
ACCELERATING SPARSE RECOVERY BY REDUCING CHATTER∗

EMMANOUIL DASKALAKIS † , FELIX J. HERRMANN‡ , AND RACHEL KUSKE§

Abstract. Compressive Sensing has driven a resurgence of sparse recovery algorithms with
`1-norm minimization. While these minimizations are relatively well understood for small under-
determined, possibly inconsistent systems, their behavior for large over-determined and inconsistent
systems has received much less attention. Speci�cally, we focus on large systems where computational
restrictions call for algorithms that use randomized subsets of rows that are touched a limited num-
ber of times. In that regime, `1-norm minimization algorithms exhibit unwanted �uctuations near
the desired solution, and the Linear Bregman iterations are no exception. We explain this observed
lack of performance in terms of chatter, a well-known phenomena observed in non-smooth dynam-
ical systems, where intermediate solutions wander between di�erent states sti�ing convergence. By
identifying chatter as the culprit, we modify the Bregman iterations with chatter reducing adaptive
element-wise step lengths in combination with potential support detection via threshold crossing. We
demonstrate the performance of our algorithm on carefully selected stylized examples and a realistic
seismic imaging problem involving millions of unknowns and matrix-free matrix-vector products that
involve expensive wave-equation solves.
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1. Introduction. In compressive sensing, a hot �eld in applied mathematics for
the last �fteen years, the key assumption is that the unknown solution vector x ∈ Rn,
is sparse (most of its entries are zero). Given a data vector b ∈ Rm and a sensing
matrix A ∈ Rm×n with (m� n) such that Ax = b, recovering x is non-trivial because
it is an under-determined problem. However, this problem can be solved using the as-
sumed sparsity, under certain conditions on the matrix A, via a `1−norm minimization
procedure [2, 3, 7]. While there are many options for solving `1− norm minimization
problems, we focus on a modi�cation of the linearized Bregman iterations given below
(cf. Equation (1.1)), a method well-suited for `1−norm optimization problems with
convergence guarantees [1].

The linearized Bregman (LB) method [26] follows a simple iterative scheme in-
volving

(1.1)
zk+1 = zk − tkA>(Axk − b)
xk+1 = Sλ(zk+1),

where Sλ(zk) = max(|zk|−λ, 0) sign(zk) is a soft thresholding or shrinkage nonlinear-
ity, A> is the transpose of A and tk is the step length or time step (cf. 1.2). These
iterations converge in the limit λ ↑ ∞ to the solution of the well known Basis Pursuit
(BP) problem�i.e.,

(BP) min
x
‖x‖1 subject to Ax = b
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where ‖x‖1 is the l1-norm, ‖x‖1 =
∑n
i=1 |xi| for xi the entries in x.

We follow [12] and use �dynamic time steps� tk's given by

(1.2) tk =
‖Axk − b‖22

‖A>(Axk − b)‖22
.

For consistent (noise-free) systems, the above iterations Equation (1.1) with dynamic
time steps tk converge to the solution of the following strongly convex optimization
problem:

(ELλ) min
x
λ‖x‖1 +

1

2
‖x‖22 subject to Ax = b .

The combination of the `1- and `2-norms makes the above problem strictly convex and
is referred to as an elastic net in the machine learning literature [27]. By including
projections onto a `2-norm ball of size σ [12] that equals the `2-norm of the noise, the
above iterations can be used to solve inconsistent problems of the type

(BPDNσ) min
x
‖x‖1 subject to ‖Ax− b‖2 ≤ σ ,

known as Basis Pursuit DeNoise (BPDN). Since Ax = b is not solved exactly, this
formulation avoids �tting the noise, and thus small coe�cients are not captured.

While convergence of Equation (1.1) for consistent `1−norm minimization prob-
lems has been established [1], we are interested in large inconsistent and over-determined
problems for which exact recovery is not possible. Since our problems are large and
over-determined, we study the behavior of iterations that involve (random) subsets of
data�i.e., we follow [25] and write

(LBk)

zk+1 = zk − tkA>k (Akxk − bk)

tk =
‖Akxk−bk‖22

‖A>
k (Akxk−bk)‖22

xk+1 = Sλ(zk+1),

where the pair {Ak, bk} represents (randomly) chosen subsets of rows selected from
A and the corresponding data points bk extracted from b. As a result, we solve a
sequence of sub-problems involving sub-matrices Ak = Ar(k) that consist of randomly
sub-sampled rows r(k) taken from the tall matrix A (see Figure 1) and redrawn with
replacement during each kth iteration. Then the iterations correspond to a sparse
block-Kaczmarz method that is connected to the linearized Bregman method. When
the iterations use a single row at each step, the iterations become Kaczmarz iterations
[16, 19] as shown by [12, 13]. These authors also demonstrated for the undetermined
problem that, irrespective of the batch size (number of rows in Ak), the iterations in
LBk converge to the solution of the original problem BP when λ ↑ ∞.

Even though the extension in BPDNσ to include noisy problems allows for solu-
tions of inconsistent under-determined systems, its behavior is much less well studied
and understood in situations where A is tall and the size of the problem dictates that
we can use only a limited number of pairs of {Ak, bk}, because these row blocks are
expensive to evaluate. That is, we have to work under the condition that (i) we can
a�ord only a few passes (epochs) through the data (one pass through the data cor-
responds to the numbers of iterations necessary to touch m randomly selected rows);
(ii) the condition number of the matrix may not be good, in contrast to compressive-
sensing problems where the matrix is well-conditioned by design; (iii) unknown vectors
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Fig. 1: The subsampling process (�gure adapted from [5])

x are compressible rather than strictly sparse, meaning that the size distribution of
the entries of x includes small values. Then we can hope to approximate the solution
only up to small coe�cients remaining in the tail of this distribution. That is, in
essence we approximate BP by solving ELλ with a limited number of iterations for
�nite λ. With this approach, we look to capture small coe�cients without �tting the
noise.

