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Abstract. We present a method for solving PDE constrained optimization
problems based on a penalty formulation. This method aims to combine
advantages of both full-space and reduced methods by exploiting a large search-
space (consisting of both control and state variables) while allowing for an efficient
implementation that avoids storing and updating the state-variables. This leads
to a method that has roughly the same per-iteration complexity as conventional
reduced approaches while defining an objective that is less non-linear in the control
variable by implicitly relaxing the constraint. We apply the method to a seismic
inverse problem where it leads to a particularly efficient implementation when
compared to a conventional reduced approach as it avoids the use of adjoint
state-variables. Numerical examples illustrate the approach and suggest that the
proposed formulation can indeed mitigate some of the well-known problems with
local minima in the seismic inverse problem.
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1. Introduction

We consider PDE-constrained optimization problems of the form

min
m,u

1
2 ||r(u, d)||22 s.t. c(m,u) = 0, (1)

where m is the control variable, u is the state variable and d are the input data.
The state-space constraint c(m,u) = 0 encodes the PDE while r measures the
misfit between the input data and the modeled quantity u. These problems arise
in many applications such as optimal control and design [1, 2], inverse problems in
geophysics [3, 4], medical imaging [5] and non-destructive testing. Specifically for
inverse problems, m is a (gridded) physical quantity of interest (e.g., soundspeed,
density, conductivity) and u is a physical field (e.g, waves, electromagnetic) and
c(m,u) encodes the physics. The observed data is denoted by d and r(u, d) measures
the residual between the predicted field and the data. Oftentimes, measurements
are made from multiple independent experiments, in which case u is a block vector
containing the fields for different experiments. As a result, the size of u is typically
much bigger than that of m.

A popular approach to solving these constrained problems is based on the
corresponding Lagrangian formulation:

min
m,u,v

L(m,u, v) = 1
2 ||r(u, d)||22 + 〈v, c(m,u)〉. (2)

Solving this problem with a Newton-like method involves solving the KKT system [6]: ? ? ∇mc
? ∇urT∇ur + ? ∇uc
∇mc ∇uc 0

 δm
δu
δv

 = −

 ∇mL∇uL
∇vL

 , (3)

where ∗ denotes the complex-conjugate transpose and ? denotes second-order
derivatives, which are usually ignored, and

∇mL = ∇mc∗v, (4)

∇uL = ∇ur∗r(u, d) +∇uc∗v, (5)

∇vL = c(m,u). (6)

Advantages of this approach are that it eliminates the need to solve the PDEs
explicitly. However, this approach is often unfeasible for large-scale applications
because it involves simultaneously updating (and hence storing) all the variables.

Instead, one usually considers a reduced problem

min
m

φred(m) = 1
2 ||r(u(m), d)||22, (7)

where u(m) is defined through c(m,u(m)) = 0. The gradient of this objective is given
by

∇mφred(m) = ∇mc(m,u)∗v, (8)

where v is solved from ∇uL(m,u, v) = 0. The disadvantage of this approach is that it
involves explicit elimination of the state-space constraints (which involve PDE solves)
at each update. It also strictly enforces the constraint c(m,u) = 0 at each iteration,
which might lead to a very nonlinear problem in m. Moreover, the corresponding
reduced Hessian is typically a dense matrix that cannot be stored and computing
its action involves additional PDE solves. Practical approaches are usually based on
Quasi-Newton approximations of the reduced Hessian.
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1.1. Contributions

