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SUMMARY

Seismic data interpolation via rank-minimization techniques
has been recently introduced in the seismic community. All
the existing rank-minimization techniques assume the record-
ing locations to be on a regular grid, e.g. sampled periodically,
but seismic data are typically irregularly sampled along spa-
tial axes. Other than the irregularity of the sampled grid, we
often have missing data. In this paper, we study the effect of
grid irregularity to conduct matrix completion on a regular grid
for unstructured data. We propose an improvement of existing
rank-minimization techniques to do regularization. We also
demonstrate that we can perform seismic data regularization
and interpolation simultaneously. We illustrate the advantages
of the modification using a real seismic line from the Gulf of
Suez to obtain high quality results for regularization and inter-
polation, a key application in exploration geophysics.

INTRODUCTION

Wide-azimuth (WAZ) seismic data acquisition is designed to
improve imaging, which is affected by poor illuminations in
complex geological areas. Due to budgetary and/or physi-
cal constraints, WAZ data sets are coarsely sampled at irreg-
ular locations i.e., the samples are unstructured because they
do not fall on a periodic grid. All the processing and imag-
ing algorithms, for example, surface-related multiple predic-
tion, reverse-time migration and full waveform inversion need
densely sampled data to be on the grid. Therefore, seismic
data regularization and/or interpolation are one of the keys
pre-processing steps to provides the regularly sampled data,
with a dense sampling rate (without aliasing) in all the spa-
tial directions. Various methodologies have been proposed to
perform regularization and interpolation. The simplest regu-
larization process is called bin-centering, which moves traces
from their recording locations to locations on a regular grid.
Based upon the method used to perform bin-centering, am-
plitude of the traces may be altered and some traces may be
discarded that can lead to serious errors, for example, as re-
ported by Hennenfent et al.|(2010). There exist a wide variety
of wavefields reconstruction techniques via filter-based meth-
ods (Spitz,|1991;/Abma and Claerbout,|1995;|Abma and Kabir,
20006)); Fourier based methods (Xu et al.,[2005) and transform-
based methods (Sacchi et al.,{1998; |Hennenfent et al.,[2010; |L1
et al., 2012).

More recently, rank-minimization based techniques have been
introduced to interpolate the seismic data (Oropeza and Sacchi,
2011} |Kumar et al.l|2013). The key idea of rank-minimization
is to exploit the low-rank structure of seismic data in some
“transform-domain” when organized in a matrix. The low-
rank structure corresponds to a small number of nonzero sin-
gular values or quickly decaying singular values. |Kumar et al.
(2013)) showed that the monochromatic frequency slices of the
fully sampled data matrix on a regular grid have low-rank struc-
ture in the midpoint-offset (m-h) domain, while sub-sampled

seismic-data matrices do not. Missing traces increase the rank
or make the singular values decay less quickly in the m-h do-
main, an essential feature for rank-minimization techniques to
be effective. The existing rank-minimization techniques as-
sume the input data is on a regularly sampled grid. As a result,
these methods are less efficient when applied to an unstruc-
tured grid because discarding (binning) the actual recording
locations of the input traces introduces errors.

The objective of this paper is to present an extension to the
existing rank-minimization technique on structured grids (Ku-
mar et al.,2013) for the regularization and interpolation of un-
der sampled data on an irregular grid. We establish the bene-
fits of incorporating the unstructured sampling operator inside
optimization framework via performing regularization and in-
terpolation of seismic data that are regularly sampled along
receivers, time, and irregularly sampled along sources. The
extension of our work to both irregularly sampled source and
receiver axes is straightforward. We demonstrate the efficacy
of the proposed extension on a real seismic line from the Gulf
of Suez and compare it with the existing rank-minimization
techniques.

METHODOLOGY

The success of rank-minimization hinges on the fact that regu-
larly sampled target dataset should exhibit a low-rank structure
in some transform-domain. The monochromatic frequency slices
of seismic data on a regular grid do not exhibit a low-rank
structure in the source-receiver (s-r) domain since strong wave-
fronts extend diagonally across the s-r plane. However, trans-
forming the data into the midpoint-offset (m-h) domain results
in a vertical alignment of the wavefronts, thereby reducing the
rank of the frequency slice matrix (Kumar et al., 2013).