Given the focus on large, inconsistent systems, we seek to approximately invert
systems of this type by allowing only a limited number of passes through the data
and restricting our attention to systems that also behave �compressive sensing like�.
Speci�cally, we mean that x is strictly sparse or can be well approximated by a
small number of non-zero entries and that under certain conditions [8] the following
relationship holds:

A>k bk ≈ αIx+ nk,

where the Ak's are �at, α ≤ 1 and nk Gaussian-like noise. The size of this noise
depends on the number of rows in Ak and on the level of inconsistency of the system
of equations. Even though the systems of interest are inconsistent, we study the
above iterations without including projections onto the `2 norm ball. We justify this
choice by the following arguments: (i) we are only allowed to make a very limited
number of passes through the data, which limits the risk of �tting the �noise�, which
is a common concern in BPDNσ; (ii) we know from experience that solutions of
BPDNσ miss the small entries in x that are of interest to us, given the relaxed data-�t
constraint; (iii) in practice, our �noise� is not incoherent random noise, thus violating
the assumptions behind the additional projections. Furthermore, as demonstrated at
the end of Section 3, these projections do not address certain �uctuations related to
stalling that we address in this paper.

Under these assumptions, one could argue that LB iterations as in Equation (1.1)
would make the most progress because well-tuned thresholding should be able to
separate the interference noise from spiky signal. Because our matrices of interest are
�compressive sensing like� to a limited degree, the above ideal �denoising� scenario of
LB does not hold. This shortfall explains, at least in part, why the LB algorithm
struggles to converge rapidly to a solution in these cases.

Many attempts have been made in the literature to speed up the convergence
of `1-norm minimization problems. For �rst order methods�i.e., methods that use



4 E. DASKALAKIS, F. J. HERRMANN, AND R. KUSKE

�rst-order derivative information on the objective only, these range from relaxing the
constraints, known as a homotopy [21], to techniques derived from belief propagation
or from dynamical systems. The former is known as approximate message passing
[8, 11] and relies on a delicate and therefore impractical set of assumptions on the
pairs {Ak, bk} [14]. The latter involves the inclusion of an additional memory term
as proposed by Nesterov. Unfortunately, we found empirically that none of these
approaches are adequate to handle our problems of interest that are large, inconsistent,
and mildly ill-conditioned. Furthermore, we note the contrast between the iterative
shrinkage thresholding algorithm (ISTA) that updates from the value xk following
from the thresholding operation Sλ, and the LB method Equation (1.1) that updates
from the value zk of the last iterate before thresholding (i.e. for ISTA, xk replaces zk
on the right hand side of the �rst equation of Equation (1.1)). This di�erence allows
LB iterations to hone in on sparse solutions more quickly and �exibly than ISTA (as
demonstrated at the end of Section 3).

Because of its relative simplicity and connection to the Kaczmarz method [16, 19],
we take the LB iterations in Equation (1.1) as a starting point. We empirically
study these iterations from the perspective of a nonlinear non-smooth dynamical
system with noise. In particular, we associate the observed and reported stalling
behavior of Equation (1.1) when applied to inconsistent systems (also observed for
other algorithms such as ISTA), with the phenomenon of chatter well-known in non-
smooth dynamics [20]. We demonstrate that chatter is responsible for relatively strong
�uctuations in the model iterates xk preventing the smaller entries of x to enter into
the solution.

1.1. Organization. After brie�y providing a practical motivation for our prob-
lem in Section 2, we discuss this phenomenon of chatter in detail by describing a series
of carefully selected numerical experiments in Section 3 including a simple counter
measure reducing the chatter. In Section 4, we propose and discuss a more sophisti-
cated method to reduce chatter by exploiting additional structure sparsity-promoting
problems o�er. In Section 5 we compare the behavior of the model error and residu-
als, while also illustrating the in�uence of the choice of the threshold parameter λ in
problems with either sparse or compressible solutions. We conclude with Section 6,
where we study the impact of our chatter reducing algorithm in the practical setting
of Section 2.

2. Practical motivation. While there has been signi�cant progress in the de-
sign and implementation of `1-norm minimization problems, �rst-order methods in-
cluding the LB method become challenging when x becomes large and the data mis�t
constraint becomes expensive to evaluate. A good example of such a problem is
Sparsity-Promoting Least-Square Reverse-Time Migration (SPLS-RTM). This prob-
lem involves the minimization of a separate data mis�t constraint for each source
experiment, which in itself requires the solution of a large ill-conditioned but invert-
ible system of equations that discretize a partial di�erential equation (PDE). After
linearization, wave-equation based geophysical sparsity-promoting imaging problems
take the form

(SPLSσ) min
x
‖x‖1 subject to

ns∑
i=1

‖Ji[m0, qi]C
∗x− bi‖2 ≤ σ.

