∥∥∥δdk∥∥∥
F
/
∥∥∥C∇F∗[m,Qk]δdk

∥∥∥
∞

// update τ

δck ← arg min
δck

1
2

∥∥∥δdk −∇F [m,Qk]CHδck
∥∥∥2

F
subject to

∥∥∥δck∥∥∥
1
≤ τk

δck+1 ← δck

k ← k + 1
end
δm = CHδc // from curvelet domain to model space
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