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Abstract

Geological carbon storage represents one of the few truly scalable technologies capable of reducing the
CO2 concentration in the atmosphere. While this technology has the potential to scale, its success hinges
on our ability to mitigate its risks. An important aspect of risk mitigation concerns assurances that the
injected CO2 remains within the storage complex. Amongst the different monitoring modalities, seismic
imaging stands out with its ability to attain high resolution and high fidelity images. However, these
superior features come, unfortunately, at prohibitive costs and time-intensive efforts potentially rendering
extensive seismic monitoring undesirable. To overcome this shortcoming, we present a methodology where
time-lapse images are created by inverting non-replicated time-lapse monitoring data jointly. By no longer
insisting on replication of the surveys to obtain high fidelity time-lapse images and differences, extreme
costs and time-consuming labor are averted. To demonstrate our approach, hundreds of noisy time-lapse
seismic datasets are simulated that contain imprints of regular CO2 plumes and irregular plumes that
leak. These time-lapse datasets are subsequently inverted to produce time-lapse difference images used
to train a deep neural classifier. The testing results show that the classifier is capable of detecting CO2
leakage automatically on unseen data and with a reasonable accuracy.

Introduction

For various reasons, seismic monitoring of geological carbon storage (GCS) comes with its own set of unique
challenges. Amongst these challenges, the need for low-cost highly repeatable, high resolution, and high fidelity
images ranks chiefly. While densely sampled and replicated time-lapse surveys—which rely on permanent
reservoir monitoring systems—may be able to provide images conducive to interpretation and reservoir
management, these approaches are often too costly and require too much handholding to be of practical use
for GCS.

To overcome these challenges, we replace the current paradigm of costly replicated acquisition, cumbersome
time-lapse processing, and interpretation, by a joint inversion framework mapping time-lapse data to high
fidelity and high resolution images from sparse non-replicated time-lapse surveys. We demonstrate that we
arrive at an imaging framework that is suitable for automatic detection of pressure-induced CO2 leakage.
Rather than relying on meticulous 4D workflows where baseline and monitoring surveys are processed
separately to yield accurate and artifact-free time-lapse differences, our approach exposes information that is
shared amongst the different vintages by formulating the imaging problem in terms of an unknown fictitious
common component, and innovations of the baseline and monitor survey(s) with respect to this common
component. Because the common component is informed by all time-lapse surveys, its image quality improves
when the surveys bring complementary information, which is the case when the surveys are not replicated.
In turn, the enhanced common component results in improved images for the baseline, monitor, and their
time-lapse difference. Joint inversion also leads to robustness with respect to noise, calibration errors, and
time-lapse changes in the background velocity model.
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To showcase the achievable imaging gains and how these can be used in a GCS setting where CO2 leakage is
of major consideration, we create hundreds of time-lapse imaging experiments involving CO2 plumes whose
behavior is determined by the two-phase flow equations. To mimic irregular flow due to pressure-induced
opening of fractures, we increase the permeability in the seal at random locations and pressure thresholds.
The resulting flow simulations are used to generate time-lapse datasets that serve as input to our joint
imaging scheme. The produced time-lapse difference images are subsequently used to train and test a neural
network that as an explainable classifier determines whether the CO2 plume behaves regularly or shows signs
of leakage.

Our contributions are organized as follows. First, we discuss the time-lapse seismic imaging problem and its
practical difficulties. Next, we introduce the joint recovery model that takes explicit advantage of information
shared by multiple surveys. By means of a carefully designed synthetic case study involving saline aquifers
made of Blunt sandstone in the Southern North Sea, we demonstrate the uplift of the joint recovery model
and how its images can be used to train a deep neural network classifier to detect erroneous growth of the
CO2 plume automatically. Aside from determining whether the CO2 plume behaves regularly or not, our
network also provides class activation mappings that visualize areas in the image on which the network is
basing its classification.

