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ABSTRACT

Recently, we demonstrated that combining joint recovery with low-cost non-replicated

randomized sampling tailored to time-lapse seismic can give us access to high fidelity, highly

repeatable, dense prestack vintages, and high-grade time-lapse. To arrive at this result,

we assumed well-calibrated surveys—i.e., we presumed accurate post-plot source/receiver

positions. Unfortunately, in practice seismic surveys are prone to calibration errors, which

are unknown deviations between actual and post-plot acquisition geometry. By means of

synthetic experiments, we analyze the possible impact of these errors on vintages and on

time-lapse data obtained with our joint recovery model from compressively sampled surveys.

Supported by these experiments, we demonstrate that highly repeatable time-lapse vintages

are attainable despite the presence of unknown calibration errors in the positions of the

shots. We assess the repeatability quantitatively for two scenarios by studying the impact

of calibration errors on conventional dense but irregularly sampled surveys and on low-cost

compressed surveys. To separate time-lapse effects from calibration issues, we consider the



idealized case where the subsurface remains unchanged and the practical situation where

time-lapse changes are restricted to a subset of the data. In both cases, the quality of the

recovered vintages and time-lapse decreases gracefully for low-cost compressed surveys with

increasing calibration errors. Conversely, the quality of vintages from expensive densely

periodically sampled surveys decreases more rapidly as unknown and difficult to control

calibration errors increase.
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INTRODUCTION

The current paradigm in time-lapse (4D) seismic necessitates expensive replication of the

baseline during the monitor survey to attain high degrees of repeatability (Eiken et al.,

2003; Brown and Paulsen, 2011). In contrast, motivated by the successful field application

of randomized Compressive Sensing surveys (Mosher et al., 2014) pioneered by Herrmann

(2010) and related works, our recent findings (Oghenekohwo et al., 2017; Wason et al., 2017)

suggest that one does not need to replicate subsampled randomized time-lapse surveys to get

equivalent and acceptable levels of repeatability. While these results are encouraging, our

findings relied on two critical assumptions, namely we ignored noise and assumed calibrated

surveys. Although our randomized time-lapse acquisition does not insist on exact replication

in the field — allowing for deviations between planned (pre-plot) and actual survey geometries

— reconstruction of the vintages towards a common fine periodic grid from the randomized

samplings relies on accurate knowledge of the actual acquisition parameters. Thus, we ignore

possible unknown calibration errors defined as differences between the actual (true) and

observed (recorded) post-plot geometries.

Since these calibration errors are unavoidable in practice, we study the performance of our

approach, namely, compressed time-lapse acquisition with calibration errors and subsequent

recovery with our joint recovery model (JRM), via a series of experiments designed to measure

attainable degrees of repeatability. As before, key to our success is the sparse recovery of the

component common to the vintages, and “innovations” with respect to this component that

sparsely encode the differences between the vintages. Because the common component is

sensed by all time-lapse surveys, recovery with the JRM leads to improved quality of the

vintages when the surveys are not replicated as we confirmed with a specific compressive
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sensing-inspired acquisition design (time-jittered sources in marine by Wason and Herrmann

(2013)).

There have been earlier attempts (Eggenberger et al., 2014), with sparsity promotion to

recover more repeatable time-lapse surveys but these also relied on having well-calibrated

surveys albeit these approaches do not exploit the possible advantages distributed compres-

sive sensing (DCS, Baron et al., 2009) has to offer but instead rely on having access to

multiple periodically but coarsely sampled wavefield components for their reconstruction.

By combining random subsampling and joint recovery, we are able to obtain high-quality

repeatable vintages from significantly fewer calibrated measurements (Oghenekohwo et al.,

2017; Wason et al., 2017).

Practitioners of time-lapse seismic studies often use the normalized root mean square

(NRMS, Kragh and Christie, 2002) to quantify the degree of repeatability in 4D seismic. Re-

peatability, which measures similarity between vintages, depends on several factors including

unknown positioning errors for each survey (Schisselé et al., 2009), differences in noise, and

processing workflows (Rickett and Lumley, 2001; Hicks et al., 2014) that aim to preserve

the 4D signal. The smaller the NRMS value, the less likely it is that the 4D signal is due to

differences amongst the surveys or environment (currents, wave heights, etc.) the surveys

were acquired in.