In this paper we present an alternative to the reduced approach that has a roughly
equivalent per-iteration complexity in terms of PDE solves and storage but retains
some of the characteristics of the all-at-once approach in the sense that it exploits a
larger search space by not enforcing the constraints c(m,u) = 0 at each iteration. The
approach is based on the following penalty formulation of the constrained problem:

min
m,u

φλ(m,u) = 1
2 ||r(u, d)||22 + λ2

2 ||c(m,u)||22, (9)

the solution of which coincides with that of the constrained problem (1) when λ ↑ ∞.
For a fixed λ we can solve this problem in a number of ways. As shown in section
2, we can use a variational projection approach described by [7] to define a reduced
problem:

min
m

φλ(m) = φλ(m,u(m)), (10)

where u(m) satisfies ∇uφλ(m,u) = 0. If we can solve this problem as efficiently as the
original PDE c(m,u) = 0, we arrive at a simple approach that does not require the
calculation of sensitivities of u w.r.t. m. Moreover, it turns out that the corresponding
Hessian can be well-approximated by a sparse matrix, making it feasible to a employ
a Newton method for the optimization.

The merit of this approach is illustrated for a simple toy problem defined by
r(u, d) = u− d, c(m,u) = (diag(m) +B)u− q with

B =

(
1
2

1
4

1
4 1

)
, q =

(
1 3
4

2 1
4

)
.

The solution in this case is m = (1, 1) and u = (1, 1). We use a Gauss-Newton method
to solve both (7) and (10), starting from m = (2, 2). We use λ = 0.1 for the penalty
approach. Figure 1 (a) shows the solution paths and (c) shows the convergence in
terms of ||r||2 and ||c||2 for both the reduced (black) and penalty approaches (red).
The penalty approach gets very close to the optimal solution in one iteration while
the reduced approach takes a detour because it is forced to satisfy the constraint
c(m,u) = 0 at each iteration. Another perspective is offered by plotting the objective
functions corresponding to the reduced and penalty approaches as a function of m.
Figure 1 (c) shows the reduced objective (7) and (d) shows the penalty objective (10).
The reduced objective in this case is quite non-linear while the penalty objective is
quadratic. These plots illustrate that the penalty formulation can indeed lead to an
objective function that is much better behaved.

Application of the proposed approach to seismic inversion, where the PDE is
a Helmholtz equation, is detailed in section 3. Here, we also compare the penalty
approach to both the all-at-once and the reduced approaches in terms of algorithmic
complexity. Some numerical examples on seismic inversion using both the penalty and
reduced formulations are given in section 4.

Possible extensions and open problems are discussed in section 5 and section 6
gives the conclusions.

1.2. Related work

The proposed method is related to the equation-error approach, which is typically used
to identify the control variable in diffusion problems given a complete measurement of
the state: d = u by solving c(m, d) = 0 for m [8]. Given partial measurements of the
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state d = Pu, the proposed method can be seen as a way of bootstrapping this by first
attempting to reconstruct the complete state from the partial measurements. Popular
methods for solving constrained problems of the form (1) include the Alternating
Direction Method of Multipliers (ADMM) [9], which rely on a an augmented
Lagrangian formulation and exact penalty methods [10], which use alternative, non-
quadratic, penalty functions. The method discussed here does not fall in either of these
classes; it does not introduce a Lagrangian but uses a form of alternating optimization
to efficiently solve the penalty formulation.

2. Variational projection

The solution of the penalty formulation (9) coincides with the solution of the original
problem (1) when λ ↑ ∞. For a fixed λ, we can solve (9) with a full Newton method
based on solving(

∇2
uφλ ∇2

u,mφλ
∇2
u,mφλ ∇2

mφλ

)(
δu
δm

)
= −

(
∇uφλ
∇mφλ

)
, (11)

and updating u := u+ δu and m := m+ δm. A disadvantage of this approach is that
we would still need to store the state variable in order to update it.

