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ABSTRACT

Most conventional 3D time-lapse (or 4D) acquisitions are ocean-bottom cable (OBC) or ocean-

bottom node (OBN) surveys since these surveys are relatively easy to replicate compared to

towed-streamer surveys. To attain high degrees of repeatability, survey replicability and dense

periodic sampling has become the norm for 4D surveys that renders this technology expensive.

Conventional towed-streamer acquisitions suffer from limited illumination of subsurface due

to narrow azimuth. Although, acquisition techniques such as multi-azimuth, wide-azimuth,

rich-azimuth acquisition, etc., have been developed to illuminate the subsurface from all

possible angles, these techniques can be prohibitively expensive for densely sampled surveys.

This leads to uneven sampling, i.e., dense receiver and coarse source sampling or vice-versa,

in order to make these acquisitions more affordable. Motivated by the design principles of

Compressive Sensing (CS), we acquire economic, randomly subsampled (or compressive) and
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simultaneous towed-streamer time-lapse data without the need of replicating the surveys.

We recover densely sampled time-lapse data on one and the same periodic grid by using

a joint-recovery model (JRM) that exploits shared information among different time-lapse

recordings, coupled with a computationally cheap and scalable rank-minimization technique.

The acquisition is low cost since we have subsampled measurements (about 70% subsampled),

simulated with a simultaneous long-offset acquisition configuration of two source vessels

travelling across a survey area at random azimuths. We analyze the performance of our

proposed compressive acquisition and subsequent recovery strategy by conducting a synthetic,

at scale, seismic experiment on a 3D time-lapse model containing geological features such as

channel systems, dipping and faulted beds, unconformities and a gas cloud. Our findings

indicate that the insistence on replicability between surveys and the need for OBC/OBN 4D

surveys can, perhaps, be relaxed. Moreover, this is a natural next step beyond the successful

CS acquisition examples discussed in this special issue.
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INTRODUCTION

The need for high degrees of data repeatability in time-lapse seismic has lead to the need to

replicate surveys that are mostly ocean-bottom cable (OBC) or ocean-bottom node (OBN),

since these surveys provide better control over receiver positioning compared to towed

streamers. The problem is that 3D OBC/OBN acquisitions are expensive, and time-lapse (or

4D) survey replication may aggravate this problem. Moreover, processing dense time-lapse

data volumes is computationally expensive. Therefore, the challenge is to minimize the

cost of time-lapse surveying and data processing without impacting data repeatability. We

address this challenge by proposing a computational framework for at-scale processing of time-

lapse data that is acquired economically via a 3D compressive simultaneous towed-streamer

acquisition without insisting on survey replicability.

Simultaneous-source marine acquisition is becoming the norm for acquiring seismic

data in an economic and environmentally more sustainable way since data is acquired

in less time, as compared to conventional acquisition, by firing multiple sources at near

simultaneous/random times, or more data is acquired within the same time or a combination

of both. To render possible artifacts induced by simultaneous-source firing incoherent, the

key for simultaneous-source acquisition is the inclusion of randomization in the acquisition

design, e.g., randomizing the shot-firing times, randomizing the source/receiver positions,

randomizing the distance between sail lines, inlines, crosslines, etc. (Beasley, 2008, and the

references therein; Moldoveanu, 2010; Abma et al., 2013). Mansour et al. (2012), Wason

and Herrmann (2013) and Mosher et al. (2014) adapt ideas from Compressive Sensing

(CS, Donoho (2006); Candès et al. (2006)) to acquire data economically with a reduced

environmental imprint. Owing to the positive impact of simultaneous-source acquisition
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on the industry, i.e., improved survey efficiency and data density, two key questions arise:

“What are the implications of randomization on the attainable repeatability of time-lapse

seismic?”, and “Should randomized time-lapse surveys be replicated?” (as asked by Craig

Beasley through personal communication). These questions are of great importance because

the incorporation of simultaneous-source acquisition in time-lapse seismic can significantly

change the current paradigm of time-lapse seismic that relies on expensive dense periodic

sampling and replication of the baseline and monitor surveys (Lumley and Behrens, 1998).