Regularization

During acquisition, seismic data is acquired in an irregular
fashion i.e., sources and receivers may lie on an unstructured
grid. The goal of data regularization is to preserve the low-
rank structure of seismic data in transform-domain while cre-
ating a regular sampled data at the specified bins from the ir-
regular input data. To illustrate the effects of regularization
on the low-rank structure of seismic data in the m-h domain,
we plot the decay of singular values in the m-h domain. We
extract a fully sampled monochromatic frequency slice from a
regularly sampled seismic line at high frequency (35 Hz) and
transformed it into the m-h domain as shown in Figures [Ifa).
The 355 sources and receivers position for this frequency slice
are at the centre of 12.5m, contiguous bin. From this fully
sampled frequency slice; we generate 355 new sources at uni-
formly random locations within each bin. The data at unstruc-
tured grid is either binned using nearest-neighbor interpolation
(Figure[Ip) or regularized using unstructured sampling opera-
tor based rank-minimization (Figure ). Notice that, the de-
cay of singular values is faster for the original data at structured
grid in m-h domain. Regularization using bin-centering slow



down the decay of singular values in m-h domain since binning
breaks the continuity along the wavefields, while unstructured
sampling operator based rank-minimization preserves the con-
tinuity along the wavefields, therefore, does not changes the
decay of singular values in m-h domain (Figure [Td). Hence,
incorporation of the unstructured sampling operator in rank-
minimization perpetuates the low-rank structure of seismic data
in the transform-domain.

Regularization and interpolation

In reality, seismic data is under sampled either along sources
or receivers on irregular grids. Thus, regularization and miss-
ing trace interpolation problem can be perceived as a matrix-
completion problem. Let Xy in C"™*™ be a regularly sam-
pled data matrix and let < be a linear measurement opera-
tor that maps from C"*" — CP with p < n x m. [Recht et al.
(2010) showed that under certain general conditions on the op-
erator <7, the solution to the rank-minimization problem can
be found by solving the following nuclear norm minimization
problem:

min|[X[l. st | (X) - b2 <e, (BPDN;)

where b is a set of measurements, || X||, = ||o]|;, and o is the
vector of singular values. The linear measurement operator
is defined as @ := R.H, where R is the sampling operator,
.7 is the transformation operator from the source-receiver do-
main to the midpoint-offset domain and 7 denotes the Her-
mitian transpose. The formulation require regularly
sampled data along all spatial axes, which is challenging in
practice since a set of measurements b is always under sam-
pled on an irregular grid. For that reason, we replace R with
an unstructured sampling operator U which output the irreg-
ularly sampled data in the physical-domain by applying the
fast Fourier transform followed by inverse non-equispaced fast
Fourier transform (Potts et al., 2001} |[Kunis, |2006). To solve

the nuclear-norm minimization problem, we combined the Pareto

curve approach for optimizing (BPDNg) formulations with the
SVD-free matrix factorization methods, following|Aravkin et al.
(2013).

EXPERIMENTAL RESULTS

The data set we use is a real seismic line from the Gulf of Suez
with N, = 355 sources, N, = 355 receivers on a periodic in-
terval of 12.5m and N; = 1024 time samples with a temporal
sampling of 0.004s. The 355 sources positions of this refer-
ence seismic line are at the center of 12.5m, contiguous bin.
Most of the energy of the seismic line is concentrated inside
10-60 Hz frequency band. From this regularly sampled source
positions (Figures [2h), we generate 355 new sources at uni-
formly random locations within each bin (Figures ). We use
an unstructured sampling operator based on bi-cubic splines
(Keys, [1981). This operator models taking samples from a
densely periodically sampled data at source locations that are
not on a grid. The nominal spatial sampling remains 12.5m. In
all the subsequent experiments, we use 150 iterations of SPG{
for all frequency slices.

To map the data to a structured grid and to avoid binning er-
rors, we conduct the regularization and compare it to the bin-
centering techniques. Figure [Bh shows the resulting 12.5 m
binned dataset using nearest-neighbor interpolation. Figure 3¢

shows the detail along late times. The wiggle traces are the
binned data and the grayscale image in the background is the
ground truth. We can see that binning institute large errors
(Figure 3p), yielding a signal-to-noise ratio (SNR) of 7.3 dB
since wavefronts need to be smooth and that needs to be dealt
with properly in the sampling and binning does not do that
properly. Figures B, Bf show the regularization results using
unstructured with a SNR of 18.6 dB. We can see
that difference plot (Figure Bf) shows very low-residual be-
tween the regularized data (Figure BH) and the ground truth
(Figure 2h).

