Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2019 SLIM group @ Georgia Institute of Technology.

# Learned imaging with constraints and uncertainty quantification

Felix J. Herrmann, Ali Siahkoohi, and Gabrio Rizzuti. Learned imaging with constraints and uncertainty quantification. In: NeurIPS 2019 Deep Inverse Workshop. 2019

Presented by: Ali Siahkoohi



Georgia Institute of Technology



#### Inverse problems

Estimate unknown parameters of a system via indirect measurements

- seismology: estimate the speed of sound in subsurface of the Earth
- medical imaging: infer visual representations of the interior of a body (X-ray radiography, MRI)



#### Inverse problems

unknown parameters

Forward operator

indirect measurements

Inverse problem



# Seismic imaging

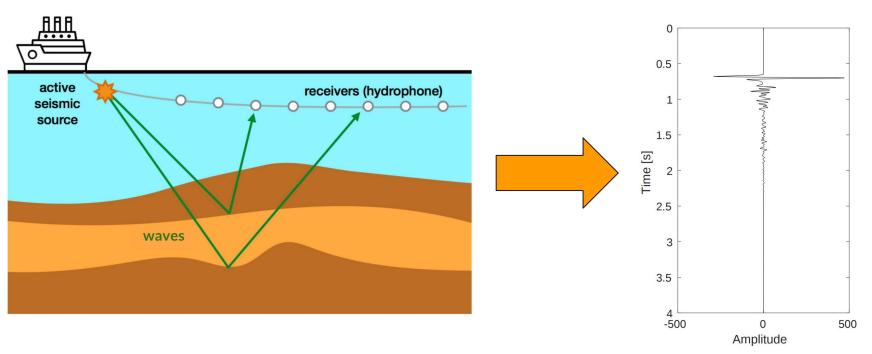
unknown parameters

**Forward operator** 

Seismic imaging

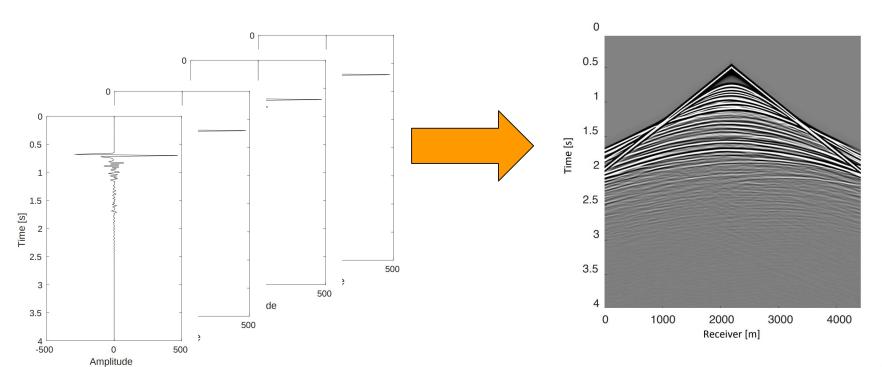
indirect measurements

# Seismic data acquisition

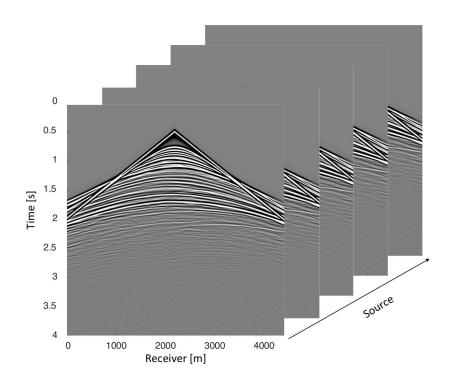




