Domain-specific abstractions for large-scale geophysical inverse problems: Part I

Mathias Louboutin, Fabio Luporini, Navjot Kurjeka, Philipp Witte, Felix Herrmann, and Gerard Gorman
Wave-equation based geophysical exploration
Physical problem

http://www.open.edu/openlearn/science-maths-technology/science/environmental-science/earths-physical-resources-petroleum/content-section-3.2.1
Mathematical problem

\[
\min_{\mathbf{m}} \frac{1}{2} || \mathbf{P}_r \mathbf{A}^{-1}(\mathbf{m}) \mathbf{P}_s^T \mathbf{q} - \mathbf{d} \||^2_2 \quad (\text{Virieux and Operto, 2009})
\]

\(\mathbf{m} \): squared slowness
\(\mathbf{d} \): field recorded data
\(\mathbf{A}(\mathbf{m}) \): discretized wave-equation
\(\mathbf{q} \): source term
\(\mathbf{P}_r \): projection onto the receivers locations
\(\mathbf{P}_s \): projection onto the source location
Challenges

- Problem sizes are huge:
 - Seismic surveys consist of tens of thousands of individual experiments
 - Model wave propagation over thousands of time steps in large domains
 - Typical size of modeling matrix $A(m) \in \mathbb{R}^{n \times n}$, $n = \mathcal{O}(1e13)$
- Multiple/complex representations of the physics
- Simulation for inversion
 - Adjoint, gradients
- Complex simulation codes
- Needs scalable, flexible, performant and portable discretization
Raising the level of abstraction

\[
m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \Delta u = 0
\]

void kernel(...) {
 ...
 <impenetrable code with crazy performance optimizations>
 ...
}
Complexity of the code

70% of the code (81/116 pages) anisotropic modelling only
Tiny marmousi
62k gridpoints
1.5MFlop/time-step

Full marmousi
640k gridpoints
15MFlop/time-step

Sigsbee
2.2M gridpoints
56MFlop/time-step

3D overthrust
222M gridpoints
6GFlop/time-step

SEAM
2.2G gridpoints
56GFlop/time-step

Patiently wait for result
Design motivation

‣ stencil codes:

‣ time consuming

‣ complex

‣ architecture dependent
Proposed solution

DEVITO – Domain specific language for stencil-based finite difference code generation for PDEs w/ explicit time stepping in Python using SymPy.

https://www.devitoproject.org
Finite-difference DSL

- Separation of Concerns:
 - Geophysicists focus on physics
 - Computer scientists focus on software
 - Mathematicians focus on numerical analysis
Devito

Michael Lange, Navjot Kukreja, Mathias Louboutin, Fabio Luporini, Felippe Vieira Zacarias, Vincenzo Pandolfo, Paulius Velesko, Paulius Kazakas, and Gerard Gorman,

Devito

Model

Discrete setup

Symbolic PDE

Symbolic stencil

Operator

Stencil optimizations, memory setup, ...

Generates code at runtime

Python

C

Result
Devito for simulation

Symbolic mathematics for wave-equation based exploration geophysics
Scalar acoustic wave-equations

\[
\frac{1}{c^2} \frac{d^2 p(x, t)}{dt^2} - \Delta p(x, t) = 0
\]

\[
\frac{1}{\rho c^2} \frac{d^2 p(x, t)}{dt^2} - \nabla \cdot \left(\frac{1}{\rho} \nabla p(x, t) \right) = 0
\]

\[
m \frac{d^2 p(x, t)}{dt^2} - (1 + 2\epsilon)(G_{xx} + G_{yy})p(x, t) - \sqrt{(1 + 2\delta)}G_{zz}r(x, t) = q,
\]

\[
m \frac{d^2 r(x, t)}{dt^2} - \sqrt{(1 + 2\delta)}(G_{xx} + G_{yy})p(x, t) - G_{zz}r(x, t) = q,
\]

\[
m \frac{d^2 p(x, t)}{dt^2} - (1 + 2\epsilon)(D_{xx} + D_{yy})p(x, t) - \sqrt{(1 + 2\delta)}D_{zz}r(x, t) = q,
\]

\[
m \frac{d^2 r(x, t)}{dt^2} - \sqrt{(1 + 2\delta)}(D_{xx} + D_{yy})p(x, t) - D_{zz}r(x, t) = q,
\]

Acoustic isotropic

Acoustic isotropic with density

Acoustic anisotropic

Vertical transverse isotropic (VTI)

