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SUMMARY

We propose an extended full waveform inversion formulation
that includes convex constraints on the model. In particular, we
show how to simultaneously constrain the total variation of the
slowness squared while enforcing bound constraints to keep it
within a physically realistic range. Synthetic experiments show
that including total variation regularization can improve the
recovery of a high velocity perturbation to a smooth background
model.

INTRODUCTION

Acoustic full waveform inversion in the frequency domain can
be written as the following PDE constrained optimization prob-
lem (Tarantola, 1984; Virieux and Operto, 2009; Herrmann
et al., 2013)

min
m,u

∑
sv

1
2
‖Pusv−dsv‖2 such that Av(m)usv = qsv , (1)

where Av(m)usv = qsv denotes the discretized Helmholtz equa-
tion. Let s = 1, ...,Ns index the sources and v = 1, ...,Nv index
frequencies. We consider the model, m, which corresponds
to the reciprocal of the velocity squared, to be a real vector
m ∈ RN , where N is the number of points in the spatial dis-
cretization. For each source and frequency the wavefields,
sources and observed data are denoted by usv ∈ CN ,qsv ∈ CN

and dsv ∈CNr respectively, where Nr is the number of receivers.
P is the operator that projects the wavefields onto the receiver
locations. The Helmholtz operator has the form

Av(m) = ω
2
v diag(m)+L , (2)

where ωv is angular frequency and L is a discrete Laplacian.

The nonconvex constraint and large number of unknowns make
(1) a very challenging inverse problem. Since it is not practical
to store all the wavefields, and it also is not always desirable
to exactly enforce the PDE constraint, it was proposed in (van
Leeuwen and Herrmann, 2013b,a) to work with a quadratic
penalty formulation of (1), formally written as

min
m,u

∑
sv

1
2
‖Pusv−dsv‖2 +

λ 2

2
‖Av(m)usv−qsv‖2 . (3)

This is formal in the sense that a slight modification is needed
to properly incorporate boundary conditions, and this modifica-
tion also depends on the particular discretization used for L. As
discussed in (van Leeuwen and Herrmann, 2013b), methods for
solving the penalty formulation seem less prone to getting stuck
in local minima when compared to solving formulations that
require the PDE constraint to be satisfied exactly. The uncon-
strained problem is easier to solve numerically, with alternating

minimization as well as Newton-like strategies being directly
applicable. Moreover, since the wavefields are decoupled it
isn’t necessary to store them all simultaneously when using
alternating minimization approaches.

The most natural alternating minimization strategy is to itera-
tively solve the data augmented wave equation

ūsv(mn) = argmin
usv

1
2
‖Pusv−dsv‖2 +

λ 2

2
‖Av(mn)usv−qsv‖2

(4)
and then compute mn+1 according to

mn+1 = argmin
m

∑
sv

λ 2

2
‖Lūsv(mn)+ω

2
v diag(ūsv(mn))m−qsv‖2 .

(5)
This can be interpreted as a Gauss Newton method for minimiz-
ing G(m) =

∑
sv Gsv(m), where

Gsv(m) =
1
2
‖Pūsv(m)−dsv‖2 +

λ 2

2
‖Av(m)ūsv(m)−qsv‖2 .

(6)
Using a variable projection argument (Aravkin and van
Leeuwen, 2012), the gradient of G at mn can be computed by

∇G(mn) =
∑

sv
Re
(

λ
2
ω

2
v diag(ūsv(mn))∗

(ω2
v diag(ūsv(mn))mn +Lūsv(mn)−qsv)

)
.