As mentioned before, seismic data are often inadequately or
irregularly sampled along spatial axes. To imitate the under
sampled data on an irregular grid, the fully sampled source
locations at unstructured grid (Figure 2b) is used to generate
177 new sources at uniformly random locations (Figure [2f)
where the minimum distance between two consecutive sources
is 12.5m and the maximum distance is 130m. To show the ben-
efits of incorporating the unstructured sampling operator in the
rank-minimization, we also conduct a combined interpolation
and regularization using rank-minimization techniques (Ku-
mar et al., 2013), where we accomplish binning followed by
the interpolation. Figure[dh shows the regularized and interpo-
lated data using existing rank-minimization on the structured
grid with a SNR of 16.8 dB. Figure @k shows the details along
late times. The wiggle traces are the regularized-interpolated
data and the grayscale image in the background is the ground
truth. We can see that we loose significant amount of coher-
ent energy in the early arrivals (Figure @), which is caused
by the errors associated with binning. Figure d shows the
regularized and interpolated data on unstructured grids using
with a SNR of 19.3 dB. Figure fif shows the details
along late times. The difference plot (Figure ) shows very
low-residual, which explains that, the incorporation of grid ir-
regularity in rank-minimization helps to achieve better regu-
larization and interpolation results.

CONCLUSION

We demonstrate the benefits of incorporating the grid irreg-
ularity for an unstructured data in the rank-minimization to
achieve data regularization and interpolation. We establish that
irregularity along spatial axes benefits the unstructured sam-
pling operator based rank-minimization to perform better reg-
ularization of fully sampled irregular data resulting in minimal
loss of coherent energy, since unstructured sampling opera-
tor preserves the low-rank structure of data in the transform-
domain. We also illustrate that the proposed alteration of rank-
minimization can be used to perform regularization and inter-
polation, simultaneously, from irregular and/or aliased data.
To make the computations affordable, we use the SVD-free
matrix factorization methods. The matrix factorization tech-
nique is very promising, since it is SVD-free and therefore,
may be used to regularize and interpolate large-scale 3-D seis-
mic data. We hope to report on this in the future.
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Figure 1: Impact of regularization on singular values decay in the transform-domain. Monochromatic frequency slice at 35 Hz
in the m-h domain, (a) ground truth, (b) binning using nearest-neighbor interpolation, (c) unstructured sampling operator based
rank-minimization. (d) Singular values decay in the m-h domain. Notice that, the decay of singular values is faster for the original
data at a regularly sampled grid in m-h domain, and that regularization using bin-centering slow down the decay of singular values
in m-h domain, while unstructured sampling operator based rank-minimization does not changes the decay of singular values in

m-h domain. Therefore, incorporation of the unstructured sampling operator in rank-minimization preserve the low-rank structure
of seismic data in the transform-domain.
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Figure 2: Ground truth (common receiver gather). (a) structured grid. (b) unstructured grid. (c) 50% subsampled data at unstruc-
tured grid.
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Figure 3: Regularization. (a) Recovered data, binned using nearest-neighbor interpolation at nominal spatial sampling of 12.5 m.
(d) Recovery using proposed rank-minimization on unstructured grid at 12.5 m. (c) and (f) zooms on late times. The grayscale

image in the background is the ground truth, the wiggle traces are the binned data of (a) and (d), respectively. (b) and (e) are
difference plots at the same scale as (a) and (d).
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Figure 4: Regularization and Interpolation. (a,b) Recovery and difference using existing rank-minimization on structured grids with
a SNR of 16.8 dB. (d,e) Recovery and difference using proposed rank-minimization on unstructured grids with a SNR of 19.3 dB.
(c) and (f) zooms on late times. The grayscale image in the background is the ground truth, the wiggle traces are the regularized-

interpolated data of (a) and (d), respectively. We can see that incorporation of structured grid irregularity in rank-minimization
helps to achieve better regularization and interpolation results.
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