Our main contribution is to demonstrate that high quality and highly repeatable surveys

are attainable with our JRM despite the presence of unknown calibration errors. We

substantiate this claim by measuring the recovery quality and repeatability in terms of

signal-to-noise ratios (S/N) and NRMS values for a series of carefully designed idealized —

ignoring noise and environmental changes — randomized time-lapse surveys for which (i)
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there are no time-lapse changes present so worsening recovery quality and repeatability can

solely be attributed to calibration errors and (ii) time-lapse changes are confined to subsets

of the data.

We first describe a primer on how compressive sensing can be setup in marine acquisition

before presenting the main aspects of the paper. The main paper is organized as follows.

First, we present the theoretical framework for low-cost randomized time-lapse subsampled

data acquisition and recovery with the JRM. Next, we introduce the NRMS in the two

settings where either the earth model remains unchanged or where there is a time-lapse

signal present in a subset of the data. We conclude by a series of numerical experiments

that reflect these two scenarios and that allow us to analyze the possible impact of unknown

calibration errors.

PRIMER ON COMPRESSIVE SENSING IN MARINE ACQUISITION

To obtain high resolution images of the Earth subsurface, marine seismic surveys require

dense sampling that can become prohibitively expensive especially when time-lapse is of

interest. To address this issue in seismic data acquisition, Hennenfent and Herrmann (2008),

Herrmann (2010), Mansour et al. (2012), and Mosher et al. (2014) adapted ideas from

Compressive Sensing (CS, Donoho, 2006; Candès et al., 2006), whereby cost of surveys

depends on our ability to leverage certain inherent structure in seismic data rather than on

the sample rate and size of the survey area. In seismic applications, adherence to three +

one key principles of (distributed) CS are critical, namely we need to

(i) find a compressible representation, e.g. via transform-domain sparsity; (ii) design a

physically realizable randomized subsampling scheme, which turns subsampling related

artifacts into incoherent noise that is not compressible; (iii) restore densely sampled data by
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promoting structure—i.e., by mapping incoherent artifacts to coherent signal; (iv) exploit

information shared amongst time-lapse vintages during the recovery, which allows us to

maximally benefit from randomized sampling without insisting on replicating the surveys.

A physically realizable way to render marine acquisition more economically viable is to

fire at random time-jittered compressed-in-time firing times (Wason and Herrmann, 2013).

Depending on whether we work with dynamic towed arrays or static receivers (OBNs or

OBCs), the variability in jittered firing times needs to be small or can be large, as illustrated

in Figure 1.

[Figure 1 about here.]

Here, we consider the more favorable case of large variability, for which good recovery

results have been reported in the literature (Mansour et al., 2012; Wason and Herrmann,

2013) from surveys with overlapping shot records and coarse source sampling. Figure 2

illustrates how we compress the survey time and how we aim to reconstruct the wavefield onto

a fine periodic grid with increased source sampling. Because we compressed the acquisition

time and recover densely sampled data, our acquisition is more economic. For applications

to full 3D at scale surveys with dynamic towed arrays, we refer the reader to our companion

paper in this special issue.

[Figure 2 about here.]

When provided with time-jittered surveys that are sufficiently calibrated, we can expect

good recovery results (Oghenekohwo et al., 2017; Wason et al., 2017). However, as we

mentioned in the Introduction, 3D and 4D seismic surveys are both susceptible to calibration
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errors, which are by definition unknown deviations between actual (true) and observed (post-

plot) coordinates of sources/receivers. Figure 3 illustrates an example of our randomized

and compressed time-lapse surveys where observed shot positions differ from the truth. The

purpose of this work is to investigate the possible impact of these calibration errors on the

recovered vintages and the time-lapse difference after reconstructing the surveys onto one

and same fine periodic dense grid using our joint recovery model.

[Figure 3 about here.]