In this expression, the unknown vector x contains complex-valued curvelet transform
coe�cients of the image; the matrices Ji, i = 1 · · ·ns with ns the number of source
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(a) Iteration 21 (b) Iteration 22 (c) Iteration 23

Fig. 2: The resulting migration image for three consecutive iterations.

experiments or �shots�, correspond to the discretized linearized Born modelling op-
erator for the ith source experiment; the vector m0 is the background model for the
compressional wavespeed; the qi and bi are the source wavelet and observed data for
the ith shot; and C∗ is the conjugate transpose of the Curvelet transform. Solving
problem SPLSσ is challenging for the following reasons: (i) the system is inconsistent
because the derivation of the Jacobians Ji(m0) is based on a linearization with respect
to the background model (m0), thus introducing the inconsistency; (ii) evaluations of
actions with Ji and J

>
i are expensive because they involve at least two wave-equation

(PDE) solves for each source; (iii) there are many source experiments�i.e., ns is
large making iterative solutions that involve all ns source experiments infeasible; (iv)
the system of equations in SPLSσ is ill-conditioned due to physical constraints on the
acquisition geometry and the frequency content of the sources; and (v) earth images
are not strictly sparse but compressible and the challenge is to capture as many small
curvelet coe�cients as possible.

To provide a concrete example of the challenges that arise in this context, we
plot imaging results for iterations k = 21 · · · 23 in Figure 2. Even though the LBk

iterations produce a reasonable image after making approximately two passes through
the data (i.e., we touched 10% of the shots 20 times), we observe a cyclic behavior
where the solutions are hopping between two di�erent solutions. This type of behavior
is consistent with chatter and leads to undesired stalling. Unfortunately, this stalling
can lead to serious deterioration of the resulting image because we are typically only
allowed to make a limited number of passes through the data.

Remark. Working with sub-problems Ak has advantages when the condition
number of the sub-matrix Ak is better than the condition number of the full matrix
A and when fast matrix multiplies are available for each block of rows [17]. The
latter is certainly the case for Problem SPLSσ and there are also indications that the
conditioning of the sub-problems is better. This means we are in the right regime.

Before we study the behavior of tall inconsistent problems of a realistic size and
complexity, we �rst consider the dynamics of small scale problems in order to expose
the source of the chatter. We do this by looking at the relative model error as a
function of k for strictly sparse problems. This relative error measures how close xk
is to the exact solution xexact and is de�ned as

(2.1) Me(xk) =
‖xexact − xk‖2
‖xexact‖2

, where Axexact = b (σ = 0).

Unfortunately, the model error requires prior knowledge on the exact solution xexact.
For this reason, we also consider the normalized residual. This normalized residual is
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given by

(2.2) R(xk) =
‖Axk − b‖2
‖b‖2

.

Typically it is computationally infeasible to calculate this normalized residual
for large matrices A that encode imaging problems with PDEs so we compute the
normalized residuals for each sub-problem instead�i.e., we compute

(2.3) Rk(xk) =
‖Akxk − bk‖2
‖bk‖2

.

3. Dynamics of a strictly sparse toy problem. We consider the widely
observed stalling of (block) Kaczmarz-type iterations for inconsistent over-determined
systems from the perspective of chatter, a related phenomenon observed in dynamical
systems. We note also the role of the thresholding operator Sλ, an essential part of
Equation (1.1) that makes this algorithm well-suited for sparse problems, since Sλ
encourages the algorithm to pursue larger entries in a sparse vector as the solution.
That is, the thresholding removes small entries that appear in the iterations, and one
is left with the model iterate xk at each step. These properties together with the ease
in programming make Equation (1.1) (as well as LBk) an attractive algorithm.

However, while this thresholding facilitates the fast convergence to exact solutions
for (consistent) sparse problems, it can also contribute to a phenomenon known as
chatter in the context non-smooth dynamical systems. The evolution of such a system
is typically described by di�erent sets of dynamical equations in di�erent regions of
solution space; that is, either the coe�cients or the forms of the governing equations
are discontinuous across a switching surface in the solution-space [6, 20, 18]. In
Equation (1.1) the threshold λ introduces non-smooth dynamics so that the equation
for each entry zi is this type of system; speci�cally, for |xik| < λ, the ith element
of ATAxk is replaced by 0. Just as in smooth systems, the governing equations
describe how the system moves from any non-equlibrium state toward an equilibrium
or attracting state. However, the potential for chatter arises when the attracting state
for a given set of governing equations is a virtual equilibrium, that is, if it is in a region
with a di�erent set of governing equations. Then the system crosses the switching
surface but never reaches that virtual equilibrium. Instead, the system crosses the
switching surface and evolves according to the governing dynamics for that region of
state space. If there is no stable equilibria or attracting state in any of the regions,
the system continues to pursue a sequence of virtual equilibria, crossing the switching
surface but never reaching a stable state. This repeated crossing of the switching
surface is a typical signature of chatter for non-smooth systems, together with the
system never reaching an equilibrium or attracting state. Classic examples of chatter
appear in control systems; for example, the simple model of a thermostat, operating
a heating or cooling system when a threshold is crossed, with repeated crossings of
this threshold if the ambient temperature is not in the temperature range for which
the system is o�. Noise may also drive chatter in non-smooth systems, for example,
if the attracting equilibrium is near the switching surface, so that su�ciently large
noise may repeatedly drive the system across this surface.