Adapting ideas from CS and Distributed Compressive Sensing (DCS, Baron et al. (2009)),

recent work by Oghenekohwo et al. (2017) and Wason et al. (2017) addresses these questions,

where the main finding is that compressive (or subsampled) randomized time-lapse surveys

need not be replicated to attain similar/acceptable levels of repeatability. Specifically, the

authors use a joint-recovery model (JRM) to process compressive randomized time-lapse

data and observe that recovery of the vintages improves when the time-lapse surveys are

not replicated, since independent surveys give additional structural information. Moreover,

since irregular spatial sampling is inevitable in the real world, it would be better to focus on

knowing what the shot positions were (post acquisition) to a sufficient degree of accuracy,

than aiming to replicate them. Recent successes of randomized surveys in the field (see, e.g.,

Mosher et al. (2014)) show that this can be achieved in practice. Furthermore, initial findings

of Oghenekohwo and Herrmann in the article titled “Highly repeatable time-lapse seismic

with distributed Compressive Sensing—mitigating effects of calibration errors,” in this special

issue, suggest that highly repeatable time-lapse vintages are attainable despite the presence

of unknown calibration errors in shot positions, i.e., unknown deviations between actual and

post-plot acquisition geometry.

Building on our work mentioned above, we present a simulation-based feasibility study for
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3D randomized towed-streamer time-lapse surveys in a realistic field-scale setting. We design

economic simultaneous (or randomized) multi-azimuth surveys that sample with insights

from CS. We do not insist on replicating the baseline and monitor surveys as long as we know

the shot/receiver positions post acquisition to a sufficient degree of accuracy. We process the

3D compressive simultaneous time-lapse data volumes by incorporating the JRM in a rank-

minimization framework that can process large-scale seismic data computationally faster and

in a relatively memory efficient way compared to the sparsity-promoting technique, as shown

in Kumar et al. (2015a) and Kumar et al. (2015b). Specifically, we acquire 3D Simultaneous

Long-Offset (SLO) data at random azimuths with random distance between sail lines and use

the combined framework of the JRM and rank minimization to separate the simultaneous

(or blended) data. In seismic literature, the terms “simultaneous-source acquisition” and

“source separation” are also referred to as “blended acquisition” and “deblending”, respectively.

The randomized towed-streamer acquisition and the proposed recovery strategy leads to

economical time-lapse surveys with a gain in sampling of about 3× and an impressive

compression rate of about 98.5% of the reconstructed time-lapse data volume.

MARINE TIME-LAPSE COMPRESSED SENSING

Although economical, simultaneous-source acquisition results in seismic interferences or

source crosstalk that degrade quality of migrated images. Therefore, source separation is

an essential preprocessing requirement to recover unblended interference-free data —– as

would have been acquired during conventional acquisition — from simultaneous data. Here,

conventional means a seismic acquisition with no overlaps between shot records as the source

vessel fires at regular periodic times, which translates to regular spatial locations for a given

constant source-vessel speed. In this work, we are interested in compressed-sensing-based
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time-lapse 3D simultaneous-source acquisition design, followed by source separation and

interpolation of baseline and monitor vintages and time-lapse signal using rank-minimization-

based techniques that work on monochromatic matricizations of seismic data. Compressed

sensing is a theory that deals with recovering vectors x that are sparse, or have a few nonzeros.

Rank minimization arises as a natural extension of CS ideas and is designed to reconstruct

data volumes organized as matrices. Successful instances of CS, which in our case corresponds

to source separation and source interpolation, rely on the following three principles.