Seismic monitoring with time-lapse imaging

To keep track of CO2 plume development during geological carbon storage (GCS) projects, multiple time-lapse
surveys are collected. Baseline surveys are acquired before the supercritical CO2 is injected into the reservoir.
These baseline surveys, denoted by the index j = 1, are followed by one or more monitor surveys, collected at
later times and indexed by j = 2, · · · , nv with nv the total number of surveys.

Seismic monitoring of GCS brings its own unique set of challenges that stem from the fact that its main
concern is (early) detection of possible leakage of CO2 from the storage complex. To be successful with this
task, monitoring GCS calls for a time-lapse imaging modality that is capable of

• detecting weak time-lapse signals associated with small rock-physics changes induced by CO2 leakage
• attaining high lateral resolution from active-source surface seismic data to detect vertically moving

leakage
• handling an increasing number of seismic surveys collected over long periods of time (∼ 50− 100 years)
• reducing costs drastically by no longer insisting on replication of time-lapse surveys to attain high

degrees of repeatability
• lowering the cumulative environmental imprint of active source acquisition

Monitoring with the joint recovery model

To meet these challenges, we choose a linear imaging framework where observed linearized data for each
vintage is related to perturbations in the acoustic impedance via

bj = Ajxj + ej for j = 1, 2, · · · , nv. (1)

In this expression, the matrix Aj stands for the linearized Born scattering operator for the j th vintage.
Observed linearized data, collected for all shots in the vector bj , is generated by applying the Aj ’s to the
(unknown) impedance perturbations denoted by xj for j = 1, 2, · · · , nv. The task of time-lapse imaging is to
create high resolution, high fidelity and true amplitude estimates for the time-lapse images, {x̂j}nv

j=1, from
non-replicated sparsely sampled noisy time-lapse data.
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We argue that our choice for linearized imaging is justified for four reasons. First, CO2-injection sites undergo
extensive baseline studies, which means that accurate information on the background velocity model is
generally available. Second, changes in the acoustic parameters induced by CO2 injection are typically small,
so it suffices to work with one and the same background model for the baseline and monitor surveys. Third,
when the background model is sufficiently close to the true model, linearized inversion, which corresponds
to a single Gauss-Newton iteration of full-waveform inversion, converges quadratically. Fourth, because the
forward model is linear, it is conducive to the use of the joint recovery model where inversions are carried out
with respect to the common component, which is shared between all vintages, and innovations with respect
to the common component. Because the common component represents an average, we expect this joint
imaging method to be relatively robust with respect to kinematic changes induced by time-lapse effects or by
lack of calibration of the acquisition [Oghenekohwo and Herrmann, 2017b].

By parameterizing time-lapse images, {xj}nv

j=1, in terms of the common component, z0, and innovations with
respect to the common component, {zj}nv

j=1, we arrive at the joint recovery model where representations for
the images are given by

xj = 1
γ

z0 + zj for j = 1, 2, · · · , nv. (2)

Here, the parameter, γ, controls the balance between the common component, z0, and innovation components,
{zj}nv

j=1 [Li, 2015]. Compared to traditional time-lapse approaches, where data are imaged separately or
where time-lapse surveys are subtracted, inversions for time-lapse images based on the above parameterization
are carried out jointly and involve inverting the following matrix:

A =


1
γA1 A1
... . . .

1
γAnv Anv

 . (3)