METHODOLOGY

Before we conduct experiments to quantify the degree of repeatability of randomized time-

lapse surveys with calibration errors, let us first briefly introduce the joint recovery model

and the NRMS. Without loss of generality, we consider the case of two time-lapse surveys

only.

Compressive time-lapse acquisition

Let us denote baseline surveys with the index j = 1 and monitor surveys with the index j = 2.

Following ideas from compressive sensing, we model data acquired with these two surveys

by: yj = Ajxj for j = {1, 2}, where yj are the usually observed randomly undersampled

data for each survey. As described in Hennenfent and Herrmann (2008), Herrmann (2010),

and Mansour et al. (2012), the matrices Aj encapsulate specifics on the survey geometry

for each vintage and the sparsifying transform used during the recovery. The task of the

time-lapse seismic practitioner now is to recover the coefficient vectors x̃j ’s from sparse

randomly undersampled yj ’s from which estimates for densely sampled vintages d̃j , that live
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on one and the same fine periodic grid can be derived. However, rather than recovering each

vintage separately, by solving

x̃j = argmin
xj

‖xj‖1 subject to yj = Ajxj , j = 1, 2, (1)

we solve

z̃ = argmin
z
‖z‖1 subject to y = Az (2)

with

y1

y2


︸ ︷︷ ︸

y

=

A1 A1 0

A2 0 A2


︸ ︷︷ ︸

A


z0

z1

z2


︸ ︷︷ ︸

z

(3)

instead. Compared to recovering the vintages separately as in Equation 1, the joint recovery

model inverts for the coefficient vectors of the common component (z̃0) and innovations (z̃j)

that encode the time-lapse. By construction, the common component of JRM benefits from

sensing by both surveys (first column of A). This can lead to markedly improved recoveries

of densely periodically sampled vintages d̃j derived from z̃0 and z̃j , without insisting on

replicating the surveys as recently reported by Oghenekohwo et al. (2017) and Wason et al.

(2017).

While the combination of randomized subsampling and the JRM offers unprecedented

flexibility in cost-effective time-lapse acquisition, the recovery of densely sampled time-lapse

data is built on the premise that reliable information on the actual acquisition geometry is

available. This is to ensure that the modeling matrices (Aj ’s) accurately mimic the time-lapse

measurements in the field. This reliance on accurate knowledge on the acquisition geometry
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raises some concern because in practice there will always be unknown calibration errors

between observed and actual acquisition parameters.

To quantify the impact of these calibration errors, we will first consider the special case

where x1 = x2— i.e., there is no time-lapse, but the randomized acquisitions differ (A1 6= A2)

and where there are differences between actual and observed post-plot acquisition parameters.

In this situation and in the practical situation where time-lapse changes are localized, we

still hope to attain high quality recovery and repeatability despite the presence of calibration

errors.

NRMS — a measure for 4D repeatability

Common practice in time-lapse seismic processing is to measure the degree of repeatability

of observed and processed data at each consecutive processing step (Ross et al., 1997; Harris

and Veritas, 2005; Houck, 2007). This degree of repeatability measures the similarity between

two time-lapse data sets, for example the recovered baseline (d̃1) and monitor (d̃2) surveys.

As described by Kragh and Christie (2002), we quantify the degree of repeatability of the

two vintages defined as the RMS of the difference between the two vintages divided by the

average RMS of these two vintages—i.e., we have

NRMS(d̃1, d̃2) =
200× RMS(d̃1 − d̃2)

RMS(d̃1) + RMS(d̃2)
,

with

RMS(d) =

√∑t2
t=t1

(d[t])2

N
,

where N is the number of samples in the interval t1 to t2 and d[t] refers to a sample recorded

at “time” t. By virtue of this definition, NRMS values range between 0 and 200 as percentages.

The smaller the percentage, the more repeatable the vintages are. In practice, NRMS values
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are computed using seismic traces extracted from the data in a common time window and

frequency band where there are no time-lapse changes.