The variational projection approach, as described by [7], can be used to eliminate
the state variable and define a reduced problem:

min
m

φλ(m) = 1
2 ||r(u, d)||22 + λ2

2 ||c(m,u(m))||22, (12)

where u(m) = argminu
1
2 ||r(u, d)||22+ λ2

2 ||c(m,u)||22 (i.e., ∇uφλ(m,u) = 0). It is readily
verified that the gradient and Hessian of the reduced objective are given by

∇φλ(m) = ∇mφλ(m,u), (13)

∇2φλ(m) = ∇2
mφλ(m,u)

−∇2
m,uφλ(m,u)

(
∇2
uφλ(m,u)

)−1∇2
u,mφλ(m,u). (14)

It immediately follows that a stationary point m of the reduced objective (i.e.,
∇φλ(m) = 0) together with the corresponding u satisfy the first order optimality
conditions of the full objective and vice versa. Moreover, a point m that satisfies
the second order optimality condition of the reduced objective ∇2φλ(m) � 0 together
with a corresponding u that satisfies ∇2

uφλ(m) � 0 (in case both r(m,u) and c(m,u)
are linear in u this is satisfied automatically), satisfy the second order optimality
conditions of the full objective. This can be verified by observing that the Hessian of
the reduced objective is the Schur complement of the Hessian of the full objective and
using the properties of the Schur complement of a symmetric positive definite matrix
(cf. [11, prop. 14.1]). We can use these expressions for the gradient and Hessian to
design a Newton-like method to solve (12).

3. Application to seismic inversion

In seismic waveform inversion, the goal is to obtain detailed estimates of subsurface
medium parameters from seismic data by solving a PDE-constrained optimization
problem [4, 12]. Such data are typically collected for a large number of sources, which
we indicate by l = [1, 2, . . . , Ns]. The response is recorded as a time-series from which
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we extract a few relevant frequencies, indexed by k = [1, 2, . . . , Nf ]. The data for each
source and frequency is organized in a vector dkl. The governing PDE in this case is
taken to be the scalar Helmholtz equation:

Ak(m)ukl = qkl, (15)

where Ak(m) is a discretization of the Helmholtz operator
(
ω2
km + ∇2

)
for angular

frequency ωk, m are the gridded medium parameters, ukl denotes the wavefield, and
qkl is the source function. The resulting measurements are denoted by Pukl.

3.1. Penalty method

The objective (12) is now given by

φλ(m,u) = 1
2

∑
k,l

||Pukl − dkl||22 + λ2||Ak(m)ukl − qkl||22, (16)

where u is a vector containing all wavefields ukl. The wavefields satisfying
∇uφλ(m,u) = 0 can be solved from(

λAk(m)
P

)
ukl =

(
λqkl
dkl

)
. (17)

Given the wavefields ukl that solve (17), the gradient and Hessian of the reduced
objective are now given by

∇φλ =
∑
k,l

λ2G∗kl (Akukl − qkl) , (18)

∇2φλ =
∑
k,l

λ2G∗klGkl − λ4G∗klAk
(
P ∗P + λ2A∗kAk

)−1
A∗kGkl

= λ2
∑
k,l

G∗klGkl −G∗kl
(
I + λ−2A−∗k P ∗PA−1k

)−1
Gkl, (19)

where Gkl = ∂Ak(m)ukl

∂m , which is typically a sparse diagonally dominant matrix. For
large λ we can expand the inverse as (I +B)−1 = I −B +B2 + . . ., and approximate
the Hessian as

∇2φλ ≈
∑
k,l

G∗klA
−∗
k P ∗PA−1k Gkl, (20)

which is the Gauss-Newton Hessian of the reduced approach. For small λ, we
approximate the Hessian as

∇2φλ ≈ λ2
∑
k,l

G∗klGkl, (21)

thus effectively ignoring the second term in the Hessian. Algorithm 1 gives a Gauss-
Newton algorithm based on this approximation.