#### Shot record - one source location



#### Seismic data volume





# Seismic imaging

unknown parameters

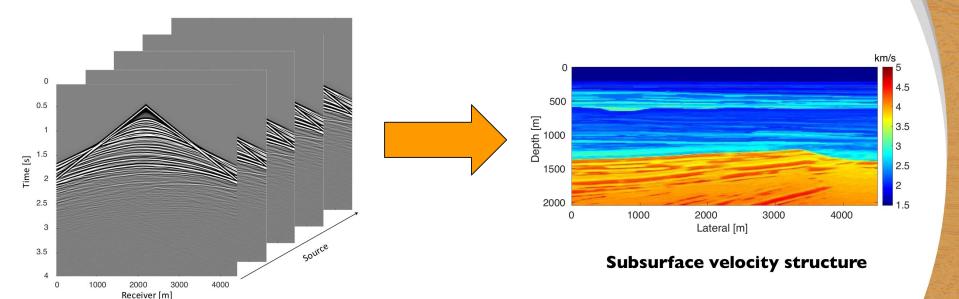
**Forward operator** 

Seismic imaging

indirect measurements



#### Objective of exploration seismology

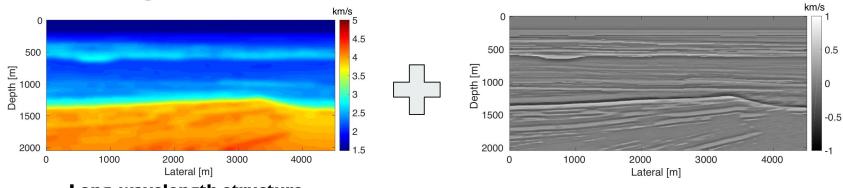


#### **Observed data**

Fang, Z., 2018. Source estimation and uncertainty quantification for wave-equation based seismic imaging and inversion (Doctoral dissertation, University of British Columbia).

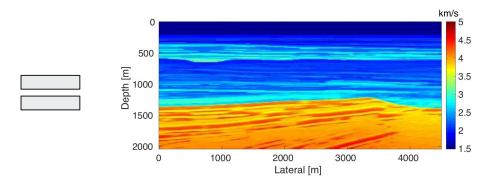
#### SLIM 👍

#### Velocity model



Long-wavelength structure (background velocity)

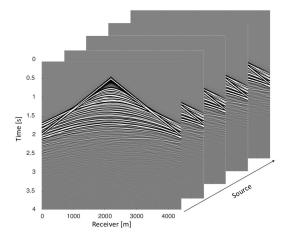
Short-wavelength structure (velocity perturbation)



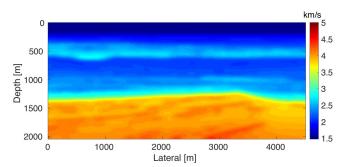
**Subsurface velocity structure** 

km/s

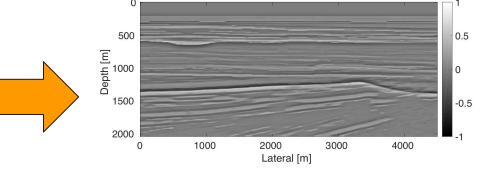
#### Seismic imaging



#### **Observed data**



Long-wavelength structure (background velocity)



Short-wavelength structure (velocity perturbation)