In the problems considered in this paper, the threshold removes certain entries
from zk, thus removing the in�uence of certain columns of A in the next iteration.
While this operation allows the algorithm to seek sparse solutions quickly, it also
contributes to one of the two potential sources of chatter that we see below; for



ACCELERATING SPARSE RECOVERY BY REDUCING CHATTER 7

the inconsistent case, there is no attracting solution to ELλ, corresponding to an
equilibrium for Equation (1.1). Then the algorithm continues to seek a solution by
moving (small) entries in and out of the support of the solution. Furthermore, the
subsampling of A and b at each step can contribute to chatter, since small di�erences in
the behavior of these subproblems yield small di�erences in the entries of the solution,
so those near the threshold can once again move in and out of the support on any
given iteration. These di�erent contributions to chatter are discussed further below.

Some theory exists on the behavior of inconsistent systems when operated upon by
block Kaczmarz (see [17] equation 1.4), speci�cally that Kaczmarz iterations stall as
soon as the solution gets close to the true solution, continuing to �uctuate about that
solution. Their results characterizing this phenomenon depend on the conditioning of
the matrix, and are given in terms of a bound on the expectation of ‖xk − xexact‖22,
which includes the `∞-norm of the �noise�. Here we are interested in �nding an e�cient
and practical approach to improve performance within the context of LB iterations
Equation (1.1) by identifying the above observed phenomena of stalling as chatter.
We expect that these results have implications for sparse block Kaczmarz, since the
subsampling in the LB iterations reduces to Kaczmarz iterations when taking one row
of A at a time.

3.1. Drivers of chatter. We investigate di�erent factors contributing to chatter
during LBk iterations by means of a small strictly sparse toy problem. As a �rst guess,
the observed chatter is caused by the interplay between the stochastic dynamics of the
LBk iterations, induced by working with random sub-problems, and the thresholding
nonlinearity. To better understand this interplay, we �rst consider how chatter relates
to (i) the choice of the time step, (ii) the size of the sub-problem {Ak, bk}, and (iii)
whether the problem is consistent (σ = 0) or not (σ > 0).

For this small scale demonstration, we �rst consider problem BP, where the matrix
A is a 20000×1000 Gaussian matrix that is drawn from a normal distribution N (0, 1).
To mimic the setting and approach of the motivational example SPLSσ, we consider
the setting where b = b̂+ ε, with Axexact = b̂ and the entries of ε have mean zero and
standard deviation σ. Furthermore, we use the iterations LBk, randomly sub-sampling
the data bk at the kth iteration using a 250 × 1000 sub-matrix Ak of the matrix A.
Since Ak is a random selection of mk � n rows of A redrawn with replacement for
each iteration, we work with a di�erent under-determined problem and data at each
iteration. We use dynamic time steps [13] and in general λ is determined empirically.
In Subsection 5.2, we brie�y discuss a possible choice for λ motivated by the dynamics
of LB-type algorithms, and leave in-depth discussion to a future paper.

For now, we focus our attention on problems where the vector xexact is strictly
sparse, so that the sparsity of the vector xexact is comparable to that of the moti-
vating problem SPLSσ. To illustrate the chatter, we track the evolution of xik for
i corresponding to the non-zero entries xiexact 6= 0 over three data passes (one data
pass or epoch corresponds to 80 iterations when the sub-matrix has 250 rows). As
shown in Figure 3, it is insightful to study the dynamics of the system by plotting
zik for two �xed indices i that correspond to the largest entry of zk and one of the
small non-zero entries. When the system is consistent σ = 0, the two entries from zik
reach the solution values (xiexact ± the threshold λ) after iterating for approximately
1
4 of the �rst data pass (Figure 3a) . In contrast, for the inconsistent case zik reaches
the desired values only approximately, at which point the recovered values �uctuate
around the desired value, replicating the chattering behavior observed in the motivat-
ing example SPLSσ. To illustrate the e�ect of the dynamic step length tk, in Figure 3
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(a) Ak ∈ R250×1000, σ = 0

(b) Ak ∈ R250×1000, σ > 0

(c) Ak ∈ R2000×1000, σ > 0

Fig. 3: Plots of two entries of zk with �xed indices i that correspond to the largest
entry and one of the small non-zero entry for the strictly sparse problem. With dashed
lines we track entries of zk that use the constant time step tk = 1

‖Ak‖22
and with solid

lines we track entries of zk that use the dynamic time step tk =
‖Akxk−bk‖22

‖A>
k (Akxk−bk)‖22

.

The plot in Figure 3a corresponds to the consistent case (σ = 0) for which no chatter
behaviour is observed. On the other hand, plots in Figure 3b and Figure 3c correspond
to the inconsistent case (σ > 0), which su�ers from chatter. The red lines indicate
the corresponding values of xiexact ± λ.

we compare the solution trajectories for the inconsistent case using both constant
time steps based on the spectral norm, tk = 1

‖Ak‖22
, and dynamic time steps as in

Equation (LBk), tk =
‖Akxk−bk‖22

‖A>
k (Akxk−bk)‖22

. The latter exhibits faster convergence to the

approximate values as expected, but both choices su�er from chatter. Note that the
terms constant and dynamic refer to the dependence of tk on the solution xk; both
constant and dynamic tk vary with k due to the sub-sample matrix Ak, but only the
dynamic time step varies with xk.

To study the e�ect of the sub-problems themselves, in Figure 3c we plot trajecto-
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ries for both entries when the pairs {Ak, bk} correspond to over-determined systems,
where the sub-matrix Ak is tall. For the inconsistent case, the chatter is worse when
the pairs of {Ak, bk} correspond to over-determined sub-systems, relative to Figure 3b
where the pairs of {Ak, bk} correspond to under-determined sub-systems. While this
observation is consistent with reported behavior of stochastic gradient descent [9, 23],
where step lengths and line-searches are known to be problematic, the increased chat-
ter for the overdetermined case seems counter-intuitive. It can be explained from the
fact that the condition numbers of the submatrices are smaller, an observation orig-
inally made by [17]. With this observation, a constant time-step may seem a better
choice; yet it is important to remember that the rate of convergence for the constant
time step is slower, which is an important consideration for large problems where
fewer iterations are desired or necessary. Additional chatter dynamics are discussed
in the context of Figure 5 below.