Reveal low-rank structure

Contrary to exploiting sparsity of vectors, a direct analogue for a matrix is “sparsity” among

the singular values, i.e., underlying fully sampled data matrix of interest should exhibit a fast

decay of its singular values so seismic data organized as a matrix can be well approximated

by a low-rank matrix by ignoring the small singular values. Unfortunately, seismic data

does not exhibit a low-rank structure when organized in the canonical matrix representation,

where monochromatic shot records appear as columns in the data matrix (Figure 1a). As

shown by Kumar et al. (2015b), this problem can for 2D seismic acquisition be overcome by

transforming the data to the midpoint-offset domain, which leads to a rapid decay of the

singular values. While this approach could be applied to 3D seismic acquisition as well, a

simple permutation of matricized seismic data suffices. Here, matricization refers to a process

that reshapes a tensor in to a matrix along specific dimensions. In the resulting noncanonical

matrix representation (cf. Figures 1a and 1b), the source and receiver coordinates in the

x− and y−direction are lumped together as opposed to vectorizing monochromatic shot

records in the columns as a function of the two source coordinates (Silva and Herrmann,

2013; Kumar et al., 2015a). Because of its simplicity, we use this noncanonical matricization

6



throughout this work.

[Figure 1 about here.]

Break low-rank structure with randomized SLO acquisition

In a nutshell, CS aims to get away with sampling below Nyquist. The way to make this

work is to turn coherent subsampling related artifacts, such as aliases, into incoherent noise

that does not exhibit structure. For CS with matrices, this corresponds to slowing the decay

of the singular values by breaking the low-rank-matrix structure. As we can observe from

Figure 1c, randomization of the shot locations in the canonical representation is inadequate

because randomly missing shots correspond to randomly missing columns, which lower the

rank of the matricized data (cf. the singular-value plots between fully and subsampled

data). However, if we consider the behaviour of the singular values for the noncanonical

representation the converse is true, i.e., the singular values decay more slowly when sources

are missing (Figure 1d). This latter situation is favorable for structure-promoting recovery

because we effectively rendered the missing sources into rank inducing “artifacts”. Motivated

by this observation for missing traces (Kumar et al., 2015a), and on recent work (Kumar

et al., 2015b) that appeared in the literature, we design a 3D towed-streamer simultaneous

long-offset (SLO) acquisition, where an extra source vessel (Figure 2) is deployed sailing

one spread length ahead of the main seismic vessel (Long et al., 2013), with sources firing

at random jittered times within 1 or 2 second(s) of each other. We have to use this low

variability regime in firing times because we are dealing with dynamic acquisition with towed

arrays. Compared to highly variable firing times used for static acquisitions with OBC/OBN,

the recovery for dynamic blended data is more challenging calling for a reorganization of
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towed-streamer data in a split-spread geometry, i.e., from the common-channel domain to

the common-receiver domain as outlined in Figure 2b. In this common-channel domain, the

blended sources are rendered incoherent compared to the summation of the shot gathers

themselves (cf. Figures 2c and 2d).

Following Long et al. (2013), we deploy the extra source vessel to double the maximum

offset without the need to tow very long streamer cables that can be problematic to deal with

in the field. The SLO technique is better than conventional acquisition because it provides

a longer coverage in offsets, generally experiences less equipment downtime (doubling the

vessel count inherently reduces the streamer length by half), allows for easier maneuvering,

and shorter line turns. These practical advantages in conjunction with the observation that

random shot-firing times break the structure (Kumar et al., 2015b) make randomized SLO

acquisition an excellent candidate to validate our ideas on randomized sampling for time-lapse

seismic.

[Figure 2 about here.]

When moving to 3D acquisition, our randomized SLO acquisition design involves, as

before, two source vessels with vessel 1 towing 12 streamers. From our and Chuck Mosher’s

(Charles et al., 2014) extensive experience in adapting CS to seismic data acquisition, we

know that it is beneficial for the later recovery to embrace randomness in the surveys whether

this is natural randomness such as cable feathering or randomness by design. For this reason,

we opt for our source vessels to travel across the survey area at random azimuths (Figure 3a)

with random distance between the sail lines. Recall that we reorganize the towed-streamer

data from the common-channel domain to the common-receiver domain (Figure 2b), and

therefore Figure 3b shows a source and common-receiver grid for a conventional full-azimuth
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and offset 3D acquisition. Note that the purple-dash square denotes a “moving-source”

grid with respect to the green star representing a common receiver on the fixed green

common-receiver grid. The source grid moves as the green star moves along the (fixed)

common-receiver grid. Figure 3c shows the randomized SLO acquisition geometry on the

underlying conventional full-azimuth and offset 3D acquisition (see the experiment section

for SLO acquisition parameter details). We acquire data at 12 random azimuths, which

we can reduce further by deploying more source vessels operating at wider azimuths. As a

result of the randomization of the sparse sail lines and multi-vessel blended acquisition, the