# Seismic imaging

unknown parameters

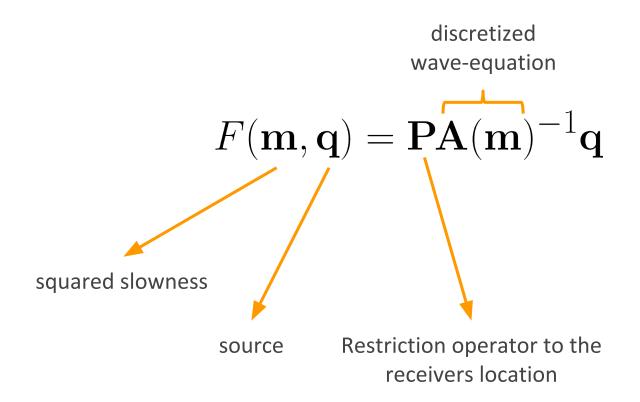
**Forward operator** 

Seismic imaging

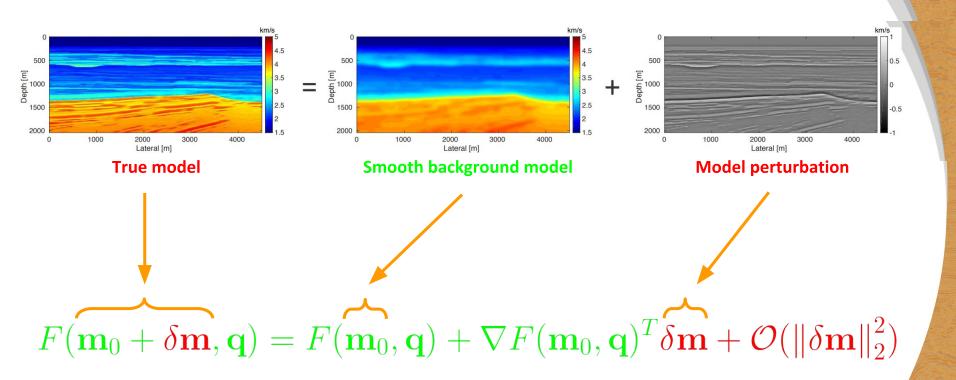
indirect measurements



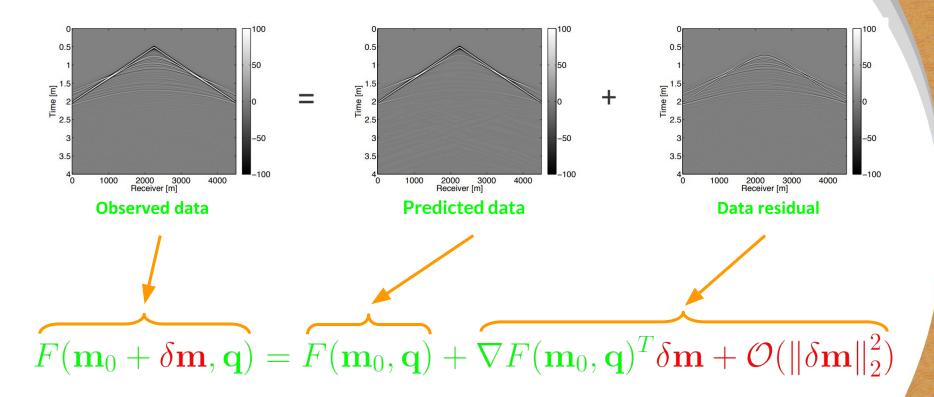
#### Nonlinear forward operator



# Taylor series expansion



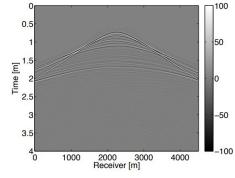
### Taylor series expansion





#### Taylor series expansion

$$\nabla F(\mathbf{m}_0, \mathbf{q})^T \delta \mathbf{m} + \mathcal{O}(\|\delta \mathbf{m}\|_2^2) =$$

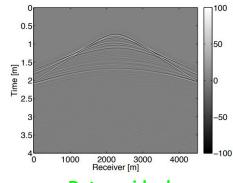


Data residual



#### **Linearization error**

$$\nabla F(\mathbf{m}_0, \mathbf{q})^T \delta \mathbf{m} \simeq$$



**Data residual** 

#### Seismic imaging

$$\nabla F(\mathbf{m}_0, \mathbf{q})^T \delta \mathbf{m} \simeq \delta \mathbf{d}$$

Linearized born forward modeling operator

$$\mathbf{J}(\mathbf{m}_0, \mathbf{q}) \equiv \nabla F(\mathbf{m}_0, \mathbf{q})^T$$



# Seismic imaging

unknown parameters

Forward operator

Seismic imaging

indirect measurements

# Least squares seismic imaging

$$\underset{\delta \mathbf{m}}{\operatorname{arg\,min}} \quad \frac{1}{2} \sum_{i=1}^{N} \| \mathbf{J}(\mathbf{m}_{0}, \mathbf{q}_{i}) \delta \mathbf{m} - \delta \mathbf{d}_{i} \|_{2}^{2} \quad \text{subject to} \quad \delta \mathbf{m} \in \mathcal{C}$$

where,  $\delta \mathbf{d}_i = \mathbf{d}_{\text{obs},i} - F(\mathbf{m}_0, \mathbf{q}_i)$ 

N Number of source experiments

 $\mathbf{q}_i$  Source signature in  $i^{\mathrm{th}}$  source experiments

 $\mathbf{d}_{\mathrm{obs},i}$  Observed data in  $i^{\mathrm{th}}$  source experiments

 $\delta \mathbf{d}_i$  Data residual in  $i^{ ext{th}}$  source experiments

 $\mathcal{C}$  A constraint set encoding our prior knowledge



# Computational challenges

Applying  $\mathbf{J}(\mathbf{m}_0, \mathbf{q}_i)$  and  $\mathbf{J}(\mathbf{m}_0, \mathbf{q}_i)^T$  is expensive,

Involves two PDE solves:

$$\mathbf{J}(\mathbf{m}_0, \mathbf{q}_i) = \nabla F(\mathbf{m}_0, \mathbf{q})^T = -\mathbf{P}\mathbf{A}(\mathbf{m}_0)^{-1} \left[ \nabla \mathbf{A}(\mathbf{m}_0) \left( \mathbf{A}(\mathbf{m}_0)^{-1} \mathbf{q} \right) \right]$$

Many source experiments,

- N is large
- Evaluating the objective function requires 2N PDE solves.

