
Summary
1. We simulate subsurface CO2 injection into porous rock with seismic measurements,
2. treat the permeability field as a random variable,
3. apply the EnKF to estimate the CO2 saturation field,
4. compare the EnKF to two baselines, and
5. test the EnKF’s performance with different noise parameters.
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I. Motivation
A. CO2 injection

• Carbon-negative strategies are required to mitigate climate change.
• Injecting CO2 (carbon dioxide) underground is a well-developed technology for the oil industry.
• CO2 can be injected underground for long-term storage.
• CO2 storage must be monitored to mitigate risks (e.g., leakage, over-pressure)

B. Monitoring method

• Seismic measurements are non-intrusive and more informative than wells.
• Seismic measurements are noisy and nonlinear.
• Known fluid dynamics can provide additional information.
• Using both sources of information requires data assimilation techniques.

The EnKF is a scalable, mature technique with success on large, nonlinear systems.

II. Background
• Hidden state: 𝐱

‣ CO2 saturation field 𝐒
‣ Pressure field 𝐏
‣ Permeability 𝐊

• Observation: 𝐲
‣ Seismic data

• Time 𝑡 indexed by 𝑛
• Fluid dynamics: 𝐱𝑛 = 𝑓(𝐱𝑛−1)
• Seismic imaging: 𝐲𝑛 = ℎ(𝐱𝑛, 𝜈𝛈), comprised of:

‣ noise 𝜈𝛈 with signal-to-noise ratio −20 log 𝜈 dB
‣ Rock physics model: maps 𝐒 to seismic velocity 𝐦 and density 𝛒.
‣ Seismic model: simulates seismic measurements of 𝐦 and 𝛒

Both the observation and transition operators require numerically solving nonlinear PDEs.

A. Data assimilation

• Starting with a priori knowledge 𝑝(𝐱0) ≡ 𝑝(𝐱0 | 𝐲1:0):
• For each new observation 𝐲𝑛:

‣ We have a previous posterior: 𝑝(𝐱𝑛−1 | 𝐲1:𝑛−1).
‣ Predict: 𝑝(𝐱𝑛 | 𝐲1:𝑛−1) = ∫𝑝(𝐱𝑛 | 𝐱𝑛−1)𝑝(𝐱𝑛−1 | 𝐲1:𝑛−1) 𝑑𝐱𝑛−1
‣ Update: 𝑝(𝐱𝑛 | 𝐲1:𝑛) ∝ 𝑝(𝐲𝑛 | 𝐱𝑛)𝑝(𝐱𝑛 | 𝐲1:𝑛−1)

Figure 1:  Classical data assimilation predict-update loop

• Kalman filter: classical method that assumes linear operators and Gaussian distributions.

𝛍𝑎 = 𝛍𝑓 +𝐾(𝐲* − ℎ(𝛍𝑓 , 𝟎))

𝐵𝑎 = (𝐼 −𝐾𝐻)𝐵𝑓

𝐾 = cov(𝐱𝑓 , 𝐲𝑓)cov(𝐲𝑓)
−1

• EnKF: Monte-Carlo method that represents distributions as samples
‣ Transitions each sample individually
‣ Observes each sample individually
‣ Updates samples based on the measured 𝐲 and the sample covariance

𝐲* = ℎ(𝐱*, 𝜈*𝛈*)

𝐲𝑓,𝑖 = ℎ(𝐱𝑓,𝑖, 𝜈𝛈𝑖)

𝐱𝑎,𝑖 = 𝐱𝑓,𝑖 +𝐾(𝐲* − 𝐲𝑓,𝑖)

𝐾 = ĉov ( 𝐱𝑓 , 𝐲𝑓 )(ĉov(ℎ(𝐱𝑓 , 𝛼𝜈𝛈)) + 𝑅)−1
𝑅 = 𝜈2𝛽2𝐼

• 𝜈*: true noise scale
• 𝜈: estimated noise scale

• 𝛽: regularization scale
• 𝛼: 0 or 1 to choose whether noise is used in cov(𝐲𝑓)

III. Experiments
We apply EnKF to a seismic monitoring example using scalable, open-source tools (JutulDarcy.jl, JUDI.jl).

Simplifying assumptions:

1. All information is known a priori except for 𝐊.
2. We can generate 256 samples of possible 𝐊.

We compare EnKF to two baselines for estimating 𝐒:

• JustObs: solely uses 𝐲 and observation function
• NoObs: solely uses samples of 𝐊 and transition function

We also test EnKF performance for modified 𝛼, 𝛽, 𝜈, and 𝜈*. Figure 2:  Experimental setup

Figure 3:  Workflow diagram

IV. Results

(a) Year 1

(b) Year 5
Figure 4:  Ground-truth saturation field 𝐒 overlayed on permeability 𝐊

(a) Year 1 (b) Year 5
Figure 5:  Ground-truth seismic measurements

Figure 6:  NoObs prediction at year 5

Figure 7:  EnKF analysis at year 5

Figure 8:  Change 𝛽 when 𝛼 = 0 Figure 9:  Change 𝛽 when 𝛼 = 1

Figure 10:  Change 𝜈 Figure 11:  Change 𝜈*, keeping 𝜈 = 𝜈*

Figure 12:  RMSE for 3 methods over time

V. Conclusions
• EnKF error < JustObs error and NoObs error.
• For 𝛼 = 0,

‣ sensitive to noise parameters
‣ best results using noise eigenvalues

• For 𝛼 = 1,
‣ insensitive over large range
‣ similar error to lowest 𝛼 = 0 error

EnKF is a promising data assimilation method
for monitoring subsurface CO2 with seismic
measurements.
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