
Probabilistic Joint Recovery Method for CO2 Plume Monitoring

1 Introduction

In order to curve current trends in climate change, it is crucial to reduce atmospheric CO2 emissions [8]. Carbon
Capture and Storage (CCS) is recognized as one of the only scalable net-negative CO2 technologies. During in-
jection, accurate prediction of fluid flow patterns in CCS is a challenging task, particularly due to uncertainties in
CO2 plume dynamics and reservoir properties. Monitoring techniques such as seismic imaging become imperative
to understand the evolution of the CO2 plume. Although previous time-lapse imaging methods such as the Joint
Recovery Method (JRM) [5, 9, 1] have provided valuable information, however they do not communicate uncer-
tainty thus are limited as tools for decision making. To address this, we propose the Probabilistic Joint Recovery
Method (pJRM) that computes the posterior distribution at each monitoring survey while leveraging the shared
structure among surveys through a shared generative model [2]. By computing posterior distributions for surveys,
this method aims to provide valuable uncertainty information to decision makers in CCS projects, augmenting
their workflow with principled risk minimization.

1.1 Previous Work

The JRM framework improves time-lapse imaging by leveraging the assumption that time-lapse seismic data
shares common features between different surveys [5, 9] thus the joint inversion of these common features will
produce a better result than independent inversion. This assumption is true for CO2 monitoring due to the fact
that large regions of the reservoirs remain unchanged i.e. regions where there is no CO2 plume. However, the
ill-posed nature of wave-based imaging used during time-lapse imaging (e.g. RTM, LS-RTM, FWI) introduces
significant uncertainties that deterministic methods fail to account for. This work addresses this challenge by
explicitly modeling these uncertainties, enabling more reliable subsurface property estimation.

2 Method

Inspired by previous work on reconstructing black holes utilizing shared features [3], we adopted a similar frame-
work to solve N time-lapse problems jointly. Our approach takes N seismic measurements as input and produces
N posterior distributions of the reconstructed plumes as output. To play the probabilistic counterpart of the com-
mon component in the JRM framework, the pJRM uses a Shared Generative Model (SGM) that extracts common
features from the measurements. The innovation components (i.e., features unique to each survey) are captured
by providing distinct latent distributions to the SGM for each monitoring survey.

2.1 Probabilistic Joint Recovery Model

Our goal is to recover the N posterior distribution CO2 plume from the N noisy measurements. For simplic-
ity, we illustrate the methodology using N = 2 time-lapse surveys, though the framework generalizes to N ≥ 2.
Mathematically, we aim to solve the two forward models jointly,

A1x∗1 + ε1 = y1 and A2x∗2 + ε2 = y2.
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Here, x∗i , where i = 1,2, denotes the true acoustic properties of the subsurface, yi denotes the noisy measurement
obtained by applying the forward operator Ai to x∗i with noise εi. Here we focus on a linear post-stack inversion
operator that represents the combination of a convolution operator and a spatial derivative along traces: Ai ∈Rm×n,
where m corresponds to the image size and n corresponds to the data size. Examples of the observed data are
shown in Figures 1b and 1c. While this proof of concept uses a linear forward operator, future work will extend
the framework to Full-Waveform Inversion, as it is designed to accommodate non-linear operators.

(a) Synthetic earth model and unknown plume

(b) First survey y1 (c) Second survey y2

Figure 1: Synthetic case study. (a) Earth model with CCS injection site and unknown CO2 plume. (b) Simulated post-stack
data at first survey. (c) Simulated post-stack data at second survey.

To incorporate uncertainty, we model the solutions probabilistically by using a SGM to decode latent distributions
into the posterior estimates x1 and x2—i.e., x1 ∼ Gθ (qφ1(z1)) and x2 ∼ Gθ (qφ2(z2)), where zi ∼N (0, I) is the
standard Gaussian distribution, and qφi represents the Gaussian mixture model (GMM) used to encode the different
monitors. Consequently, our objective function is defined as follows:

min
θ ,φ1,φ2

∥A1Gθ (qφ1(z1))−y1∥2
2 +∥A2Gθ (qφ2(z2))−y2∥2

2

which minimizes the difference between the forward-modeled measurements and the observed measurements with
respect to the parameters θ of SGM and φi of the GMMs. After inversion for posterior distributions of x1 and x2,
we take their difference to make a time-lapse image.

2.2 Probabilistic Independent Recovery Model

To evaluate the uplift in performance due to jointly solving N inverse problems versus solving them independently,
we also define the Probabilistic Independent Recovery Model (pIRM):

min
θ1,φ1
∥A1Gθ1(qφ1(z1))−y1∥2

2 and min
θ2,φ2
∥A2Gθ2(qφ2(z2))−y2∥2

2.