SLO data contains lots of incoherent artifacts (Figure 4b) in contrast to the uneconomical

full-azimuth and offset 3D shot record depicted in Figure 4a. For the purpose of recovery by

rank minimization, we reorganize the acquired data in the common-receiver domain, where

the long-offset information is randomly encoded at the near offsets via the random firing

times (cf. Figures 4a and 4b), and therefore is apparently “missing” in Figure 4b. As we

will show below, this proposed randomized sampling scheme will allow us to recover 4×

maximum-offset source-separated data at a dense 25m source grid (inline and crossline), and

a 25m inline and 100m crossline receiver grid from a 70% source subsampling compared to

the conventional long-offset data.

[Figure 3 about here.]

[Figure 4 about here.]

To study the effect of randomization in our 3D SLO acquisition design, we compare the

decay of the singular values of conventional dense unfolded (4× maximum offset) acquisition

and our randomized blended acquisition. For this purpose, we include Figures 5a and 5b,
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which contain a monochromatic frequency slice (at 10Hz) in the noncanonical matricization

of the fully sampled data (Figure 5a) and the “offset-compressed” blended data (Figure 5b).

As confirmed by Figure 5c, the randomness of the firing times in conjunction with the

subsampled SLO acquisition design slows down the decay of the singular values. As a result,

we meet the first two main requirements of CS, namely, we have relative fast decay before

and slow decay after randomized sparse-azimuth short-offset blended acquisition.

[Figure 5 about here.]

Large-scale factorization-based rank minimization

The third crucial component of CS is the recovery of fully sampled data volumes via structure

promotion during which the incoherent subsampling energy is mapped to coherent signal.

For this purpose, let us consider the low-rank matrix X0 as an approximation of long-offset

densely sampled data organized in the noncanonical xsrc, xrec matricization and let A be a

linear acquisition operator that maps fully sampled data volumes in the frequency domain to

data collected in the field with SLO acquisition. Mathematically, the combined action of the

sparse-azimuth and blended acquisition can be written as

A︷ ︸︸ ︷[
MT1SH MT2SH

]
(X)︷ ︸︸ ︷X1

X2

 = b,
(1)

where the observed data is collected in the vector b and where S is the permutation operator

mapping fully sampled seismic data from the vectorized canonical xsrc, xrec representation to

the noncanonical xsrc, ysrc organization shaped into a matrix. The adjoint, denoted by the

superscript H , does the reverse by applying the permutation from noncanonical to canonical

representation, followed by reshaping the monochromatic data into a long vector operated
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upon by the randomized jitter time delay operators for the two source vessels T1 and T2,

followed by subsampling with the restriction matrix M fully determined by the acquisition

geometry. As shown in Figure 2c, the two resulting time-shifted and subsampled shot records

are according to Equation 1 summed into a single blended shot record that models the

observed data collected in the vector b. To simplify the notation, we dropped the frequency

dependence and carry out these listed operations in the frequency domain. Once separation

and interpolation is finished for each monochromatic data slice, we apply S followed by

a single inverse Fourier transform along the frequency axis to get the final reconstructed

seismic data volume in the time domain.

The task of CS is now to recover an estimate of the fully sampled data represented by the

unknown matrix X from subsampled data collected in the vector b. Formally, this recovery

can be written as a nuclear-norm minimization problem:

minimize
X

‖X‖∗ subject to ‖A(X)− b‖2 ≤ ε, (BPDNε)

whose objective it is to minimize the sum of the singular values (denoted by the nuclear

norm ‖ · ‖∗ ) while fitting the data to within an error of ε. While theoretically sound, this

convex optimization problem does not scale to seismic problems because its solution relies

on expensive singular-value decompositions. We overcome this problem by switching to

a low-rank representation — i.e., we assume X ≈ LRH with L tall and RH wide. Aside

from reducing the memory imprint drastically — the rank (width of L and R) can be small

if the singular values decay fast. This low-rank factorization has the advantage that the

optimization (as in Equation BPDNε) can be carried out on the factors alone without forming