(7)

A scaled gradient descent approach (Bertsekas, 1999) for mini-
mizing G can be written as

∆m = arg min
∆m∈RN

∑
sv

∆mT
∇Gsv(mn)+

1
2

∆mT Hn
sv∆m

+ cn∆mT
∆m

mn+1 = mn +∆m ,

(8)

where Hn
sv should be an approximation to the Hessian of Gsv and

cn ≥ 0. Note that this general form includes gradient descent in
the case when H = 0 and Newton’s method when H is the true
Hessian and c = 0. In (van Leeuwen and Herrmann, 2013b), a
Gauss Newton approximation is used, where cn = 0 and

Hn
sv = Re(λ 2

ω
4
v diag(ūsv(mn))∗ diag(ūsv(mn)) . (9)

Since the Gauss Newton Hessian approximation is diagonal,
it can be incorporated into (8) with essentially no additional
computational expense. This corresponds to the alternating
procedure of iterating (4) and (5) at least for the formal objective
that is linear in m, which it may not be in practice depending
on how the boundary conditions are implemented.

INCLUDING CONVEX CONSTRAINTS

To make the inverse problem more well posed we can add the
constraint m ∈C, where C is a convex set. For example, a box
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constraint on the elements of m could be imposed by setting
C = {m : m ∈ [B1,B2]}. The only modification of (8) is to
replace the ∆m update by

∆m = arg min
∆m∈RN

∑
sv

∆mT
∇Gsv(mn)+

1
2

∆mT Hn
sv∆m

+ cn∆mT
∆m such that mn +∆m ∈C .

(10)
This ensures mn+1 ∈C but makes ∆m more difficult to compute.
The problem is still tractable if C is easy to project onto or can
be written as an intersection of convex constraints that are each
easy to project onto. This convex subproblem is unlikely to be
a computational bottleneck relative to the expense of solving
for ū(mn) (4), and in fact it could even speed up the overall
method if it leads to fewer required iterations.

If the eigenvalues of the Hessian of G(m) are bounded for
m ∈C, cn in (10) can be adaptively updated so that it’s as small
as possible while still guaranteeing that G(mn) is monotonically
decreasing and limit points of {mn} are stationary points (Esser
et al., 2013). This approach works for fairly general choices
of Hn. It also avoids doing an additional line search at each
iteration. A line search can potentially be expensive because
evaluating G(m) requires first computing ū(m). For the Gauss
Newton approximation in (9) where Hn =

∑
sv Hn

sv, adaptivity
in the choice of cn is not needed, and we can take cn to be
a fixed small value. This is the version we consider in the
remainder of the paper.

Since Hn is diagonal and positive, it is straightforward to add
the constraint m ∈ [B1,B2]. In fact

∆m = argmin
∆m

∆mT
∇G(mn)+

1
2

∆mT Hn
∆m+ cn∆mT

∆m

such that mn +∆m ∈ [B1,B2]
(11)

has a closed form solution in this case. Even with these bound
constraints, the model recovered using the penalty formulation
can still contain artifacts and spurious oscillations, as shown in
Figure 2. A simple and effective way to reduce oscillations in m
via a convex constraint is to constrain its total variation (TV) to
be less than some positive parameter τ . TV penalties are widely
used in image processing to remove noise while preserving
discontinuities (Rudin et al., 1992). It is also a useful regularizer
in a wide variety of other inverse problems, especially when
solving for piecewise constant or piecewise smooth unknowns.
For example, TV regularization has been successfully used for
electrical inverse tomography (Chung et al., 2005) and inverse
wave propagation (Akcelik et al., 2002). Although the problem
is similar, the formulation in (Akcelik et al., 2002) is different
that what we are considering here.

TOTAL VARIATION REGULARIZATION

If we represent m as a N1 by N2 image, we can define

‖m‖TV =
1
h

∑
i j

√
(mi+1, j−mi, j)2 +(mi, j+1−mi, j)2

=
∑

i j

1
h

∥∥∥∥[(mi, j+1−mi, j)
(mi+1, j−mi, j)

]∥∥∥∥ ,

(12)

which is a sum of the l2 norms of the discrete gradient at each
point in the discretized model. Assume Neumann boundary
conditions so that these differences are zero at the boundary. We
can represent ‖m‖TV more compactly by defining a difference
operator D such that Dm is a concatenation of the discrete
gradients and (Dm)n denotes the vector corresponding to the
discrete gradient at the location indexed by n, n = 1, ...,N1N2.
Then we can define