While traditional time-lapse imaging approaches strive towards maximal replication between the surveys to
suppress acquisition related artifacts, imaging with the joint recovery model—which entails inverting the
underdetermined system in Equation 3 using structure-promotion techniques (e.g. via `1-norm minimization)—
improves the image quality of the vintages themselves in situations where the surveys are not replicated. This
occurs in cases where Ai 6= Aj for ∀i 6= j, or in situations where there is significant noise. This remarkable
result was shown to hold for sparsity-promoting denoising of time-lapse field data [Wei et al., 2018, Tian
et al., 2018], for various wavefield reconstructions of randomized simultaneous-source dynamic (towed-array)
and static (OBC/OBN) marine acquisitions [Oghenekohwo and Herrmann, 2017b, Kotsi, 2020, Zhou and
Lumley, 2021], and for wave-based inversion, including least-squares reverse-time migration and full-waveform
inversion [Oghenekohwo, 2017, Oghenekohwo and Herrmann, 2017a]. The observed quality gains in these
applications can be explained by improvements in the common component resulting from complementary
information residing in non-replicated time-lapse surveys. This enhanced recovery of the common component
in turn improves the recovery of the innovations and therefore the vintages themselves. The time-lapse
differences themselves also improve, or at the very least, remain relatively unaffected when the surveys are
not replicated. Relaxing replication of surveys obviously leads to reduction in cost and environmental impact.
Below, we show how GCS monitoring also benefits from this approach.

Monitoring with curvelet-domain structure promotion

To obtain high resolution and high fidelity time-lapse images, we invert the system in Equation 3 [Yang et al.,
2020, Witte et al., 2019b, Yin et al., 2021] with

minimize
z

λ‖Cz‖1 + 1
2‖Cz‖2

2

subject to ‖b−Az‖2
2 ≤ σ,

(4)
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where C is the forward curvelet transform, λ the threshold parameter, and σ the magnitude of the noise. At
iteration k and for σ = 0, solving Equation 4 corresponds to computing the following iterations:

uk+1 = uk − tkA>k (Akzk − bk)
zk+1 = C>Sλ(Cuk+1), (5)

where Ak, with a slight abuse of notation, represents the matrix in Equation 3 for a subset of shots
randomly selected from sources in each survey. The vector bk contains the extracted shot records from
b and the symbol > refers to the adjoint. Sparsity is promoted via curvelet-domain soft thresholding,
Sλ(·) = max(| · | − λ, 0) sign(·), where, λ, is the threshold. The vectors uk and zk contain the baseline and
innovation components.

Numerical case study: Blunt sandstone in the Southern North Sea

Before discussing the impact of high resolution and high fidelity time-lapse imaging with the joint recovery
model on the down-stream task of automatic leakage detection with a neural network classifier, we first detail
the setup of our numerical experiments using techniques from simulation-based acquisition design as described
by Yin et al. [2021]. In order to generate realistic time-lapse data and training sets for the automatic leakage
classifier, we follow the workflow summarized in Figure 1. In this approach, use is made of proxy models for
seismic properties derived from real 3D imaged seismic and well data [Jones et al., 2012]. With rock physics,
these seismic models are converted to fluid-flow models that serve as input to two-phase flow simulations.
The resulting datasets, which include pressure-induced leakage, will be used to create time-lapse data used to
train our classifier. For more detail, refer to the caption of Figure 1.

Proxy seismic and fluid-flow models

Amongst the various CO2 injection projects, GCS in offshore saline aquifers has been most successful in
reaching scale and in meeting injection targets. For that reason, we consider a proxy model constructed
representative for CO2 injection in the South of the North Sea involving a saline aquifer made of the highly
permeable Blunt sandstone. This area, which is actively being considered for GCS [Kolster et al., 2018],
consists of the following three geologic sections (see Figure 2 for the permeability and porosity distribution):

(i) the highly porous (average 33%) and permeable (> 170 mD) Blunt sandstone reservoir of about
300− 500 m thick. This section, denoted by red colors in Figure 2, corresponds to the saline aquifer
and serves as the reservoir for CO2 injection;

(ii) the primary seal (permeability 10−4 − 10−2 mD) made of the Rot Halite Member, which is 50 m thick
and continuous (black layer in Figure 2);

(iii) the secondary seal made of the Haisborough group, which is > 300 m thick and consists of low-permeable
(permeability 15− 18 mD) mudstone (purple section in Figure 2).