NUMERICAL EXPERIMENTS

To demonstrate the impact of calibration errors, we conduct a series of synthetic experiments

involving non-replicated 2-D marine (ocean bottom cable) time-lapse surveys with unknown

calibration errors only in the source positions. Recall that these errors are unknown deviations

between the actual (true) and observed post-plot positions. For reference, we simulate

idealized densely and regularly (periodic) sampled shots at 12.5m interval on a realistic

synthetic earth model with laterally varying densities and velocities. Our experiments

compare a conventional dense survey, sampled irregularly with on average the same 12.5m

shot interval, and simultaneous source (randomly time-jittered) surveys acquired with our

low-cost subsampling scheme (Wason and Herrmann, 2013). The latter entails a 4× speed-up

in acquisition time resulting in overlapping shot records at irregular positions, sampled at

an average coarse shot interval of 50m. To mimic observed data with unknown calibration

errors, we add random perturbations from a uniform distribution to the actual shot locations.

As Table 1 shows, while we only need to regularize the conventional data since it is densely

sampled, we process the low-cost data via shot separation, interpolation, and regularization.

These experiments allow us to assess the repeatability quantitatively for the idealized case

where the subsurface does not change and the practical situation where time-lapse changes

are confined to a subset of the data.

[Table 1 about here.]
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Idealized case — no time-lapse

To separate the possible impact of calibration errors from the time-lapse signal itself, we first

consider the case where the earth model does not change between time-lapse surveys but

where both the known survey parameters and unknown calibration errors differ. In this case,

differences in the vintages can be attributed to differences in the surveys. For the densely

but irregularly sampled data, we recover regularly sampled vintages via regularization of

the observed data yj by directly computing the pseudo inverse A†
jyj , where the modeling

matrices (Aj ’s) encapsulate the irregular shot geometry up to calibration errors that increase

from 0 to 50% of the 12.5m shot interval. We collect low-cost data by firing more often with

jittering yielding fewer but irregular source locations that also contain calibration errors

between 0 to 50% of the original 12.5m shot interval. We recover these randomly subsampled

datasets via independent and joint recovery (cf. Equation 1 and 2). We examine the quality

of the recovered vintages in terms of S/N, and compute repeatability in terms of NRMS, for

the conventional and low-cost acquisition as a function of the relative calibration errors. As

we can see from Figure 4, recovery with JRM (third column) attains a relatively high S/N

and greatly improved NRMS compared to the results from conventional acquisition (first

column) and independent recovery (middle column), despite unknown calibration errors up

to 20% of the dense shot interval.

[Figure 4 about here.]

Furthermore, to get more reliable estimates (mean and standard deviation) of the S/N and

NRMS for increasing calibration errors, we repeat the experiments for 10 independent random

realizations of the pairs of modeling matrices. Figures 5a and 5b show the results of this

exercise, which allow us to make the following observations: (i) expectedly, calibrated surveys
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yield highest-quality vintages in terms of S/N compared to surveys that are not calibrated —

this is because the modeling matrix for calibrated surveys correctly maps the observed data

to the actual shot points whereas uncalibrated surveys violate this mapping; (ii) the quality

of the vintages decreases gracefully for the low-cost compressed surveys with increasing

calibration errors. Conversely, the quality of conventional irregular dense surveys decreases

rapidly for increasing calibration errors — this is because errors arising from uncalibrated

dense surveys behave like noise whose magnitude grows with the number of shots; (iii) for

surveys with large (> 40%) calibration errors, our low-cost sampling scheme with JRM is on

par with the dense surveys regarding the recovery quality but relatively better in repeatability

— the NRMS values for the low-cost acquisitions remain acceptable. These observations are

consistent with our earlier findings on calibrated low-cost acquisitions (Oghenekohwo et al.,

2017; Wason et al., 2017), again owing to making the common component shared by the the

vintages explicit in the recovery.

[Figure 5 about here.]

Practical case — localized time-lapse

While the previous experiments demonstrate the impact of calibration errors on the vintages

and the difference, we cannot guarantee that the effect of these errors will not propagate to

the time-lapse signal in situations where the earth actually changes. Therefore, we conduct

experiments on a synthetic time-lapse earth model with localized changes in both density and

velocity. We compute the prestack localized 4D signal via subtraction of the two vintages

after recovery towards a common grid. We now measure the recovery quality of the 4D

signal and the repeatability of the vintages in presence of calibration errors, both for the
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conventional and low-cost acquisitions.