X explicitly. For details on this low-rank factorized recovery, we refer the reader to recent

work by Aravkin et al. (2014) and Kumar et al. (2015a).
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Joint-recovery time-lapse acquisition model

While the above CS framework for SLO acquisition allows for economic marine acquisition

because it allows us the “compress” the offset axis in combination with source subsampling,

the proposed acquisition scheme has not yet made provisions regarding the collection of

time-lapse data involving a baseline survey followed by one or more monitor surveys. Inspired

by recent work on low-cost time-lapse seismic with distributed compressive sensing, we adapt

our joint-recovery model (JRM) — where we invert for low-rank matrices representing the

shared component among the vintages and the differences of the vintages with respect to

this component — to the matrix case, i.e., we have

b1

b2

 =

A1 A1 0

A2 0 A2



Z0

Z1

Z2

 or b = A(Z). (2)

In this JRM, data for the baseline and (in this case single) monitor survey are collected in the

vectors b1 and b2 via the action of the measurements matrices A1 and A2 that appear in the

above 2× 3 system that relates the observed data to the low-rank matrix Z0 for the common

component and the low-rank matrices Z1 and Z2 for the differences with respect to the

common component. We recover low-rank factorizations for the baseline and monitor surveys

by solving the optimization problem BPDNε, followed by setting Xj = Z0 + Zj , j ∈ 1, 2.

The main advantage of this JRM lies in the property that the common component is

observed by both surveys A1 and A2. So if we choose these surveys sufficiently independently,

and this does not take much as we have shown in work published elsewhere, the recovery for

the common component and therefore the vintages will improve. This brings us to the main

point of this contribution where we conduct a numerical experiment at scale to substantiate
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our claim that high degrees of repeatability are achievable among time-lapse surveys without

insisting on replicating the surveys.

NUMERICAL FEASIBILITY STUDY AT SCALE

Given the challenge of replicating expensive dense OBC/OBN time-lapse surveys, our aim

is to design a 3D randomized towed-streamer time-lapse survey in a realistic field-scale

setting. We present a simulation-based feasibility study on two moderately sized 3D synthetic

time-lapse vintages generated from the BG COMPASS velocity model (provided by the

BG Group). Although the overarching geological structure of the BG COMPASS model is

(relatively) simple, it contains realistic well-controlled variability and a complex time-lapse

difference related to a gas cloud (Figure 6). The model is 8 km deep and 6.5 km wide in both

lateral directions. In this subset of the BG COMPASS model, the monitor model includes a

gas cloud that acts as a proxy for “CO2injection”.

[Figure 6 about here.]

Using an acoustic 3D time-stepping code (Kukreja et al., 2016) and a Ricker wavelet

with a central frequency of 12Hz, we generate two conventional densely sampled full-azimuth

and offset synthetic reference data sets that serve as “ideal” benchmarks for data associated

with the baseline and monitor models. Our simulations and subsequent wavefield recovery

are carried out over a frequency range of 5− 30Hz. Each idealized data set contains 8 s of

data sampled at 0.004 s on a 40× 40 receiver grid and a 321× 321 source grid. The inline

and crossline source sampling, and inline receiver sampling is 25m and the crossline receiver

sampling is 100m. Figure 7 shows a common-receiver gather from the idealized monitor data

and the corresponding time-lapse difference computed by subtracting the idealized baseline
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and monitor data.

[Figure 7 about here.]

As mentioned earlier, we design a randomized SLO acquisition using two source vessels

with vessel 1 towing 12 streamers. Table 1 lists the acquisition parameters used in the

acquisition. We collect data at 12 random azimuths, where the vessels move only in the

forward direction. Figure 8 shows the randomized SLO time-lapse acquisition geometry on

the underlying conventional full-azimuth and offset acquisition grid (cf. Figure 3b). The

vessels travel along random azimuths denoted by the blue-dash lines for the baseline survey

and the orange-dash lines for the monitor survey. For the SLO data acquisition, we assume

that the samples are taken on a discrete grid, i.e., samples lie “exactly” on the grid. The SLO

acquisition design results in a 70% source subsampling for both the baseline and monitor

surveys with an unavoidable 30% overlap between the surveys (measurement matrices A1

and A2). We define the term “overlap” as the percentage of on-the-grid shot locations exactly

replicated between two (or more) time-lapse surveys.