3.2. Controlling chatter with weighted increments. From the small scale
experiments above using LBk to �nd x, we conclude that the main contributor to
chattering is the inconsistency, combined with the thresholding Sλ. Moreover, choices
for the time step tk and the size of Ak, can make the chatter worse. Since chatter slows
down convergence, or even prohibits convergence, we propose a weighted increment
approach where we adaptively shorten the time steps tk, thus reducing the errors
resulting from chatter. As reported by [4, 9, 15], convergence of stochastic gradient
descent for �xed batch size, i.e., �xed size of the sub-problems, can be realized via a
reduction of the overall time step. Tailored to the special structure of our problem,
which involves a linear constraint and a strongly convex nonlinear objective designed
to exploit sparsity, we design a scheme that reduces the step-size adaptively for each
entry depending on its history.

To motivate our adaptive reduction of the time steps, we compare in Figure 4
the actual values of the constant and dynamic time steps selected for the subsampled
systems for both the consistent (σ = 0) and inconsistent (σ > 0) cases. For the
consistent case, the time steps �uctuate but remain centered around a constant value.
As expected, the dynamic step lengths are larger and the �uctuations in both cases
are due to the random selection of new sub-problem pairs {Ak, bk} for each iteration.
However, the situation is completely di�erent for the inconsistent case where the
�uctuations in tk increase with chatter (cf. Figure 3 and Figure 4). As a result, the
recovered values for the non-zero entries change from iteration to iteration, in part
due to the relatively strong �uctuations and large values of the dynamic time steps
at the later iterations.

Because large time steps in the earlier iterations typically lead to preferred faster
convergence, we would like to devise an adaptive scheme that allows the solution to
make rapid progress in the beginning, followed by a period of increased caution when
the chatter sets in. As in stochastic gradient descent [15], such a scheme would reduce
the time steps when the stochastic �uctuations start to dominate. Because the chatter
di�ers from entry to entry (see the wiggle trace plot Figure 5, showing the amplitude
versus time as an oscillating line), we select the time steps for each entry depending
on its history, speci�cally, the amount of chatter for that entry. To e�ectively counter
the chatter, the scheme must adaptively reduce the chatter more aggressively for those
entries with strong chatter. We can accomplish this by keeping track of the signs of
the previous gradients. If the signs of the ith entry of these gradients is persistent,
having the same sign from iteration to iteration, we want to keep the time step as is.
Conversely, we want the time step to decrease when the gradients at the entry changes
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Fig. 4: Here we solve the small scale problem with LB-type approaches, using LBk

for blue, red, and yellow, and tracking the value of the time-step. In blue, we have
the constant time step tk = 1

‖Ak‖22
. In red we have the dynamic time-step tk =

‖Akxk−bk‖22
‖A>

k (Akxk−bk)‖22
when trying to solve the inconsistent problem. In yellow we have

the dynamic time-step when trying to solve the consistent problem with LBk. With
purple and green we track the weighted increments in MLB for the same entries as in
Figure 3 (purple is the largest entry and green is a small entry)).

sign often, indicating the onset of chatter. We accomplish these goals by shrinking
the ith entry of the time step accordingly, thus assigning a di�erent time step for each
entry as

(3.1) τ ik = tk

∣∣∣ k∑
j=1

sign([A>j (Ajxj − bj)]i)
∣∣∣

k
, i = 1 . . . n.

We normalize this expression by the current number of iterations k so that the weights
shrink each entry towards zero when chatter sets in�i.e, the element-wise multipli-
cation factor is guaranteed to be between zero and one.

With these weighted increments, our modi�ed Linearized Bregman (MLB) algo-
rithm takes the form:

(MLB)
zk+1 = zk − τk �A>k (Akxk − bk)

xk+1 = Sλ(zk+1),

where tk is either the constant or the dynamic time-step. The symbol � denotes the
Hadamard product - i.e. element-wise multiplication.

The rationale behind the above choice for the weights in Equation (3.1) is derived
from the following three key observations: (i) it typically takes `1-norm minimization
relatively few iterations to recover the largest entries of x; (ii) often it is not worthwhile
to continue iterating once the solution has captured these large entries because of the
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(a) Model iterates for Ak ∈
R250×1000, σ = 0

(b) Gradients for Ak ∈
R250×1000, σ = 0

(c) Model iterates for Ak ∈
R250×1000, σ > 0

(d) Gradients for Ak ∈
R250×1000, σ > 0

Fig. 5: Wiggle plots of a part of the model iterates (xk) and gradients. In the
consistent case (σ = 0), we observe no chatter and the gradient gets smaller as the
iterations pass. In the inconsistent case (σ > 0), we observe the chatter behavior
where entries regularly and continually enter and leave the support of the solution.
The chatter is driven by the fact that the gradient does not get smaller with the
iterations, in contrast to the consistent case.
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(a) Dynamic time-step, Ak ∈ R250×1000 (b) Dynamic time-step, Ak ∈ R2000×1000

Fig. 6: The same entries are tracked as in Figure 3 . For entries in green we used
the weighted increment τk in MLB in comparison to the entries in blue where we use
LBk. The di�erence in the values of zk is due to a di�erent choice of threshold for
the MLB. Typically λMLB < λLBk . The red lines indicate the corresponding values
of xiexact ± λ, with the values xiexact the same for both LBk and MLB.

large-amplitude chatter that develops at these large entries; and (iii) it is impossible
to recover the many smaller entries as long as the iterations do not settle on the correct
values for the large entries. For these reasons, we want to avoid using a large step
tk for an entry that is relatively close to the correct value. This behavior is indeed
captured by MLB, with the size of the time steps reduced if the gradients change
sign from iteration to iteration � a tell tale sign of chatter. Conversely, the time
steps remain large if the sign of the entries in the gradients remain persistent over the
iterations.