To arrive at the fluid-flow models, we consider 2D subsets of the 3D Compass model [Jones et al., 2012] and
convert these seismic models to fluid-flow properties (see Figure 1 (b)) by assuming a linear relationship
between compressional wavespeed and permeability in each stratigraphic section. For further details on
the conversion of compressional wavespeed and density to permeability and porosity, we refer to empirical
relationships reported in Klimentos [1991]. During conversion, an increase of 1km/s in compressional
wavespeed is assumed to correspond to an increase of 1.63 mD in permeability. From this, porosity is
calculated with the Kozeny-Carman equation [Costa, 2006] K = φ3

(
1.527

0.0314∗(1−φ)

)2
, where K and φ denote

permeability (mD) and porosity (%) with constants taken from the Strategic UK CCS Storage Appraisal
Project report.
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Figure 1: Simulation-based monitoring design framework. Starting with a proxy model for the wavespeed and
density (a), the workflow proceeds by converting these seismic properties into permeability and porosity (b).
These fluid flow properties are used to simulated CO2 plumes that behave regularly or exhibit leakage outside
the storage complex (c). Induced changes by the CO2 plume for the wavespeed and density are depicted in
(d) and serve as input to simulations of time-lapse seismic data (SNR 8.0 dB) and shot-domain time-lapse
differences (SNR −31.4 dB). Imaging results for regular and irregular plume developments are plotted in (f)
and serve as input to the deep neural classifier (g), which determines whether the flow behaves regularly or
leaks. Activation mappings in (h) show regions on which the network is basing its classification. As expected,
the activation mapping is diffusive in case of regular CO2 plume development and focused on the leakage
location when CO2 plume behaves irregularly.

Fluid-flow simulations

To model CO2 plumes that behave regularly and irregularly, the latter due to leakage, we solve the two-phase
flow equations numerically1 for both pressure and concentration [Li and Xu, 2021, Li et al., 2020]. To mimic
possible pressure-induced CO2 leakage, we increase the permeability at random distances away from the
injection well within the seal from 10−4 mD to 500 mD when the pressure exceeds ∼ 15 MPa. At that depth,
the pressure is below the fracture gradient [Ringrose, 2020]. Since pressure-induced fractures come in different
sizes, we also randomly vary the width of the pressure-induced fracture openings from 12.5 m to 62.5 m.
Examples of fluid-flow simulations without and with leakage are shown in Figure 1 (c).

Rock-physics conversion

To monitor temporal variations in the plume’s CO2 concentration seismically, we use the patchy saturation
model [Avseth et al., 2010] to convert the CO2 concentration to decrease in compressional wavespeed and
density. These changes are shown in Figure 1 from (d). The fact that these induced changes in the time-lapse
differences in seismic properties are relatively small in spatial extent (∼ 800 m for the plume and < 62.5 m for
the leakage) and amplitude (18% of the impedance perturbations with respect to the background model) calls
for a time-lapse imaging modality with small normalized root-mean-square (NRMS) [Kragh and Christie,

1We used the open-source software FwiFlow.jl [Li and Xu, 2021, Li et al., 2020] to solve the two-phase flow equations for
both the pressure and concentration.
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(a) (b)

Figure 2: Permeability and porosity derived from a 2D slice of Compass model.

2002] values (∼ 2.5%). This NMRS value is based on the relative amplitude of impedance perturbations with
respect to the background model ( 14%).

Time-lapse seismic simulations

To train and validate automatic detection of CO2 leakage from the storage complex requires the creation of
realistic time-lapse datasets that contain the seismic imprint of regular as well as irregular (leakage) plume
development. To this end, baseline surveys are simulated prior to CO2 injection for different subsets of the
Compass model. Monitor surveys are simulated 200 days after leakage occurs to verify that potential leakage
can be detected automatically early on. For regular plume development, we shoot monitor surveys for each
subset at random times after CO2 injection. In order to strike a balance between acquisition productivity
and time-lapse image quality, use is made of dense permanent acoustic monitoring at the seafloor with 25 m
receiver spacing. Time-lapse acquisition costs are reduced by non-replicated coarse shooting with the source
towed at 10 m depth below the ocean surface. Subsampling artifacts are reduced by using a randomized
technique from compressive sensing where 32 sources are located at non-replicated jittered [Herrmann and
Hennenfent, 2008] source positions, yielding an average source sampling of 125 m. Given this acquisition
geometry, linear data is generated2 with Equation 1 for a 25 Hz Ricker wavelet and with the band-limited
noise term set so that the data’s signal-to-noise ratio (SNR) is 8.0 dB. This noise level leads to an extremely
poor SNR of −31.4 dB for time-lapse differences in the shot domain. See Figure 1 (e).