Here a separate generative model is trained for each time-lapse plume, while in pJRM, the generative model is
shared thus extracts common features across all time-lapse surveys.

2.3 Weak formulation

When using the pJRM, the computational cost of evaluating the forward operator and its gradient at each iteration
is significant. To address this, we adopted a weak formulation introduced by (author?), which decouples forward
operator evaluations from network parameter updates in Algorithm 1. In this approach, forward operator eval-
uations and gradient calculations (line 3) occur in an outer loop, while network parameter updates (line 7) take
place in an inner loop. This separation reduces the total number of forward operator evaluations required, set to a
relatively small value (∼ 200) compared to the number of network parameter updates needed ∼ 100000.
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Algorithm 1 Probabilistic Joint Recovery Model (pJRM) with Weak Formulation

1: for ii = 1 : maxiter1 do
2: for i = 1 : N do
3: gi = ∇xi

[
1

2σ2 ∥Ai(xi)−yi∥2
2 +

1
2γ2 ∥xi−Gθ

(
qφ i(zi)

)
∥2

2

]
4: xi = xi− τgi
5: end for
6: for iii = 1 : maxiter2 do
7: L (φ j,θ) = ∑

N
j=1

[
1

2γ2 ∥x j−Gθ

(
qφ j(z j)

)
∥2

2

]
8: (φ j,θ)← ADAM(L (φ j,θ))
9: end for

10: end for

3 Synthetic case study

We conducted in-silico validation of our method using velocity models with dimensions of (3.2Km× 5.9Km),
discretized into a grid of (398×103). As shown in Figure 1a, we simulated the fluid flow of CO2 at an injection
site using Jutul, mimicking a realistic CCS project [4]. The flow of CO2 alters the acoustic properties of the
reservoir, leading to time-lapse differences that can be imaged. To invert these time-lapse images, we employed a
post-stack convolutional forward operator using Pylops [7]. We tested the weak formulation of our method using
two and six surveys and obtained time-lapse reconstructions by taking the difference between the posterior means.
To quantify uncertainty, we plotted the standard deviation of the differences between posterior samples.

Juxtaposing Figures 2b and 2c demonstrates that pJRM significantly outperforms pIRM, as previously shown in
the non-probabilistic case by (author?) [1]. The time-lapse image generated by pJRM retains the overall shape
of the CO2 plume with lower uncertainty. In contrast, pIRM fails to capture the plume structure, resulting in
high uncertainty both within the plume and across other regions of the reconstruction. Additionally, Figures 2c
and 2d illustrate that increasing the number of surveys improves reconstruction quality, as the generative model
benefits from observing the shared components across multiple surveys. Figure 3 further highlights a decreasing
trend in uncertainties as more surveys are incorporated, validating the expected correlation between uncertainty
and error. These results underscore pJRM’s effectiveness in representing uncertainty, making it a more reliable
tool for monitoring CCS.

(a) Ground truth time-lapse difference x∗2−x∗1 (b) Independent pIRM w/ 2 surveys

(c) Joint pJRM w/ 2 surveys (d) Joint pJRM w/ 6 surveys

Figure 2: Comparison of time-lapse Images. (a) Time-lapse image with Independent pIRM. (b) Ground truth time-lapse
difference. (c) Time-lapse image with pJRM and 2 surveys. (d) Time-lapse image with pJRM and 6 surveys.

4 Conclusions

We introduce a novel approach to CCS monitoring that leverages shared structures between surveys to improve
reconstruction while providing uncertainty quantification. Additionally, we present a weak formulation of the
framework, enabling efficient use of computationally expensive forward operators. Our synthetic experiments
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(a) Uncertainty pIRM w/ 2 surveys (b) Error pIRM w/ 2 surveys

(c) Uncertainty pJRM w/ 2 surveys (d) Error pJRM w/ 2 surveys

(e) Uncertainty pJRM w/ 6 surveys (f) Error pJRM w/ 6 surveys

Figure 3: Comparison of uncertainty and errors. (a) Uncertainty of time-lapse image w/ independent method pIRM and 2
surveys. (b) Error of time-lapse image w/ pIRM and 2 surveys. (c) Uncertainty of time-lapse image w/ joint method pJRM and
2 surveys. (d) Error of time-lapse image w/ pJRM and 2 surveys. (e) Uncertainty of time-lapse image w/ joint method pJRM
and 6 surveys. (f) Error of time-lapse image w/ pJRM and 6 surveys.

highlighted two key findings: first, joint recovery significantly enhances time-lapse signal reconstruction compared
to its independently recovered counterpart; second, incorporating additional monitoring surveys further improves
performance. Since this approach operates within a probabilistic framework it offers uncertainty analysis for the
risk-averse application of CCS monitoring.
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