‖m‖TV = ‖Dm‖1,2 :=
N∑

n=1

‖(Dm)n‖ . (13)

Returning to (8), if we add the constraints m ∈ [B1,B2] and
‖m‖TV ≤ τ , then the overall iterations for solving

min
m

G(m) such that m ∈ [B1,B2] and ‖m‖TV ≤ τ

(14)
have the form

∆m = argmin
∆m

∆mT
∇G(mn)+

1
2

∆mT Hn
∆m+ cn∆mT

∆m

such that mn +∆m ∈ [B1,B2] and ‖mn +∆m‖TV ≤ τ

mn+1 = mn +∆m .
(15)

SOLVING THE CONVEX SUBPROBLEMS

An effective approach for solving the convex subproblems in
(15) for ∆m is to use a modification of the primal dual hybrid
gradient (PDHG) method (Zhu and Chan, 2008) discussed in
(Esser et al., 2010; Chambolle and Pock, 2011; He and Yuan,
2012; Zhang et al., 2010) that finds a saddle point of

L (∆m, p) = ∆mT
∇G(mn)+

1
2

∆mT (Hn +2cnI)∆m

+ pT D(mn +∆m)− τ‖p‖∞,2

(16)

for mn +∆m ∈ [B1,B2]. Here, ‖ · ‖∞,2 denotes the dual norm of
‖ · ‖1,2 and takes the max instead of the sum of the l2 norms.
The modified PDHG method requires iterating

pk+1 = argmin
p

τ‖p‖∞,2− pT D(mn +∆mk)+
1

2δ
‖p− pk‖2

∆mk+1 = argmin
∆m

∆mT
∇G(mn)+

1
2

∆mT (Hn +2cnI)∆m

+∆mT DT (2pk+1− pk)+
1

2α
‖∆m−∆mk‖2

such that mn +∆m ∈ [B1,B2] .
(17)

These iterations can be written more explicitly as

pk+1 = pk +δD(mn +∆mk)−Π‖·‖1,2≤τδ (pk +δD(mn +∆mk))

∆mk+1 = (Hn +ξnI)−1 max((Hn +ξnI)(B1−mn),

min((Hn +ξnI)(B2−mn),

−∇G(mn)+
∆mk

α
−DT (2pk+1− pk)

))
,

(18)
where ξn = 2cn +

1
α

and Π‖·‖1,2≤τδ (z) denotes the orthogonal
projection of z onto the ball of radius τδ in the ‖ · ‖1,2 norm.



Computing this projection is of equivalent difficulty as project-
ing onto a simplex, which can be done efficiently. The step size
restriction required for convergence is αδ ≤ 1

‖DT D‖ . If h is the
mesh width, then it suffices to choose positive α and δ such
that αδ ≤ h2

8 .

NUMERICAL EXPERIMENTS

We consider a 2D synthetic experiment with a roughly 200 by
200 sized model and a mesh width h equal to 10 meters. The
synthetic velocity model shown in Figure 1a has a constant high
velocity region surrounded by a slower smooth background. We
use an estimate of the smooth background as our initial guess
m0. Similar to Example 1 in (van Leeuwen and Herrmann,
2013b), we put Ns = 34 sources on the left and Nr = 81 re-
ceivers on the right as shown in Figure 1b. The sources qsv
correspond to a Ricker wavelet with a peak frequency of 30Hz.

(a) (b)

Figure 1: Synthetic velocity model (a) and source and receiver
locations (b).

Data is synthesized at 18 different frequencies ranging from
3 to 20 Hertz. We consider both noise free and slightly noisy
data. In the noisy case, random Gaussian noise was added to
the data dv independently for each frequency index v and with
standard deviations of .05‖dv‖√

NsNr
. This may not be a realistic noise

model, but it can at least indicate that the method is robust to a
small amount of noise in the data.