Imaging with joint recovery model versus reverse-time migration

Given the simulated time-lapse datasets with and without leakage, time-lapse difference images are created
according to two different imaging scenarios, namely via independent reverse-time migration (RTM), conducted
on the baseline and monitor surveys separately, and via inversion of the joint recovery model (cf. Equations 3
and 4). To limit the computational cost of the Bregman iterations (Equation 5), four shot records are selected
per iteration at random from each survey for imaging [Yin et al., 2008, Witte et al., 2019b, Yang et al., 2020,
Yin et al., 2021], limiting the cost of the joint inversion to three RTMs. The recovered baseline images are
shown in Figures 3a for RTM and 3b for JRM. For the leakage scenario, the time-lapse differences are plotted
in Figures 3c and 3d, for RTM and JRM respectively. For the regular plume, the time-lapse differences
are plotted in Figures 3e and 3f, for RTM and JRM respectively. From these images, it is clear that joint

2We used the open-source software JUDI.jl [Witte et al., 2019a, Louboutin et al., 2022] to model the wave propagation. This
Julia package calls the highly optimized propagators of Devito [Louboutin et al., 2019, Luporini et al., 2020, 2022].
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inversion leads to relatively artifact-free recovery of the vintages and time-lapse differences. This observation
is reflected in the NRMS values, which improve considerably as shown by the histograms in Figure 4 for
1000 imaging experiments. Not only do the NRMS values shift towards the left, their values are also more
concentrated when inverting time-lapse data with the joint recovery model. Both features are beneficial to
automatic leakage detection.

(a) (b)

(c) (d)

(e) (f)

Figure 3: Reverse-time migration (RTM) versus inversion joint recovery model (JRM). (a) RTM image
of the baseline; (b) JRM image of the baseline; (c) time-lapse difference and CO2 plume for independent
RTM images with leakage; (d) time-lapse obtained by inverting the time-lapse data jointly with leakage; (e)
time-lapse difference and CO2 plume for independent RTM images without leakage; (f) time-lapse obtained
by inverting the time-lapse data jointly without leakage. Notice improvement in the time-lapse image quality.
This improvement in reflected in the NRMS values that decrease from 8.48 % for RTM to 3.20 % for JRM.
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Figure 4: NRMS values for 1000 time-lapse experiments.

Deep neural network classifier for CO2 leakage detection

The injection of supercritical CO2 into the storage complex perturbs the physical, chemical and thermal
environment of the reservoir [Newell and Ilgen, 2019]. Because CO2 injection increases the pressure, this
process may trigger CO2 leakage across the seal when the pressure increase induces opening of pre-existing
faults or fractures zones [Pruess, 2006, Ringrose, 2020]. To ensure safe operations of CO2 storage, we develop
a quantitative leakage detection tool based on a deep neural classifier. This classifier is trained on time-lapse
images that contain the imprint of CO2 plumes that behave regularly and irregularly. In case of irregular flow,
CO2 escapes the storage complex through a pressure induced opening in the seal, which causes a localized
increase in permeability (shown in Figure 3d).

Because time-lapse differences are small in amplitude, and strongly localized laterally when leakage occurs,
highly sensitive learned classifiers are needed. For this purpose, we follow Erdinc et al. [2022] and adopt the
Vision Transformer (ViT) [Dosovitskiy et al., 2020]. This state-of-the-art classifier originated from the field of
natural language processing (NLP) [Vaswani et al., 2017]. Thanks to their attention mechanism, ViTs have
been shown to achieve superior performance on image classification tasks where image patches are considered
as word tokens by the transformer network. As a result, ViTs have much less image-specific inductive bias
compared to convolutional neural networks [Dosovitskiy et al., 2020].