After data simulation and recovery as done previously, we perform repeatability analysis—

compute the NRMS—outside the 4D signal window, and compute the S/N of the recovered

prestack 4D signal only in the window where the 4D signal resides. We present the result of

this experiment in Figures 5c and 5d. Despite the fact that the earth changes, the NRMS

values behave more or less the same as in Figure 5b. This means that high degrees of

repeatability are achievable with S/Ns that decrease gracefully compared to the conventional

sampling and independent recovery. This experiment clearly shows that the uplift of costly

dense sampling may be negated by the presence of relatively small (10% ≈ 1.25 m) calibration

errors.

CONCLUSIONS

Errors in acquisition parameters unbeknown to subsequent seismic data processing, including

regularization and shot separation, can have detrimental effects on the quality and repeata-

bility in particular when mapping time-lapse seismic surveys to a common densely sampled

periodic grid. For the case of post-plot calibration errors in the source locations, we were

able to demonstrate that high quality and highly repeatable vintages and time-lapse data

are attainable in the presence of source position errors that are of order of 20 − 25% of

the interpolated shot sample interval. As expected, high-cost densely sampled acquisitions

may indeed lead to the best quality and repeatability in the absence of calibration errors.

However, the quality and repeatability of these expensive densely sampled surveys decays very

rapidly in the presence of even relatively small (10% of the shot sample interval) calibration

errors. Understandably, the quality and repeatability of four times cost-reduced compressive

acquisitions is also affected by calibration errors but this deterioration is much more modest
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for vintages and time lapse data obtained with our joint recovery model. This result holds for

both the idealized situation where the subsurface does not change and where differences in the

vintages and time-lapse data are due to both differences in the surveys and (uncontrollable)

calibration errors, or for the realistic situation where time-lapse changes in the subsurface

are confined to subsets of the data. Either way, the performance of the joint recovery model

for acquisitions with unknown calibration errors is remarkable and can be explained by the

fact that our approach leverages information that is common amongst the vintages explicitly.

With these observations, we are confident that economic time-lapse surveys with Compressive

Sensing are indeed feasible and ready to be conducted in the field.
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Figure 1: Periodic versus randomized (jittered) marine survey showing scenarios for low and
high variability in shot firing times.
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Figure 2: Schematic of sampling schemes and recovery. Left: conventional survey with
non-overlapping shots. Middle: compressed survey time with overlapping shots. Right:
recovery of non-overlapping dense periodic shots with improved source sampling. [ Adapted
from Wason et al. (2017) ]

19



Figure 3: Illustration of compressive time-lapse jittered surveys with calibration errors as
deviations between true and observed post-plot shot positions. Notice the compression in
acquisition time for the time-jittered surveys, the difference in acquisition geometry, and the
mapping of the vintages to one and the same fine-grained source grid.
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Conventional dense survey Independent recovery of low-
cost survey

Joint recovery of low-cost sur-
vey

Figure 4: Idealized case (no time-lapse) - A receiver gather extracted from recovered vintage
(top) and difference (bottom) between vintages obtained from surveys with calibration errors
up to 20% of the dense shot interval. Notice the improved repeatability using our joint
recovery model.
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(a) (b)

(c) (d)

Figure 5: Top: Idealized case (no time-lapse). (a) Recovery quality and (b) repeatability
of vintages, from conventional dense and low-cost surveys with calibration errors. Bottom:
Practical case (localized 4D). (c) Recovery quality of 4D signal and (d) repeatability of
vintages. Note the NRMS in (d) is computed outside the 4D signal window.
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Conventional dense survey Low-cost (4× compressed) survey

Shot geometry Flip-flop irregular 2 Sim. source
shot sampling (time-jittered sources)

Receiver geometry OBC OBC
Number of shots 450 100
Shot interval 12.5m 50m
Number of receivers 450 450
Receiver interval 12.5m 12.5m
Recovery (Processing) Regularization Shot separation, Interpolation, Regularization

Table 1: Experiment details including acquisition information for conventional (dense) and
low-cost (compressed) random time-jittered surveys.
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