As shown in Figure 4, we observe exactly this behavior for the large and the small
coe�cients, where the time steps for both types decrease towards zero as the number
of iterations becomes large. However, at the early iterations the weights behave quite
di�erently for large and small coe�cients for the reasons mentioned above, namely
the sparse recovery algorithm �nds the large coe�cients �rst. This explains the small
increase in time step early on for these entries, followed by a gradual decrease in the
time steps as the values of the large entries are recovered. The small entries, on the
other hand, exhibit a di�erent behavior early on. There the �uctuations occurring
during the early iterations, while the algorithm seeks the larger values, result in a
rapid decay of the time steps for the smaller entries. A rapid increase in the time
step follows, as soon as the algorithm starts to hone in on the smaller entries (cf.
the green and purple plots in Figure 4). Once the algorithm approaches the desired
values for the small entries, the time step decreases as the sustained chatter sets in
for these entries. Note that we observe these e�ects only for inconsistent systems
where chatter is expected to occur. By comparing Figure 3 and Figure 6, we observe
that our weighting scheme damps the chatter as intended, by shrinking the time
steps for the entries where the chatter occurs as shown in Figure 7. There we see
that while there are still �uctuations in the gradients, the gradual reduction in time
steps damps the chatter. However, this is accomplished at the expense of the rate
at which the algorithm reaches the desired values for the smaller entries (cf.Figure 3
and Figure 6). This observation motivates the results of the next section, where an
improved weighting scheme is obtained for the smaller entries. This improvement is
important especially for compressible signals where the small entries down in the tail
are the most di�cult to recover.
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(a) Model iterates for Ak ∈
R250×1000, σ > 0

(b) Gradients for Ak ∈
R250×1000, σ > 0

(c) Time steps for Ak ∈
R250×1000, σ > 0

Fig. 7: Wiggle plots of a part of the solution, the gradient and the time step using
MLB. Even though the gradient has similar behavior compared to the gradient of the
LB method (cf.Figure 5d), the chatter is damped as the time step shrinks for certain
elements as seen in panel Figure 7c

Before deriving a scheme to accelerate the recovery of compressible signals, let
us �rst brie�y compare the solution paths using MLB with those using LBk-based
methods, with and without the projections onto a `2-norm ball of size σ as de�ned
in [12] and discussed in the Introduction in the context of BPDNσ. In Figure 8 these
solution paths are contrasted also with the iterative shrinkage thresholding algorithm
(ISTA) by plotting the `1-norm against the `2-norm as the iterative algorithm pro-
gresses. For reference, we compare these curves with the Pareto curve [10, 22], which
traces the minimal attainable `2-norm of the residual against the size of the `1-norm
constraint. The strong convexity contributes to the fact that the solution paths for
LBk stay close to the optimal Pareto curve, in contrast to the solution path of ISTA.
Because we invert an inconsistent over-determined system with randomized sampling,
the solution paths shown are dominated by random �uctuations when approaching
the minimal `2-norm for the residual. While LBk with and without projections on the
`2-norm ball overshoots the true `1-norm, the MLB method (the green curve) stays
close to the Pareto curve and does not over�t the noise, an important feature of our
method on which we build below. It is important to note that for σ = 0 (not shown
in the �gures), the sustained �uctuations in LBk with and without the `2-norm ball
projection are not observed, indicating that they are due to chatter in the inconsistent
system, and not due solely to the sampling of sub-problems with replacement.
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(a) (b)

Fig. 8: Solution paths for inconsistent problems, with the right panel a zoom-in of
the results shown on the left. The Pareto curve (in blue) is the the optimal solution
path for this problem. The solution using LBk is plotted with light blue, green is
the solution using MLB, ISTA is with red and magenta for LBk with the l2 -ball
projection.

4. Acceleration of the modi�ed algorithm. While the proposed weighting
scheme MLB addresses some of the issues related to chatter, it can lead to slower
convergence especially for the smaller entries. The smaller entries are important for
practical problems where the unknown vectors are not sparse but compressible� i.e.
both large and small entries are important in the approximation of the solution.