Acoustic anisotropic

Tilted transverse isotropic (TTI)
Symbolic discretization

Symbolic object with finite-difference discretization attributes

```python
u = TimeFunction(name="u", grid=grid,
                 time_order=self.t_order,
                 space_order=self.s_order)
```

is a symbolic object with derivatives

```plaintext
u.dx, u.dy, u.dz, u.dx2, ..., u.laplace,
```

In[69]: u.dx
Out[69]:

\[-u(t - s, x - 3h, y, z)/(60h) + 3u(t - s, x - 2h, y, z)/(20h) - 3u(t - s, x - h, y, z)/(4h) +
3u(t - s, x + h, y, z)/(4h) - 3u(t - s, x + 2h, y, z)/(20h) + u(t - s, x + 3h, y, z)/(60h)\]
Symbolic wave-equations

Acoustic

\[0 = m \frac{d^2 u(x,t)}{dt^2} - \Delta u(x,t) + \text{damp} \frac{du(x,t)}{dt} \]

\[\text{eqn} = m \ast u.dt2 - u.laplace + \text{damp} \ast u.dt \]

Acoustic 4th order in time

\[0 = m \frac{d^2 u(x,t)}{dt^2} - \Delta u(x,t) - \frac{dt^2}{12} \Delta \left(\frac{1}{m} \Delta u(x,t) \right) + \text{damp} \frac{du(x,t)}{dt} \]

\[\text{eqn} = m \ast u.dt2 - u.laplace - \text{s**2/12} \ast u.laplace2(1/m) + \text{damp} \ast u.dt \]
Worked example

Acoustic modelling
Wave-equation setup

\[m(x) \frac{u(x, t + \Delta t) - 2u(x, t) + x, t - \Delta t}{\Delta t^2} - \Delta u(x, t) = 0 \]

\[\text{equation} = m * u.dt2 - u.laplace + \text{damp} * u.dt \]

Absorbing boundary condition

u : discretized wavefield

m : discretized square slowness

\(\Delta \) : discretized Laplacian

\[u = \text{TimeFunction}(\text{name}="u", \text{grid}=\text{model.grid}, \text{time_dim}=\text{nt}, \text{time_order}=\text{time_order}, \text{space_order}=\text{spc_order}, \text{save}=\text{save}) \]

\[m = \text{Function}(\text{name}="m", \text{grid}=\text{model.grid}) \]

\[\text{Lap} = u.laplace \]
Stencil

\[
u(x, t + \Delta t) = \frac{\Delta t^2}{m(x)} (2u(x, t) - u(x, t - \Delta t) + \Delta u(x, t))
\]

\[
\text{u.forward} = \text{solve(equation, u.forward)}
\]

\[
\text{stencil} = \text{Eq(u.forward, solve(equation, u.forward))}
\]
Forward operator

```python
# Source term
src_eq = src.inject(field=u.forward, expr=src * s**2 / m)

# Insert source and receiver terms post-hoc
rec_term = rec.interpolate(expr=u)
```
Forward operator

```python
# Create a forward operator
Operator(stencil + src_expr + rec_expr, subs=subs, **kwargs)
```
```c
#include <cassert>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <fstream>
#include <vector>
#include <cstdio>
#include <string>
#include <inttypes.h>
#include <sys/time.h>
#include <math.h>

struct profiler {
    double loop_stencils_a;
    double loop_body;
    double kernel;
};

struct flops {
    long long loop_stencils_a;
    long long loop_body;
    long long kernel;
};

extern "C" int ForwardOperator
(double *m_vec, double *u_vec, double *damp_vec, double *src_vec, float *src_coords_vec,
 double *rec_vec, float *rec_coords_vec, long i1block, struct profiler *timings,
 struct flops *flops) {
    struct timeval start_kernel, end_kernel;
    gettimeofday(&start_kernel, NULL);
    int t0; int t1; int t2;
    for (int i3 = 0; i3<3; i3++)
    {
        flops->kernel += 2.000000;
        {
            t0 = (i3)%3);
            t1 = (t0 + 1)%3;
            t2 = (t1 + 1)%3;
        }
        struct timeval start_loop_body, end_loop_body;
        gettimeofday(&start_loop_body, NULL);
        {
            for (int ilb = 1; ilb<279; ilb+=i1block)
                for (int i1 = ilb; i1<i1b+i1block; i1++)
                    #pragma GCC ivdep
                    (rec, u) = Acoustic.Forward();
        }
        gettimeofday(&end_loop_body, NULL);
        flops->loop_body += end_loop_body.tv_sec - start_loop_body.tv_sec +
                           (end_loop_body.tv_usec - start_loop_body.tv_usec) / 1000000.0;
    }
    gettimeofday(&end_kernel, NULL);
    flops->kernel += end_kernel.tv_sec - start_kernel.tv_sec +
                     (end_kernel.tv_usec - start_kernel.tv_usec) / 1000000.0;
    return 0;
}
```