### Need for regularization/prior

Solving inconsistent system of equations,

- linearization error, i.e.,  $\mathbf{J}(\mathbf{m}_0,\mathbf{q}_i)\delta\mathbf{m}+\mathcal{O}(\|\delta\mathbf{m}\|_2^2)=\delta\mathbf{d}_i$
- noise in observed data, i.e.,  $\mathbf{d}_{\mathrm{obs},i} = F(\mathbf{m},\mathbf{q}_i) + \boldsymbol{\epsilon}_i, \quad \boldsymbol{\epsilon}_i \sim p_{noise}(\boldsymbol{\epsilon})$

Good choices for regularization/prior is challenging,

Hand crafted priors bias solution towards handcrafted priors

# Stochastic optimization edit

**Stochastic optimization** (over source experiments)

• Approximate objective/gradient with a minibatch of source experiments

$$\sum_{i=1}^{N} \|\mathbf{J}(\mathbf{m}_0, \mathbf{q}_i) \delta \mathbf{m} - \delta \mathbf{d}_i\|_2^2 \simeq \frac{N}{n} \sum_{i=1}^{n} \|\mathbf{J}(\mathbf{m}_0, \mathbf{q}_i) \delta \mathbf{m} - \delta \mathbf{d}_i\|_2^2$$

Typically we need 2-3 passes over the entire set of source experiments

Esser, E., Guasch, L., van Leeuwen, T., Aravkin, A.Y. and Herrmann, F.J., 2018. Total variation regularization strategies in full-waveform inversion. SIAM Journal on Imaging Sciences, 11(1), pp.376-406.

Peters, B., Smithyman, B.R. and Herrmann, F.J., 2019. Projection methods and applications for seismic nonlinear inverse problems with multiple constraints. Geophysics, 84(2), pp.R251-R269.

### Regularization/prior

#### Handcrafted quadratic penalty terms

• Tikhonov regularization, a.k.a (weighted) ridge regression

$$\underset{\delta \mathbf{m}}{\operatorname{arg\,min}} \quad \frac{1}{2} \sum_{i=1}^{N} \| \mathbf{J}(\mathbf{m}_0, \mathbf{q}_i) \delta \mathbf{m} - \delta \mathbf{d}_i \|_2^2 + \frac{\lambda^2}{2} \| \mathbf{R} \delta \mathbf{m} \|_2^2$$

- may adversely affect gradient & Hessian
- no guarantees that all model iterates are (physically) feasible
- biases solution towards handcrafted prior

Esser, E., Guasch, L., van Leeuwen, T., Aravkin, A.Y. and Herrmann, F.J., 2018. Total variation regularization strategies in full-waveform inversion. SIAM Journal on Imaging Sciences, 11(1), pp.376-406.

Peters, B., Smithyman, B.R. and Herrmann, F.J., 2019. Projection methods and applications for seismic nonlinear inverse problems with multiple constraints. Geophysics, 84(2), pp.R251-R269.

### Regularization/prior

#### Handcrafted constraints

Total variation constraint

$$\underset{\delta \mathbf{m}}{\operatorname{arg\,min}} \quad \frac{1}{2} \sum_{i=1}^{N} \| \mathbf{J}(\mathbf{m}_{0}, \mathbf{q}_{i}) \delta \mathbf{m} - \delta \mathbf{d}_{i} \|_{2}^{2} \quad \text{subject to} \quad \delta \mathbf{m} \in \mathcal{C}$$

- (physical) constraints are satisfied during every iteration
- biases solution towards handcrafted prior

# Generative models as priors

If we have access to sufficient samples from the ground truth distribution

• train a generative model, e.g. GAN, VAE, to sample the distribution

$$oldsymbol{x} \sim p_X^{ ext{gen}}(oldsymbol{x}) \Rightarrow oldsymbol{x} = oldsymbol{g}(oldsymbol{z}), oldsymbol{z} \sim p_Z(oldsymbol{z})$$

$$p_X^{\mathrm{gen}}(\boldsymbol{x}) = p_X^{\mathrm{true}}(\boldsymbol{x})$$

use the pre-trained generative model as prior

### **Bayesian Inference**

Statistical approach for formulating & solving inverse problems

quantifies uncertainty in inference and motivates regularization

$$egin{array}{lll} p_X^{
m post}(oldsymbol{x}|oldsymbol{y}) &=& rac{1}{\mathbb{Z}}p^{
m l}(oldsymbol{y}|oldsymbol{x})p_X^{
m prior}(oldsymbol{x}) \ &=& rac{1}{\mathbb{Z}}p_{oldsymbol{\eta}}(\hat{oldsymbol{y}}-oldsymbol{f}(oldsymbol{x}))p_X^{
m prior}(oldsymbol{x}) \end{array}$$

 $p_X^{\text{prior}}$ : prior distribution.