To arrive at a practical and performant ViT classifier, we start from a ViT that is pre-trained on image
tasks with 16× 16 patches and apply transfer learning [Yosinski et al., 2014] to fine-tune this network on
1576 labeled time-lapse images. Catastrophic forgetting is avoided by freezing the initial layers, which are
responsible for feature extraction, during the initial training. After the initial training of the last dense layers,
all network weights are updated for several epochs while keeping the learning rate small. The labeled (regular
vs. irregular flow) training set itself consists of 1576 time-lapse datasets divided equally between regular and
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irregular flow.

After the training is completed, baseline and monitor surveys are simulated for 394 unseen Earth models with
regular and irregular plumes. These simulated time-lapse datasets are imaged with JRM by inverting the
matrix in Equation 3 via Bregman iterations in Equation 5. The resulting time-lapse difference images (see
Figures 3d and 3f for two examples) serve as input to the ViT classifier. Refer to Figure 5 for performance,
which corresponds to a two by two confusion matrix. The first row denotes the classification results for
samples with regular plume (negative samples), where 193 (true negative) out of 206 samples are classified
correctly. The second row denotes the classification results for samples with CO2 leakage over the seal
(positive samples), where 147 (true positive) out of 188 samples are classified correctly. Due to the fact that
JRM recovers relatively artifact-free time-lapse differences, the classifier does not pick up too many artifacts
related to finite acquisition as CO2 leakage. This leads to much fewer false alarms for CO2 leakage.

Figure 5: Confusion matrix for classifier trained on recovery images from JRM.

Class activation mapping based saliency map

While our ViT classifier is capable of achieving good performance (see Figure 5), making intervention decisions
during GCS projects calls for interpretability and trustworthiness of our classifier [Hooker et al., 2019, Zhang
et al., 2021, Mackowiak et al., 2021]. To enhance these features, we take advantage of class activation mappings
(CAM) [Zhou et al., 2016]. These saliency maps help us to identify the discriminative spatial regions in each
image that support a particular class decision. In our application, these regions correspond to areas where
the classifier deems the CO2 plume to behave irregularly (if the classification result is leakage). By overlaying
time-lapse difference images with these maps, interpretation is facilitated, assisting practitioners to make
decisions on how to proceed with GCS projects and take associated actions. Figure 6 illustrates how the Score
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CAM approach [Wang et al., 2020] serves this purpose3. Figure 6a shows the CAM result for a time-lapse
difference image classified as a CO2 leakage (in Figure 3d). Despite few artifacts around the image, the CAM
clearly focuses on the CO2 leakage over the seal, which could potentially alert the practitioners of GCS. When
the plume is detected as growing regularly, the CAM result is diffusive (shown in Figure 6b). This shows
that the classification decision is based on the entire image and not only at the plume area. The scripts to
reproduce the experiments are available on the SLIM GitHub page https://github.com/slimgroup/GCS-CAM.

(a) (b)

Figure 6: CAM for time-lapse difference images with a leaking plume and with a regular plume.

Conclusions & discussion

By means of carefully designed time-lapse seismic experiments, we have shown that highly repeatable,
high resolution and high fidelity images are achievable without insisting on replication of the baseline and
monitor surveys. Because our method relies on a joint inversion methodology, it also averts labor-intensive
4D processing. Aside from establishing our claim of relaxing the need for replication empirically, through
hundreds of time-lapse experiments yielding significant improvements in NMRS values, we also showed that a
deep neural classifier can be trained to detect CO2 leakage automatically. While the classification results
are encouraging, there are still false negatives. We argue that this may be acceptable since decisions to
stop injection of CO2 are also based on other sources of information such as pressure drop at the wellhead.
In future work, we plan to extend this methodology to different leakage scenarios and quantification of
uncertainty.
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