From the expressions for the gradient and Hessian we see that, for small λ, the
leading order dependency of φλ on m is through Ak(m). The sensitivity of ukl does
not appear in the gradient and appears in the Hessian only as higher order term. This
confirms that this approach leads to a less non-linear problem than the traditional
reduced approach, where the main dependency is through Ak(m)−1, as we will see
below.
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3.2. Reduced Lagrangian approach

The objective for the reduced approach is given by

φred(m) = 1
2

∑
k,l

||PAk(m)−1qkl − dkl||22. (22)

The gradient and Hessian of the reduced objective are given by

∇φred =
∑
kl

G∗klvkl (23)

∇2φred =
∑
kl

G∗klA
−∗
k P ∗PA−1k Gkl, (24)

where

Ak(m)ukl = qkl, (25)

Ak(m)∗vkl = − P ∗(Pukl − dkl). (26)

The Hessian in this case cannot be easily approximated by a sparse matrix and its
application would require additional PDE solves [13]. In contrast to the penalty
objective, the dependency on m of the reduced objective is solely through Ak(m)−1.

Algorithm 2 gives a Quasi-Newton algorithm for the solution of the unconstrained
optimization problem.

3.3. Complexity estimates

Assuming we can solve equations (17) and (25) equally efficient, the penalty-based
method requires a factor of 2 less computation and storage. Note, however, that for
the penalty-based formulation we get an (approximate) Newton method while the
reduced method only uses a Quasi-Newton approach. A Gauss-Newton method for
the reduced approach would require far more PDE-solves and is not considered here.
A summary of the leading order computational costs of the penalty, reduced and
all-at-once approaches is given in table 1.

4. Examples

For the examples, we discretize the 2D Helmholtz operator using a 5-point finite-
difference stencil with absorbing boundary conditions. The Quasi-Netwon algorithm
2 is augmented with a simple back-tracking linesearch to ensure descent.

4.1. Camembert

We present an example on a simple toy model, depicted in figure 2 (a). 20 Sources
and 94 receivers are located in vertical wells on either side of the model. T The
convergence histories in terms of the data misfit ||r(u, d)||2 and constraint ||c(m,u)||2
are shown in figures 2 (a). This illustrates the difference in solution paths between
the reduced and penalty methods. he reconstructions after inverting the data at 10
Hz with 10 iterations are shown in figures 2 (c-d). The results are very similar, but
inversion using the penalty approach was roughly twice as fast because there was no
need to solve an adjoint PDE at each iteration.
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4.2. Marmousi

A slightly more realistic model is depicted in figure 3 (a). Here, 51 sources and 101
receivers are located at the top of the model. The data are generated on a finer grid
(20 m spacing) than used for the inversion (50 m spacing). We apply the outlined
procedure (5 iterations) to data for frequencies 1,2,3,4,5 Hz consecutively each time
using the end result of one frequency as initial model for the next. The initial model for
the first frequency is depicted in 3 (b). This continuation from low to high frequencies
is common practice in seismic inversion as it helps to avoid some of the problems with
local minima [14]. The results on data without noise are depicted in 4. The penalty
method converges much faster in terms of the relative model error and gives a better
final result. Moreover, the penalty method was roughly twice as fast because there
was no need to solve an adjoint PDE at each iteration.

The results for data with 10 % additive Gaussian noise are depicted in figure
5. These experiments indicate that the penalty method is robust against a moderate
amount of noise.

Finally, results for inversion of frequencies 2,3,4,5 Hz are shown in 6. This
experiment highlights a key issue in seismic inversion; the lack of low frequencies in the
data. This causes local minima in the reduced objective which may lead gradient-based
methods to converge to a wrong solution. While not producing as good a result as
when starting from 1 Hz, the penalty approach does a lot better than the conventional
approach. This confirms that the penalty formulation does indeed mitigate some of
the problems with local minima.

5. Discussion

This paper lays out the basics of an efficient implementation of the penalty method
for PDE-constrained optimization. A few remaining issues and possible extensions are
listed below.

Solving large, sparse, mildly overdetermined systems A key step in the
penalty method is the solution of the augmented PDE (17). While we can make
use of factorization techniques for small-scale applications, industry-scale applica-
tions will typically require (preconditioned) iterative solution of such systems. A
promising candidate is a generic accelerated row-projected method described by
[15, 16] which proved successful in seismic applications and can be easily extended
to deal with overdetermined systems [17].