[Table 1 about here.]

[Figure 8 about here.]

Since one of our aims is to attain highly repeatable data without insisting on replicating

time-lapse surveys, we compare the performance of our proposed rank-minimization-based

source separation and interpolation strategy for different random realizations of the SLO

acquisition with 100% and (the unavoidable) 30% overlap between the surveys. Given

that the observations are subsampled and on the grid, we use the independent recovery
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model (IRM, Equation BPDNε) and the JRM (Equation 2) to recover the vintages and

time-lapse difference on a colocated grid corresponding to the conventional full-azimuth

and offset 3D acquisition grid. We conduct all experiments using 20 nodes with 5 parallel

MATLAB workers each, where each node has 20 CPU cores and 256 GB of RAM. We select

the maximum number of iterations (400) and the rank parameter k (gradually increasing

from 50 to 150 for low to high frequencies) via a cross validation technique on low- and

high-frequency slices. The processing time for each frequency slice is about 9 hours. Note

that we perform source separation and interpolation in the frequency domain, where we invert

for each monochromatic slice independently. Once we have all the separated and interpolated

monochromatic slices within the spectral band, we perform the inverse temporal-Fourier

transform to reconstruct the output time-domain data volume.

As shown by Oghenekohwo et al. (2017), JRM performs better than IRM because

it exploits information shared between the baseline and monitor data, which leads to

a formulation where the common component is observed by both surveys. This is also

illustrated in Table 2 that shows the signal-to-noise ratio (S/N) of the time-lapse data

recoveries. Therefore, we show results for JRM only. Figure 9 shows the JRM-recovered

common-receiver gathers and the corresponding residual plots for the baseline data and

the time-lapse difference for 100% overlap between the surveys. The corresponding results

for the 30% overlap are shown in Figure 10. In contrast to 100% overlap between the

surveys, recovery of the vintages (with JRM) is better when the overlap is small. This

behaviour is attributed to partial independence of the measurement matrices that contribute

additional information via the first column of A in Equation 2, i.e., for time-lapse seismic,

independent surveys give additional structural information for the common component

leading to improved recovery of the vintages. The converse seems to be true for recovery
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of the time-lapse difference (although the S/N values are only slightly off (Table 2)) as a

result of the increased sparsity of the time-lapse difference itself and apparent cancelations

of recovery errors due to the “exactly” replicated geometry. Wason et al. (2017) show that

the more realistic and inevitable off-the-grid sampling leads to little variability in recovery

of the time-lapse difference for decreasing overlap between the surveys, and hence negates

the efforts to replicate. Apart from reasonable reconstruction quality with minimal loss of

coherent energy, one of the advantages of using the factorization-based rank-minimization

framework is its ability to compress the size of (reconstructed) data volumes significantly,

where compression ratio depends upon the rank parameter k. For the conducted experiments,

we achieve a compression ratio of 98.5% for each monochromatic slice of the vintages and

time-lapse difference. Table 3 lists the cost savings of our proposed compressive acquisition

and recovery strategy.

[Table 2 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

[Table 3 about here.]

DISCUSSION AND CONCLUSIONS

By adhering to the principles of compressive sensing, we derive a viable low-cost and

low-environmental impact multi-azimuth towed-streamer time-lapse acquisition scheme.

Because our formulation exploits structure among time-lapse vintages via low-rank matrix
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factorizations, we arrive at a scheme that is computationally feasible producing repeatable

densely sampled full-azimuth time-lapse vintages from nonreplicated data collected with

efficiencies increased by a factor of (approx.) 3×. Our findings are consistent with other

studies reported in this special issue that indicate that acquisition efficiency can be improved

significantly by adapting the principles of CS. In this work, we carry the argument of

improving acquisition efficiency with CS a step further by arguing that this new paradigm

also provides the appropriate framework for low-cost time-lapse wide-azimuth acquisition

with towed arrays and multiple source vessels. We ask these vessels to operate well within

their capabilities without insisting on replicating the surveys, which brings down cost making

our approach viable in the field.