Three different choices for the regularization parameter τ are
considered: τopt, which is chosen to be the total variation of
the true slowness squared, τlarge = 1000τopt, which is large
enough so that the total variation constraint has no effect, and
τsmall = .875τopt, slightly smaller than what would seem to be
the optimal choice. Note that by using the Gauss Newton step
from (11) as an initial guess, the convex subproblem in (15)
converges immediately in the τlarge case. The parameter λ for
the PDE penalty is fixed at 1 for all experiments.

We loop through the frequencies from low to high in overlap-
ping batches of two, starting with the 3 and 4Hz data, using the
computed m as an initial guess for inverting the 4 and 5Hz data
and so on. For each frequency batch, we compute 50 outer itera-
tions each time solving the convex subproblem to convergence,
stopping when max( ‖pk+1−pk‖

‖pk+1‖ ,
‖∆mk+1−∆mk‖
‖∆mk+1‖ )≤ 1e−5.

Results of the six experiments are shown in Figure 2. In both the
noise free and noisy cases, including TV regularization reduced

oscillations in the recovered model and led to better estimates
of the high velocity region. Counterintuitively, the locations of
the discontinuities were better estimated from noisy data than
from noise free data. This likely happened because the noise
caused there to be larger discontinuities at the receivers which
then strengthened the effect of the TV regularization elsewhere.
This is supported by the experiments with τsmall, which show
that increasing the amount of TV regularization leads to better
resolution of the large discontinuities but at the cost of losing
contrast and staircasing the smooth background. There is also
a risk of completely missing small discontinuities when τ is
chosen to be too small.

We also consider a synthetic experiment with simultaneous
shots. The true velocity model is a 170 by 676 2D slice from
the SEG/EAGE salt model shown in Figure 3a. A total of
116 sources and 676 receivers were placed near the surface.
The problem size is reduced by considering Nss < Ns random
mixtures of the sources qsv defined by

q̄ jv =

Ns∑
s=1

w jsqsv j = 1, ...,Nss , (19)

where the weights w js ∈N (0,1) are drawn from a standard
normal distribution. We modify the synthetic data according
to d̄ jv = PA−1

v (m)q̄ jv and use the same strategy to solve the
smaller problem

min
m,u

∑
jv

1
2
‖Pu jv− d̄ jv‖2 +

λ 2

2
‖Av(m)u jv− q̄ jv‖2

such that m ∈ [B1,B2] and ‖m‖TV ≤ τ .

(20)

Starting with a good smooth initial model, results using two
simultaneous shots with no added noise and for two values of
τ are shown in Figure 3. With only two simultaneous shots
the number of PDE solves is resuced by almost a factor of 60.
TV regularization helps remove some of the artifacts caused by
using so few simultaneous shots and in this case mainly reduces
noise under the salt.

CONCLUSIONS AND FUTURE WORK

We presented a computationally feasible scaled gradient projec-
tion algorithm for minimizing the quadratic penalty formulation
for full waveform inversion proposed in (van Leeuwen and Her-
rmann, 2013b) subject to additional convex constraints. We
showed in particular how to solve the convex subproblems that
arise when adding total variation and bound constraints on the
model. Synthetic experiments suggest that when there is noisy
or limited data TV regularization can improve the recovery by
eliminating spurious artifacts and by more precisely identifying
the locations of discontinuities.

In future work, we still need to find a practical way of select-
ing the regularization parameter τ . The fact that significant
discontinuities can be resolved using small τ suggests that a
continuation strategy that gradually increases τ could be ef-
fective. It will be interesting to investigate to what extent this
strategy can avoid undesirable local minima. A possible nu-
merical framework for this could be along the lines of the



τ = τlarge τ = τopt τ = τsmall

τ = τlarge τ = τopt τ = τsmall

Figure 2: Recovered velocity from noise free data (first row) and noisy data (second row).

(a) (b) (c) (d)

Figure 3: True velocity (a), initial velocity (b), and recovered velocity from noise free data consisting of two simultaneous shots with
τ = τlarge (c) and τ = τsmall (d).

SPOR-SPG method in (van den Berg and Friedlander, 2011).
We also intend to study more realistic numerical experiments.
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