Time-domain formulation We have described application of the penalty method
to a formulation in the frequency domain, in which case we can hope to store
a complete wavefield ukl for one source and frequency. In a time-domain
formulation, the PDE (after spatial discretization) can be written as

M(m)u′(t) + Su(t) = q(t),

which can be solved via some form of time-stepping. The augmented wave-
equation involves an extra equation of the form Pu(t) = d(t). While we can
in principle form a large overdetermined system for the wavefield at all timesteps,
this is not feasible and a suitable time-stepping strategy will have to be developed
to solve the augmented PDE without storing the wavefields for all timesteps.

Other PDE-constrained optimization problems The penalty formulation can
be applied to any PDE-constrained optimization problem. We can only expect
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an efficient implementation along the lines described in this paper, however, if
the PDE is linear in the state variable. In particular, application to multi-
parameter seismic inversion (e.g., visco-acoustic, variable density, visco-elastic)
is straightfoward.

Dimensionality reduction The computational cost may be reduced by using
recently proposed dimensionality reduction techniques that essentially reduce the
number of right-hand-sides of the PDE by random subselection or aggregration
[18, 19, 20]. These techniques can be directly included in the penalty formulation
by introducing new sources and their corresponding data;

q̃kl′ =
∑
l

wll′qkl, d̃kl′ =
∑
l

wll′dkl,

where l′ = [1, 2, . . . , N ′s] (N ′s << Ns) and wl′l are suitably chosen random weights.

Regularization Regularization penalties on the model m can be included in a trivial
manner. Also, regularization techniques on the (Gauss-Newton) subproblems can
be included. This includes for example `1 regularization as proposed by [21] and
`2 regularization as is used in trust-region methods.

Penalties Penalties other than the `2 norm on either the data-misfit or the constraint
can be included in the formulation (9). However, this will most likely prevent us
from solving for the wavefields efficiently via system of equations (17). Still,
most alternative penalties may be approximated by a weighted `2 norm, in which
case a system like (17) can be formed and solved via an iteratively re-weighted
least-squares approach [15].

Nuisance parameters Formulations of the inverse problem may include additional
parameters that need to be estimated. An example of this are the source-weights
in the seismic applications. The penalty objective, in this case becomes

φλ(m,u, θ) = 1
2

∑
k,l

||θklPukl − dkl||22 + λ2||θklAk(m)ukl − qkl||22,

The wavefield may be solved first from (17) and subsequent minimization over θ
for the given wavefields is trivial as a closed-form solution is available:

θkl =
u∗kl
(
P ∗dkl + λ2A∗kqkl

)
||Pukl||22 + λ2||Akukl||22

.

This approach can be generalized to more complicated situations in which a
closed-form solution is not available [7].

Contination strategies for λ The experiments presented in this paper were done
for a fixed value of λ. To ensure that one really solves the original constrained
problem, however, a suitable strategy for increasing λ needs to be developed.

Optimization strategies In this paper we described a Gauss-Newton method to
minimize the reduced penalty objective (12). Using the expressions for the
gradient and Hessian presented in section 3.1, we can design other Newton
variants.
Recently proposed stochastic algorithms aimed at dramatically reducing the cost
of PDE-constrained optimization problems by working on a small subsets of the
right-hand-sides [22, 19, 23, 20] are directly applicable to this formulation.
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6. Conclusions

We have presented a new method for PDE-constrained optimization based on a penalty
formulation of the constrained problem. The method relies on solving for the state
variables from an augmented system that is comprised of the original discretized PDE
and the measurements. The resulting estimates of the state variables can be used to
directly estimate the control variable from the PDE via an equation-error approach.
The main benefits of this method are: i) The state variables for each experiment
can be obtained independently and do not have to be stored or updated as part of
an iterative optimization procedure, ii) the penalty formulation leads to a less non-
linear formulation than the reduced approach where the PDE-constraint is eliminated
explicitly, and iii) the gradient of the objective with respect to the control variable
can be computed directly from the state variables, without the need to solve adjoint
PDEs. We illustrate the approach on a non-linear seismic inverse problem, showing
that the reduced non-linearity leads to significantly better results than the reduced
approach at roughly half the computational costs (due to the fact that there is no
adjoint equation to solve). Moreover, the penalty approach succesfully mitigates some
of the the issues with local minima making the procedure less sensitive to the initial
model.
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# PDE’s Storage Gauss-Newton update
penalty Ns ×Nf Ng solve sparse SPSD system in Ng