For simplicity, we limit ourselves to on-the-grid and calibrated surveys, which we do not

consider as a limitation because we have shown that our CS-based time-lapse acquisition can

be extended to irregular off-the-grid acquisition (Wason et al., 2017) and to situations where

the actual and post-plot acquisitions differ by unknown calibration errors. For details on the

possible impact of calibration errors, we refer to our companion paper “Highly repeatable

time-lapse seismic with distributed Compressive Sensing—mitigating effects of calibration

errors” in this special issue. In that contribution, we show that the attainable recovery

quality and repeatability of time-lapse vintages and difference deteriorates gracefully as

a function of increasing calibration errors. The main contribution of this work is that

we confirm, by means of at-scale simulation, that 3D time-lapse full-azimuth multi-vessel

towed-streamer acquisition and processing are viable as long as we exploit information

shared among the time-lapse vintages, by our joint-recovery model, and within the vintages

themselves via low-rank matrix-factorizations (Kumar et al., 2015b). As a result, we

arrive at a relatively simple easily parallelizable algorithm that is capable of handling large
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data volumes without relying on partitioning the data into small volumes. Instead, our

permutation into the noncanonical matricization that lumps source/receiver coordinates

together, leads to extremely parsimonious representations of the data, which explain the

quality and repeatability of the recovered time-lapse vintages from surveys collected with

relatively large subsampling ratios without insisting on replication.

In summary, the experience we gain with our numerical feasibility study suggests that

we may no longer need to insist on dense replicated source/receiver sampling as in time-

lapse surveys with (semi) permanent OBC/OBN. Instead, we demonstrate that high-quality

repeatable time-lapse vintages can be acquired with randomized towed-array multi-vessel

acquisitions designed according to the principles of CS.
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(a) (b)

(c) (d)

Figure 1: Monochromatic frequency slices of fully (top row) and subsampled (bottom row)
matricized seismic data. (a) The canonical xsrc, ysrc matricization; (b) the noncanonical
xsrc, xrec matricization. The corresponding plots for the singular values confirm the rank-
revealing property of the noncanonical xsrc, xrec data organization, where the singular values
decay more rapidly. (c) Subsampled data in the canonical organization and (d) the same
but in the noncanonical organization. Notice that randomly missing shot positions in the
canonical basis lower the rank of the matrix while missing shots in the noncanonical bases
lead to randomly missing blocks (as opposed to missing columns), which leads to a slower
decay of the singular values (juxtapose corresponding singular-value plots in the bottom
row).
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(a) (b)

(c) (d)

Figure 2: 2D SLO acquisition geometry and data. (a) Schematic of 2D SLO acquisition.
(b) Reorganization of towed-streamer data in a split-spread geometry, i.e., from common-
channel domain to common-receiver domain. (c) Blended common-shot gather and (d)
blended common-channel gather for 2D SLO acquisition. Equivalent of blended data after
reorganization in a split-spread geometry is shown in Figure 4b.
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(a)

(b) (c)

Figure 3: 3D SLO acquisition. (a) Acquisition design involving two source vessels, with
vessel 1 towing 12 streamer cables, traveling across the survey area at random azimuths with
random distance between the sail lines. (b) Source (purple-dash square) and common-receiver
(green polygon) grid outlined on the synthetic model grid (red polygon) for conventional
full-azimuth and offset 3D acquisition. The source grid moves w.r.t. a common receiver
(green star) on the fixed common-receiver grid. (c) Randomized SLO acquisition geometry
on the underlying conventional acquisition.
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(a) (b)

Figure 4: 3D common-receiver gather for (a) conventional long-offset data. (b) The corre-
sponding SLO data containing incoherent artifacts and subsampled (or missing) shots.
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(a) Conventional acquisition (b) SLO acquisition

(c)