First we re-examine the iteration dynamics of the entries of zk for the small sparse
problem considered in Section 3, in order to analyse the evolution of the update before
we apply the threshold at λ. We divide the entries of zk into two groups, denoted as
the large and small solution entries of zk. The indices of these two groups correspond
respectively to the nonzero and zero entries of the exact sparse solution xexact. For
consistent problems (not shown), the large entries of zk reach the desired values
for fewer iterations (small k), while the small entries of zk converge as expected to
values below the threshold λ, typically after more iterations (larger k). In contrast,
for the entries from inconsistent problems solved with LBk as shown in Figure 9a,
the inconsistency gives rise to chatter both for the small (blue lines) and large (red
lines) entries of zk, leading to intermittent incorrect support (i.e., the nonzero entries)
detection and undesired slow convergence, if at all, as discussed in Section 3 above.
While using Equation (3.1) as in MLB signi�cantly reduces the chatter (cf. Figure 6),
Figure 9b illustrates the slower convergence of small entries for MLB. There, an entry
zi, with i corresponding to a small contribution xiexact in the sparse solution, takes
a larger number of iterations in MLB to reach the threshold than it does using LBk.
Thus more iterations in MLB are required to capture all contributions to the solution.
The slower convergence of the smaller entries in MLB is mainly driven by their initial
drop in step size τ ik, (see green line in Figure 4), due to strong �uctuations as the
algorithm seeks larger entries in the earlier iterations, in turn reducing the step size
for smaller entries through τ ik in Equation (3.1). While shown below for the sparse
case in Figure 9 and Figure 10, obtaining the small entries is particularly essential
when the solution is compressible, since detection of the correct support is dependent
on capturing the smaller entries. For large scale problems where we can a�ord only
a limited number of passes through the data, a slowdown in capturing the smaller
entries can severely limit the performance of MLB.
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(a)

(b)

Fig. 9: (a) Evolution of the entries of zk, using LBk for the small scale problem and
Ak is 250 × 1000. With blue we plot the entries zik that correspond to zero valued
entries of xexact and with red we plot zik corresponding to the non-zero entries of
xexact. (b) Comparison of the evolution of an entry of zik for which the corresponding
entry of xiexact is small in comparison to the maximum of xiexact, using methods LBk

(blue), MLB (green), and MLBλ (red). The same threshold value λ = 3 is used for
all methods.

This observation motivates avoiding a small step size in early iterations for the
small entries, which we accomplish by including an additional threshold nonlinearity
to detect when entries �rst cross the threshold and potentially enter into the solution.
That is, we use the weighted increment τ ik only after the �rst iteration k at which
|zik| > λ. Tracking this threshold crossing corresponds to automatic potential support
detection for the weighted increments. In contrast to attempts to detect the support
in sparsity-promoting solvers automatically [24], our �support detection� changes only
the weighted increments. The resulting update of MLB that tracks threshold crossing
is obtained by replacing τk with

(MLBλ) τ ik =


tk if |zij | ≤ λ, ∀j ≤ k

tk

∣∣∣∣∣ k∑
j=1

sign([A>j (Ajxj − bj)]i)

∣∣∣∣∣
k

otherwise.

Figure 9b illustrates that the extra element-wise nonlinear operation in MLBλ can lead
to faster convergence when the signal is detectable relative to the noise, particularly
in the case where a similar threshold value for λ is used for both LBk and MLB.
MLBλ avoids choosing a smaller step size prematurely for small entries, so that the
behavior of entries below threshold in MLBλ is the same as LBk.
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(a)

(b)

Fig. 10: Evolution of the entries of zk for the sparse small scale problem solved with
MLB (Figure 10a) and MLBλ (Figure 10b). The threshold parameter λ is represented
by the dashed green line.

Figure 10a and Figure 10b show the evolution of small and large entries of zk for
MLB and MLBλ, respectively, similar to those shown in Figure 9a. By de�nition,
MLB and MLBλ di�er in only the smaller entries of zk. These entries correspond to
the small components of the exact solution, which tend to remain below the threshold
longer in MLB even for large k. In Figure 10b, we can see that after two data passes,
only a small number of small entries are still below the threshold value for MLBλ, while
in Figure 10a a smaller threshold is necessary to get comparable results for MLB. In
all cases, entries that are not in the support�i.e., corresponding to the zero entries of
the exact solution � may occasionally cross the threshold and enter into the solution.
For smaller λ, this threshold crossing obviously occurs more frequently within a �nite
number of iterations, and can lead to over-�tting of the noise as discussed in the next
section.

5. Behavior of model error and residuals for compressible problems.

We evaluate the performance of each method by comparing using the model error
Me(xk) (cf. Equation (2.1)) of the actual solutions obtained from the LBk, MLB and
MLBλ methods. However, in practice the model error is not available, so that one
would typically use normalized residuals R(xk) (Equation (2.2)) and Rk(xk) (Equa-
tion (2.3)) instead, and we compare these below. We again consider the inconsistent
case, for which it is particularly challenging to resolve compressible solutions, as mo-
tivated by the example in Section 2.

5.1. Comparison of model error and residuals. Figure 11 juxtaposes the
model errors Me for LBk, MLB and MLBλ for a compressible problem where the
solution consists of entries that decay to zero. These �gures illustrate how chatter
in the LBk algorithm results in a plateau for the model error, while removal of the
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chatter for MLB and MLBλ results in a lower model error dependent only on the
noise level σ. In Figure 11a, we use the same λ = 3 for all methods. This value is
between the di�erent values of λ tailored to each method that are used in Figure 11b
and Figure 11c. While the choice of λ is not the focus of this paper, we see some of
its e�ects in Figure 11 and discuss it brie�y in Subsection 5.2 below.