 $p_{\eta}$ : distribution for the noise in measurement

### Inference with generative model

Use the *pre-trained* generative model as prior in Bayesian inference

$$p_X^{ ext{post}}(oldsymbol{x}|oldsymbol{y}) = rac{1}{\mathbb{Z}}p_{oldsymbol{\eta}}(\hat{oldsymbol{y}}-oldsymbol{f}(oldsymbol{x}))p_X^{ ext{gen}}(oldsymbol{x})$$

Performing inference for an arbitrary function:

$$egin{aligned} & \mathbb{E}_{oldsymbol{x} \sim p_X^{ ext{post}}}[l(oldsymbol{x})] &= & rac{1}{\mathbb{Z}} \mathop{\mathbb{E}}_{oldsymbol{x} \sim p_X^{ ext{gen}}}[l(oldsymbol{x})p_{\eta}(\hat{oldsymbol{y}} - oldsymbol{f}(oldsymbol{x}))], \ &= & rac{1}{\mathbb{Z}} \mathop{\mathbb{E}}_{oldsymbol{z} \sim p_Z}[l(oldsymbol{g}(oldsymbol{z}))p_{\eta}(\hat{oldsymbol{y}} - oldsymbol{f}(oldsymbol{g}(oldsymbol{z})))], \ &= & \mathop{\mathbb{E}}_{oldsymbol{z} \sim p_Z^{ ext{post}}}[l(oldsymbol{g}(oldsymbol{z}))], \end{aligned}$$

# **Approximate inference**

Drawing samples from the posterior can be done by performing MCMC on (more on this later)

$$p_Z^{ ext{post}}(oldsymbol{z}|oldsymbol{y}) \equiv rac{1}{\mathbb{Z}} p_{oldsymbol{\eta}}(\hat{oldsymbol{y}} - oldsymbol{f}(oldsymbol{g}(oldsymbol{z}))) p_Z(oldsymbol{z})$$

i.e.,  $p_Z^{
m mcmc}(m{z}|m{y}) pprox p_Z^{
m post}(m{z}|m{y})$  . Next, for any function:

$$\overline{l(oldsymbol{x})} \equiv \mathop{\mathbb{E}}_{oldsymbol{x} \sim p_X^{ ext{post}}}[l(oldsymbol{x})] pprox rac{1}{N_{ ext{samp}}} \sum_{n=1}^{N_{ ext{samp}}} l(oldsymbol{g}(oldsymbol{z})), \qquad oldsymbol{z} \sim p_Z^{ ext{mcmc}}(oldsymbol{z}|oldsymbol{y}).$$

### Why generative model as prior?

The prior is no longer hand-crafted

- solution of the inverse problem is not biased towards the prior
  - $\circ$  Only if  $p_X^{\mathrm{gen}}(oldsymbol{x}) = p_X^{\mathrm{true}}(oldsymbol{x})$
- performing MCMC on the latent variable is easier
  - much smaller dimension

Big assumption: we have access to samples from the ground truth distribution

limits the application in seismic inversion/imaging

#### Limitations in seismic inverse problems

Due to Earth's heterogeneity, we do not have access to samples from true prior

$$\{\boldsymbol{x}_i\}_{i=1}^N \sim p_{prior}(\boldsymbol{x})$$

i.e., limited chance of pre-training a generative model

We have many source experiments  $\mathbf{d}_{\mathrm{obs},i}$  explaining one and only one unknown,

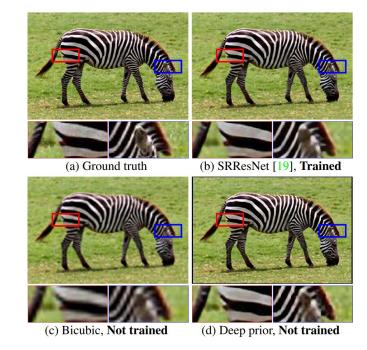
i.e., 
$$({m y}_1,{m x}), \ ({m y}_2,{m x}), \ \dots, \ ({m y}_N,{m x})$$

#### **Deep Image Prior**

An *untrained* neural net as a prior

$$w^* = \underset{w}{\operatorname{arg\,min}} \|y - AG(z; w)\|^2$$

where  $y=Ax^*+\eta$  is some noisy observation  $z\in\mathbb{R}^k$  fixed random vector  $G(z;w)\colon\mathbb{R}^k\to\mathbb{R}^n$  Untrained network



Ulyanov, D., Vedaldi, A. and Lempitsky, V., 2018. Deep image prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 9446-9454).