Figure 5: Monochromatic frequency slice in the noncanonical (xsrc, xrec) matricization of a
subset of (a) the conventional fully sampled data, and (b) the “offset-compressed” blended
data. (c) The corresponding singular-value decay plot illustrating the slow decay of the
singular values due to the randomized subsampled SLO acquisition.
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(a) Baseline model (b) Monitor model

(c) Time-lapse model

Figure 6: 3D BG COMPASS velocity model used in simulation. (a, b, c) Baseline, monitor
and time-lapse model, respectively.
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(a) Monitor (b) Time-lapse difference

Figure 7: Common-receiver gather generated from the conventional full-azimuth and offset 3D
(a) monitor survey. (b) The corresponding time-lapse difference gather (difference between
Figure 4a and Figure 7a). Note that the time-lapse difference is shown after 3 s. This serves
as the ground truth to compare the recovery quality of source separation and interpolation
using the proposed recovery strategy.
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Figure 8: Randomized SLO time-lapse acquisition geometry on the underlying conventional
full-azimuth and offset acquisition grid (cf. Figure 3b). The vessels travel along random
azimuths — blue-dash lines: baseline survey; orange-dash lines: monitor survey. Subsampling
ratio for each survey is 70%.
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Recovered baseline Residual

Recovered time-lapse difference Residual

Figure 9: Source separation and interpolation using the JRM with 100% overlap between
the time-lapse surveys. (a) Recovered baseline and (b) the corresponding residual w.r.t. the
conventional data (Figure 4a). (c) Recovered time-lapse difference and (d) the corresponding
residual w.r.t. the conventional data (Figure 7b).

32



Recovered baseline Residual

Recovered time-lapse difference Residual

Figure 10: Source separation and interpolation using the JRM with 30% overlap between
the time-lapse surveys. (a) Recovered baseline and (b) the corresponding residual w.r.t. the
conventional data (Figure 4a). (c) Recovered time-lapse difference and (d) the corresponding
residual w.r.t. the conventional data (Figure 7b).

33



LIST OF TABLES

1 Acquisition parameters used in simulation. . . . . . . . . . . . . . . . . . . . . 35

2 Summary of recoveries in terms of average recovered S/N (in dB). Note the
improved recovery of the vintages and the time-lapse difference for the joint-
recovery method in contrast to the independent recovery. Moreover, recovery
of the vintages improves for nonreplicated surveys (30% overlap is the least
possible overlap between the surveys for the given experiment). Time-lapse
difference recovery for 100% overlap is slightly better than 30% overlap since
we are on a discrete grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Economic considerations. As depicted by the numbers, the proposed
factorization-based rank-minimization framework compresses the size of
(reconstructed) data volumes significantly, rendering this framework as
computationally cheap and scalable. . . . . . . . . . . . . . . . . . . . . . . . 37

34



No. of streamer vessels 1
No. of source vessels 2
No. of source arrays 4
No. of streamers 12
Streamer length 2000 m
Group interval 25 m
Shot interval 25 m
Streamer interval 100 m
No. of azimuths acquired 12

Table 1: Acquisition parameters used in simulation.
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Overlap Baseline Monitor 4D signal

IRM JRM IRM JRM IRM JRM
100% 12.6 13.4 12.5 13.3 -0.7 4.6
30% 12.6 15.4 10.5 15.9 -7.6 3.3

Table 2: Summary of recoveries in terms of average recovered S/N (in dB). Note the
improved recovery of the vintages and the time-lapse difference for the joint-recovery method
in contrast to the independent recovery. Moreover, recovery of the vintages improves for
nonreplicated surveys (30% overlap is the least possible overlap between the surveys for the
given experiment). Time-lapse difference recovery for 100% overlap is slightly better than
30% overlap since we are on a discrete grid.
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Subsampling ratio 70% for each vintage
Size of each observed vintage 200 GB
Size of each recovered vintage 800 GB
Size of recovered L,R factors for each vintage 12 GB
Compression ratio using proposed method 98.5%

Table 3: Economic considerations. As depicted by the numbers, the proposed factorization-
based rank-minimization framework compresses the size of (reconstructed) data volumes
significantly, rendering this framework as computationally cheap and scalable.
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