Shot record

Measurements at the receiver locations
Devito for inversion

Adjoint PDE

Gradients
Adjoint state gradient

FWI objective

\[\Phi(m) = \frac{1}{2} || P_r A^{-1}(m) P_s^T q - d ||^2_2 \]

with gradient with respect to \(m \)

\[\nabla \Phi(m) = -(\frac{d^2u}{dt^2})^T A(m)^{-T} P_r^T (P_r A(m)^{-1} P_s q - d) \]

requires adjoint wave-equation
Discretization for inversion

Extend symbolic discretization to adjoints

\[
\text{first
derivative}(u, \ \text{dim}=x, \ \text{side}=\text{centered}, \ \text{order}=\text{spc_order}, \ \text{matvec}=\text{transpose})
\]

CRITICAL for non even order derivatives (anti-symmetric stencil)

Not required for acoustic (self adjoint system)
Stencil

\[v(x, t - \Delta t) = \frac{\Delta t^2}{m(x)} (2v(x, t) - v(x, t + \Delta t) + \Delta v(x, t)) \]

\[
u\text{.backward} = \text{solve(equation, u\text{.backward})}
\]

\[
\text{stencil} = \text{Eq(u\text{.backward}, solve(equation, u\text{.backward}))}
\]
Adjoint operator

Source term
src_eq = rec(field=v.backward, expr=rec * s**2 / m)

Insert source and receiver terms post-hoc
rec_term = source.interpolate(expr=u)
Create a forward operator
Operator(stencil + src_expr + rec_expr, subs=subs, **kwargs)
#include <cassert>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <fstream>
#include <vector>
#include <cstdio>
#include <string>
#include <inttypes.h>
#include <sys/time.h>
#include <math.h>

struct profiler
{
 double loop_stencils_a;
 double loop_body;
 double kernel;
};

struct flops
{
 long long loop_stencils_a;
 long long loop_body;
 long long kernel;
};

extern "C" int AdjointOperator(double *m_vec, double *v_vec, double *damp_vec, double *srca_vec, float *srca_coords_vec, double *rec_vec, float *rec_coords_vec, long i1block, struct profiler *timings, struct flops *flops)
{
 struct timeval start_kernel, end_kernel;
 gettimeofday(&start_kernel, NULL);
 {
 for (int i3 = 0; i3<3; i3+=1)
 {
 float (*m)[280] = (double (*)[280]) m_vec;
 double (*v)[280][280] = (double (**)[280][280]) v_vec;
 double (*damp)[280] = (double (*)[280]) damp_vec;
 double (*srca)[2] = (double (*)(2)) srca_vec;
 float (*srca_coords)[2] = (float (*)(2)) srca_coords_vec;
 double (*rec)[101] = (double (*)(101)) rec_vec;
 float (*rec_coords)[2] = (float (*)(2)) rec_coords_vec;
 {
 struct timeval start_loop_body, end_loop_body;
 gettimeofday(&start_loop_body, NULL);
 {
 for (int i1b = 1; i1b<279 - (278 % i1block); i1b+=i1block)
 {
 #pragma GCC ivdep
 (srca, v) = Acoustic.Adjoint()}
Adjoint state requirement

- How to handle forward wavefield saves?
 - Checkpointing
 - Time reversal
 - Subsampling

Computational performance
3D TTI performance w/roofline models:
- 512x512x512 grid points
- 1000ms propagation (416 time steps)

<table>
<thead>
<tr>
<th>SO</th>
<th>Flops basic</th>
<th>Flops advanced</th>
<th>Flops aggressive</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>299</td>
<td>260</td>
<td>102</td>
</tr>
<tr>
<td>4</td>
<td>857</td>
<td>707</td>
<td>168</td>
</tr>
<tr>
<td>8</td>
<td>1703</td>
<td>1370</td>
<td>234</td>
</tr>
<tr>
<td>16</td>
<td>2837</td>
<td>2249</td>
<td>300</td>
</tr>
</tbody>
</table>
3D TTI performance:
- 768x768x768 grid points
- 1000ms propagation (416 time steps)