Herrmann, F.J., Siahkoohi, A. and Rizzuti, G., 2019. Learned imaging with constraints and uncertainty quantification. arXiv preprint arXiv:1909.06473.

#### **Deep Image Prior**

minimize 
$$\frac{1}{2} ||y - Ag(z, w)||_2^2$$

is equivalent to:

$$\underset{x, w}{\text{minimize }} \frac{1}{2} ||y - Ax||_2^2 \quad \text{subject to} \quad x = g(z, w)$$

- network topology acts as a generic prior for "natural images"
- does not bias solution (untrained network adds little info)
- Non-convex and no guarantee that is (physically) feasible

#### Constrained weak deep prior

Replace w/ weak constraint:

$$\underset{x, w}{\text{minimize}} \frac{1}{2} \|y - Ax\|_{2}^{2} + \frac{\lambda^{2}}{2} \|x - g(z, w)\|_{2}^{2}$$

and add strong handcrafted constraints (TV-norm):

$$\underset{x \in \mathcal{C}, w}{\text{minimize}} \frac{1}{2} \|y - Ax\|_{2}^{2} + \frac{\lambda^{2}}{2} \|x - g(z, w)\|_{2}^{2}$$

- lacktriangle imposes solution to remain in range generator w/ error proportional to  $\lambda$
- strong constraints balanced w/ deep prior
- strong handcrafted constraints guarantee (physically) feasibility
- ▶ does not sample posterior when training w/ single z

# **Alternating back-propagation**

A method for training generative models

- based on EM algorithm
- Does not need an extra network, e.g., recognition network in VAE, discriminator in GAN
- able to learn from incomplete or indirect data
  - This may prove difficult or less convenient for VAE and GAN
- no need for  $x_i$ 's

#### Setup

- training set of data vectors  $\{Y_i, i = 1, ..., n\}$
- each  $Y_i$  has a corresponding  $Z_i$  (not observed)
- Probabilistic model:  $[Y|Z,W] \sim p(Y|Z,W)$

$$Y = f(Z; W) + \epsilon,$$
  

$$Z \sim N(0, I_d), \ \epsilon \sim N(0, \sigma^2 I_D), \ d < D$$

Goal: Find parameters W that maximizes

$$p(Y;W) = \int p(Z)p(Y|Z,W)dZ \approx \sum_{i=1}^{n} \log p(Y_i;W) =$$
$$\sum_{i=1}^{n} \log \int p(Y_i,Z_i;W)dZ_i$$

### EM algorithm to train generative models

$$\begin{split} &\frac{\partial}{\partial W}\log p(Y;W) = \frac{1}{p(Y;W)}\frac{\partial}{\partial W}p(Y;W) \\ &= \frac{1}{p(Y;W)}\int \frac{\partial}{\partial W}p(Z,Y;W)dZ = \frac{p(Z|Y;W)}{p(Z,Y;W)}\int \frac{\partial}{\partial W}p(Z,Y;W)dZ \\ &= \int p(Z|Y;W)\frac{1}{p(Z,Y;W)}\frac{\partial}{\partial W}p(Z,Y;W)dZ = \int p(Z|Y;W)\frac{\partial}{\partial W}\log p(Z,Y;W)dZ \\ &= \mathbb{E}_{p(Z|Y;W)}\left[\frac{\partial}{\partial W}\log p(Z,Y;W)\right] \end{split}$$

E-step: Approximate the expectation by drawing samples from p(Z|Y,W) with

### **Stochastic Gradient Langevin Dynamics**

- Task: Given a target distribution  $d\mu = e^{-V(\mathbf{x})}d\mathbf{x}$ , generate samples from  $\mu$ .
  - $\triangleright$  Most samples should be gathered around the minimum of V
  - ▶ We do not want convergence to the minimum
- Idea: Use Gradient Descent + noise

$$\mathbf{X}^{k+1} = \mathbf{X}^k - \beta_k \nabla V(\mathbf{X}^k) + \mathsf{noise}$$

• Question: What amount of noise should we add so that  $\mathbf{X}^{\infty} \sim \pi$ ?

# Large scale sampling

ullet A scalable framework: First-order sampling (assuming access to  $\nabla V$ ).