unknowns
reduced 2(Ns ×Nf ) 2Ng solve matrix-free linear system in

Ng unknowns, requires Nf × Ns
per mat-vec

all-at-once 0 Nf ×Ns ×Ng solve sparse symmetric, possibly
indefinite system in (Nf + Ns +
1)×Ng unknowns

Table 1. Leading order computation and storage costs per iteration of different
methods; Ns denotes the number of sources, Nf denotes the number of frequencies
and Ng denotes the number of gridpoints. for large-scale seismic inverse problems
we typically have Ns = O(106), Nf = O(101) and Ng = O(109)
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Algorithm 1 Gauss-Newton algorithm based on the penalty formulation

for t = 0 to N do
gt = 0
Ht = 0
for k = 1 to Nf do
for l = 1 to Ns do

solve

(
λtAk(mt)

P

)
ukl =

(
λtqkl
dkl

)
gt = gt + λ2tGk(mt,ukl)

∗(Ak(mt)ukl − qkl)
Ht = Ht + (λ2t − 1)Gk(mt,ukl)

∗Gk(mt,ukl)
end for

end for
solve Ht∆mt = −gt
update mt+1 = mt + ∆mt

update λt.
end for

Algorithm 2 Quasi-Newton algorithm based on the reduced formulation

for t = 0 to N do
gt = 0
for k = 1 to Nf do
for l = 1 to Ns do

solve Ak(mt)ukl = qkl
solve Ak(mt)

∗vkl = −P ∗(Pukl − dkl)
gt = gt +Gk(mt,ukl)

∗vkl
end for

end for
apply L-BFGS Hessian ∆mt = lbfgs(−gt, {mt−M , . . . ,mt}, {gt−M , . . . ,gt})
find a suitable steplength α
update mt+1 = mt + α∆mt

end for
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Figure 1. Illustration of the reduced and penalty approach on a simple 4
dimensional test problem. (a) Solution paths and (b) the convergence in terms
of ||r||2 and ||c||2 for both the reduced (black) and penalty approaches (red).
The objective functions corresponding to the reduced and penalty approaches are
shown in (c) and (d) respectively.
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Figure 2. Camembert example. (a) True model, (b) convergence history, (c)
reconstruction by penalty approach (d) reconstruction by reduced approach.

x [m]

z
 [
m

]

0 2000 4000 6000 8000 10000

0

1000

2000

3000

(a)

x [m]

z
 [
m

]

0 2000 4000 6000 8000 10000

0

1000

2000

3000

(b)

Figure 3. Marmousi example. (a) True model, (b) initial model.
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Figure 4. Marmousi example on data without noise. The reconstructed models
after inverting frequencies 1,2,3,4,5 Hz. with 5 iterations each with (a) the penalty
method and (b) the conventional approach are shown on the same colorscale as
the true model. The relative model error at each iteration is shown in (c).
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Figure 5. Marmousi example on data with 10% noise. The reconstructed models
after inverting frequencies 1,2,3,4,5 Hz. with 5 iterations each with (a) the penalty
method and (b) the conventional approach are shown on the same colorscale as
the true model. The relative model error at each iteration is shown in (c).
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Figure 6. Marmousi example with missing low frequencies (no noise). The
reconstructed models after inverting frequencies 2,3,4,5 Hz. with 5 iterations each
with (a) the penalty method and (b) the conventional approach are shown on the
same colorscale as the true model. The relative model error at each iteration is
shown in (c).
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