We scale linearly!
Summary

- Flexible physics with a simple finite-difference interface
 - Weeks, months of development time saved
 - Write your own physics

- Minimal coding required for geophysicists/mathematicians
 - Domain specialists only focus on their own problem
 - Improves collaborations with a high-level common ground

- Simulation for inversion with adjoint-aware discretization

- Adjoint are inherently hard, specially for complicated physics

- Advantages of code generation (performance, system and architecture portability)
Observations

Highly abstracted JIT compiler w/ pathways to
- C, MPI+OpenMP+C, CUDA, MPI+CUDA...
- backend w/ YASK implemented (3 X speed up on Xeon Phi)
- backend w/ OPS library for CPU-GPU(+MPI)

Take home message: getting the abstraction right is key!
- highly productive environment w/ flexibility w.r.t. discretization (stencil)
- connection w/ linear algebra
- parallel IO & access to meta data
- intuitive data parallelism to work w/ multiple instances

https://github.com/intel/yask
https://github.com/OP-DSL/OPS
Tiny marmousi
62k gridpoints
1.5MFlop/time-step

Full marmousi
640k gridpoints
15MFlop/time-step

Sigsbee
2.2M gridpoints
56MFlop/time-step

3D overthrust
222M gridpoints
6GFlop/time-step

SEAM
2.2G gridpoints
56GFlop/time-step

Patiently wait for result
Tiny marmousi
62k gridpoints
1.5MFlop/time-step

Full marmousi
640k gridpoints
15MFlop/time-step

Sigsbee
2.2M gridpoints
56MFlop/time-step

3D overthrust
222M gridpoints
6GFlop/time-step

SEAM
2.2G gridpoints
56GFlop/time-step
Future work

‣ Abstraction for the boundary conditions
 ‣ How accurate?
 ‣ How expensive?

‣ Automatic adjoints

‣ FD for source/receivers (i.e dipole sources)
Domain-specific abstractions for large-scale geophysical inverse problems
Philipp A. Witte, Mathias Louboutin and Felix J. Herrmann
Motivation

Use Geophysics to understand the earth

• invert for subsurface parameters, e.g. velocity, density, porosity
Motivation

Computational challenges of seismic inverse problems:

- Up to of 10^7 (2D) and 10^{10} (3D) unknown variables
- Observations of several magnitudes larger (several TB of data)
- Large number of observed data samples (10k or more)
- Propagate wavefields over thousands of time steps (like 10k layer residual network with single/few channels)
- Many floating point operations per grid point/time step (typically 8 or 16 point stencils)
Motivation

Mathematical challenges of seismic inverse problems:

- Data: contains many physical effects unaccounted for in physical models ("noise")
- Nonlinear problems often ill-posed and non-convex
- Require regularization/constraints
- Linear problems badly conditioned and inconsistent
- Require (physically-motivated) pre-conditioning
- Due to large computational cost: can only afford few iterations (between 20 and 50)
Motivation

true model

initial guess

w/o constraints

w/ constraints

(Esser et al., 2015)
Motivation

Software for seismic inverse problems:

- Needs efficient PDE solver w/ correct adjoint pairs, gradients etc.
- Large-scale parallelization (cluster/cloud) w/ resilience to hardware failures
- Manage large seismic data volumes and meta data
- Allow implementation of complex algorithms (2nd order methods, constraints/penalties, linear solvers, preconditioners, etc.)
- Use for testing/research and full scale production
Motivation

The reality of seismic inversion codes:

- Academic packages in Python, MATLAB, etc., do not scale to realistic problem sizes
- Software in O&G companies: “state secrets”, no open-source software or collaboration w/ academia
- Written in C or FORTRAN + developed over decades
- Mixing of PDE solvers, I/O, parallelization, data processing + algorithms
- Modifying individual parts often impossible (different PDE/stencil order, add line search, etc.)
- Performance-optimization by separate HPC experts w/o considerations for correct adjoints and gradients
Motivation

Utilize power of abstractions:
- Code that closely follows underlying math
- Inspired by software packages from ML + linear algebra (TensorFlow/PyTorch, Trilinos, Rice Vector Library)

```plaintext
for j=1:n
    r = J*x - d_obs
    g = J'*r
    x = x - alpha*g
end
```
Motivation

The Julia Devito Inversion (JUDI) framework:

- High-level Julia package build on top of Devito
- Matrix-free linear operators and abstract data vectors
- Formulate algorithms in terms of linear algebra
- Julia provides resilience on cluster-like environments
Non-linear seismic inversion

Full waveform inversion

- recover discrete parametrization of subsurface (velocity, density, etc.)
- minimize misfit between observed and modeled data:

\[\Phi(m) = \frac{1}{2} \left\| \mathbf{d}_{\text{pred}} - \mathbf{d}_{\text{obs}} \right\|_2^2 \]
Non-linear seismic inversion

Full waveform inversion

- recover discrete parametrization of subsurface (velocity, density, etc.)
- minimize misfit between observed and modeled data:

$$\Phi(m) = \frac{1}{2} \| d_{\text{pred}} - d_{\text{obs}} \|_2^2$$
Non-linear seismic inversion

Full waveform inversion

- recover discrete parametrization of subsurface (velocity, density, etc.)
- minimize misfit between observed and modeled data:

\[\Phi(m) = \frac{1}{2} \| d_{\text{pred}} - d_{\text{obs}} \|^2 \]

[Images of seismic data and a comparison with the true data]
Non-linear seismic inversion

Full waveform inversion

- recover discrete parametrization of subsurface (velocity, density, etc.)
- minimize misfit between observed and modeled data:

$$\Phi(m) = \frac{1}{2} \| d_{\text{pred}} - d_{\text{obs}} \|^2_2$$
Non-linear seismic inversion

Full waveform inversion

- Sensitivities of modeling operator

\[\Phi(m) = \frac{1}{2} \| P_r A(m)^{-1} P_s^T q - d_{\text{obs}} \|_2^2 \]

\[J = \frac{\partial}{\partial m} \left(P_r A(m)^{-1} P_s^T q \right) \]

- Gradient of FWI objective function

\[g = J^T (d_{\text{pred}} - d_{\text{obs}}) \]
Non-linear seismic inversion

Full waveform inversion

- Sensitivities of modeling operator
 \[\Phi(m) = \frac{1}{2} \| P_r A(m)^{-1} P_s^T q - d_{obs} \|_2^2 \]

\[J = \frac{\partial}{\partial m} \left(P_r A(m)^{-1} P_s^T q \right) \]

- Gradient of FWI objective function
 \[g = J^T (d_{pred} - d_{obs}) \]
Example 1: Gradient descent

Runnable Julia code:

```julia
# Main loop
for j=1:maxiter

    # get fwi objective function value and gradient
    i = randperm(d_obs.nsrc)[1:batchsize]
    f, g = fwi_objective(model, q[i], d_obs[i])

    # linesearch
    step = backtracking_linesearch(model, f, g, varargs...)

    # Update model and projection
    model.m = proj(model.m + reshape(step, model.n))

end
```

alternatively:

- Change update rule (e.g. conjugate gradients, etc.)
- Implement more complex algorithms (L-BFGS, Gauss-Newton, etc.)
Example 2: Gauss-Newton method

Runnable Julia code:

```julia
# Main loop
for j=1:maxiter
    # Model predicted data
d_pred = Pr*A_inv*Ps'*q

    # GN update direction
    p = lsqr(J, d_pred - d_obs; maxiter=10)

    # Update model
    model.m = model.m - reshape(p, model.n)
end
```

Gauss-Newton subproblems:

- Pass matrix-free linear operator to third party solvers
- LSQR from Julia IterativeSolvers.jl package
- Overload necessary operations in lsqr for JUDI operators/vectors
Example 2: Gauss-Newton method
Example 3: Spectral projected GD

What if we want to use more complicated algorithms?
- Pass misfit functions 3rd-party optimization libraries
- Access to large variety of optimization methods
- E.g. minConf, NLopt.jl, Optim.jl

Does this scale to large problems?
- Case study w/ 3D Overthrust velocity model
- 801 x 801 x 207 grid points + PML (222 million unknowns)
- 100 billion data points, over 1.5 TB of data
- spectral-projected gradient algorithm from minConf library
- 15 iterations w/ batchsize of 1080 per iteration

(Schmidt et al., 2009, Johnson et al. 2017, White et al., 2017)
Example 3: Spectral projected GD

\[z = 400 \text{ m} \]

\[z = 800 \text{ m} \]
Conclusions

Seismic inverse problems are extremely challenging:

- Mathematically + computationally complex
- Abstractions + separation of concerns to manage complexity
- Testing/Research in high-level languages
- Automatic performance optimizations