#### Step 1. Langevin Dynamics

$$d\mathbf{X}_t = -\nabla V(\mathbf{X}_t)dt + \sqrt{2}d\mathbf{B}_t \Rightarrow \mathbf{X}_{\infty} \sim e^{-V}.$$

#### Step 2. Discretize

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \beta_k \nabla V(\mathbf{x}^k) + \sqrt{2\beta_k} \boldsymbol{\xi}^k$$

- $\triangleright \beta_k$  step-size,  $\boldsymbol{\xi}^k$  standard normal
- > strong analogy to gradient descent method

### Recall

Complete data log-likelihood

$$Y = f(Z; W) + \epsilon, Z \sim N(0, I_d), \ \epsilon \sim N(0, \sigma^2 I_D), \ d < D \qquad \Longrightarrow \qquad \frac{\log p(Y, Z; W) = \log [p(Z)p(Y|Z, W)]}{= -\frac{1}{2\sigma^2} ||Y - f(Z; W)||^2 - \frac{1}{2} ||Z||^2 + \text{const.}}$$

The posterior of Z can be written as (Bayes' rule)

$$p(Z|Y,W) = p(Y,Z;W)/p(Y;W) \propto p(Z)p(Y|Z,W)$$

Rubin, D.B. and Thayer, D.T., 1982. EM algorithms for ML factor analysis. Psychometrika, 47(1), pp.69-76.
Han, T., Lu, Y., Zhu, S.C. and Wu, Y.N., 2017, February. Alternating back-propagation for generator network. In Thirty-First AAAI Conference on Artificial Intelligence.

# E-step: Langevin dynamics

$$p(Z|Y,W) = p(Y,Z;W)/p(Y;W) \propto -\frac{1}{2\sigma^2} ||Y - f(Z;W)||^2 - \frac{1}{2} ||Z||^2$$

Samples from p(Z|Y,W) are obtained from iterates:

$$Z_{\tau+1} = Z_{\tau} + sU_{\tau} + \frac{s^2}{2} \left[ \frac{1}{\sigma^2} (Y - f(Z_{\tau}; W)) \frac{\partial}{\partial Z} f(Z_{\tau}; W) - Z_{\tau} \right],$$

au time step for the Langevin sampling

 $oldsymbol{s}$  step size

$$U_{\tau} \sim N(0, I_d)$$

# M-step: backpropagation

Now that we have samples from p(Z|Y,W) we perform optimization of W

$$\mathbb{E}_{p(Z|Y;W)} \left[ \frac{\partial}{\partial W} \log p(Z,Y;W) \right] \approx \sum_{i=1}^{n} \frac{\partial}{\partial W} \log p(Y_{i},Z_{i};W)$$

$$= -\sum_{i=1}^{n} \frac{\partial}{\partial W} \frac{1}{2\sigma^{2}} ||Y_{i} - f(Z_{i};W)||^{2}$$

$$= \sum_{i=1}^{n} \frac{1}{\sigma^{2}} (Y_{i} - f(Z_{i};W)) \frac{\partial}{\partial W} f(Z_{i};W)$$

### After training/inversion: inference

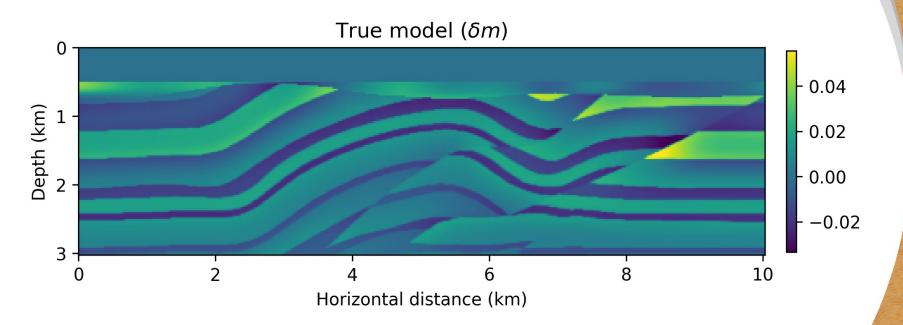
#### After training keep $w^* = w$ fixed

- draw samples from posterior via  $x \sim g(z, w^*)$  with  $z \sim N(0,1)$
- derive statistical properties posterior simply via

$$\mathbb{E}_{z}\left\{f\left(g(z,w^{*})\right)\right\} \approx \frac{1}{K} \sum_{k=1}^{K} f\left(g(z_{k},w^{*})\right), \quad z_{k} \sim N(0,1)$$

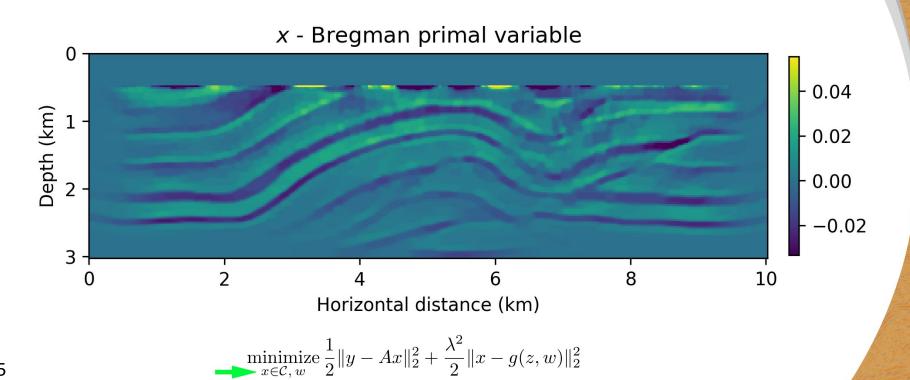


# True perturbation



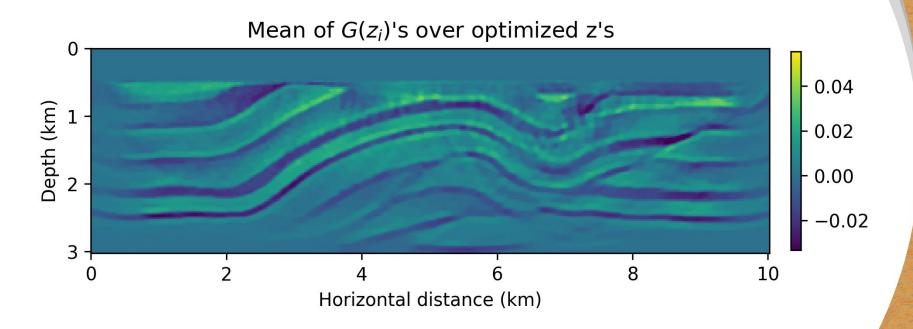


## Slack variable in weak formulation



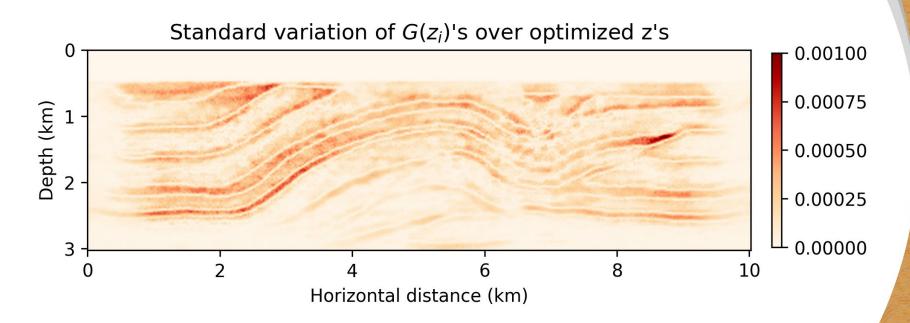


## Mean



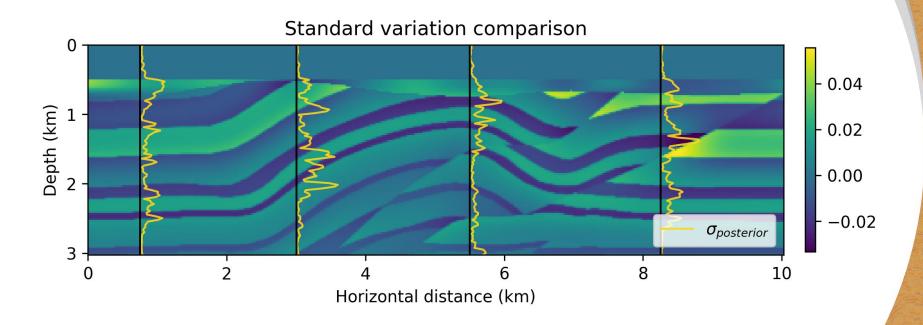


### Pointwise variance





## Pointwise variance: traces



# **Observations**

#### Deep priors:

- regularize via their network topology
- ▶ made feasible in combination w/ strong handcrafted constraints
- reap information on the posterior during inversion

Computationally feasible fully-data driven framework that provides UQ

More theory & (nonlinear) examples needed...