When the same threshold λ is used for all methods, Me(xk) decreases faster
for LBk and MLBλ during earlier iterations, while MLB takes a larger number of
data passes for the Me(xk) to reach the corresponding model error of MLBλ. The
slower reduction in Me(xk) for MLB is directly related to the smaller step size for
MLB and slower rate of potential support detection via threshold crossing illustrated
in Figure 9b. When a reduced threshold is used for MLB, that method shows a
faster decrease of the model error relative to the model error for MLBλ and LBk.
Furthermore, the results for LBk and MLBλ in Figure 11a, illustrate the increase in
Me(xk) as k increases, due to over-�tting the noise. For those methods, the value of λ
is smaller than the value used in Figure 11b and Figure 11c. This behavior illustrates
the danger of over�tting the noise within fewer iterations for smaller values of λ, as
mentioned above.

Figure 11c shows results when the matrix A is ill-conditioned. There the chatter
drives signi�cantly higher model error for LBk in comparison to MLB and MLBλ,
both of which reduce the chatter and su�er only from errors related to the magnitude
of the noise. The ill-conditioned matrix A is produced by setting the singular values
of a Gaussian matrix to give a desired condition number, in this case on the order of
1000.

While the `2-norm relative model error Me (Equation (2.1)) can be a useful
quantity to compare the performance of the di�erent LB-type algorithms, it requires
the oracle of knowing the true solution, which is not available in practice. Because the
residual R (cf. Equation (2.2)) depends on the given matrix A and the data vector
b and does not require knowledge of the solution xexact, it is the quantity most often
used in practice to compare di�erent iterative methods, rather than the model error.
Unfortunately in large scale problems and online compressive sensing [13], often we
do not have access to the the full matrix A and data b, or the computation of R
(Equation (2.2)) is very expensive, so the alternative quantity that is typically used
is the residual Rk (Equation (2.3)) using the computationally cheap sub-matrix Ak
and data bk (Equation (2.3)).

In Figure 12, we compare both the residual R using the full matrix A and Rk
based on the subsampled Ak (Equation (2.2) and Equation (2.3), respectively), for
the LBk, MLB, MLBλ methods whilst λ is tailored to each. We observe that the
computationally inexpensive Rk does not capture the behavior of the model error
(Figure 11b), but R does. For the purposes of this paper we choose to use the relative
model errorMe for comparison, even though it is not available in real world problems,
because it provides an accurate and consistent way to compare di�erent methods, and
does not su�er from the subsampling errors of Rk.

5.2. In�uence of the threshold parameter. As seen in Figure 9b and Fig-
ure 11, the choice of λ plays a role in the rate at which contributions to the solution
are identi�ed, and thus also in the rate at which the model error decreases. On the one
hand, when seeking sparse solutions using a LB-type method, a larger threshold value
can be advantageous for honing in on larger values over fewer iterations, related to
the fact that the iterations in Equation (LBk) converge to the solution of the original
BP when λ ↑ ∞ ([13]). On the other hand, taking larger λ can slow the convergence
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(a) Compressible solution λ = 2.6 with λ = 2.6
used for all methods

(b) Compressible solution with tailored λ for each
method based on Equation (5.1).

(c) Compressible solution for A an ill-conditioned
matrix, using tailored λ based on Equation (5.1).

Fig. 11: Compressible case: The model error Me for LBk with the dynamic time-
step (in blue), the MLB with the weighted increment of Equation (3.1) (in green)
and the MLBλ weighted increment of Equation (MLBλ) (in red).For all panels a)-c),

the normalized error is
‖Axexact − b‖2

||b||2
= 0.5248, providing an approximation to the

normalized magnitude of the noise.

for compressible solutions, since a large number of iterations are required for smaller
entries to cross the threshold and potentially enter the support. Figure 13b illustrates
the dependence of model error on λ when only a limited number of data passes is
available. For larger λ, the model error in the compressible case increases with λ,
since the smaller entries have not entered the solution. The model error also increases
with small, decreasing λ, since the algorithm does not quickly hone in on a compressed
sensing-like solution. Furthermore, for a �nite number of iterations, a smaller value
of λ allows more opportunities to over-�t the noise by admitting incorrect small con-
tributions into the support, thus increasing the error. As shown in Figure 13b, the
optimal values of λ for the LB-type methods shown are all O(1) values, above that of
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(a) The residual R of Equation (2.3) for the LBk

(in blue), the MLB (in green) and MLBλ (in red).

(b) The residual Rk of Equation (2.2) for the LBk

(in blue), the MLB (in green) and MLBλ (in red).

Fig. 12: The two practical ways to calculate the residual (above) using R (Equa-
tion (2.2)) or Rk (Equation (2.3)). By comparing with Figure 11b, we can see that
the behavior only of the residual R actually resembles the behavior of the model error.
The dashed line on both graphs represents the approximation to the normalized noise

magnitude
‖Axexact − b‖2

||b||2
= 0.5248.

the noise level.
In Figure 11b, Figure 11c, and Figure 12 we have used an approximation to this

optimal value of λ, given by

(5.1) λNd
= Nd max

i∈S
(|[∆`G`]

i|),

where Nd is the number of iterations required for the desired number of data passes
and the set S is S = {i : |zi`| < σ}. The quantity ∆` corresponds to the dynamic
times step t` for LBk or τ i` in MLB or MLBλ. The term G` captures the behavior
of the gradient, and can be approximated with the average gradient over the �rst
` iterations. The quantities ∆`G` and z` are obtained at step ` after a number of
iterations su�cient for the LB-type methods to hone in on the larger contributions,
(e.g. we found ` corresponds to approximately 10-20% of a data pass). Intuitively,
with this choice of λ, the LB-type method allows enough of the smaller entries of
z to cross λNd

within the desired Nd iterations so that these entries are potentially
included in the solution. Simultaneously, the method also avoids over-�tting the noise,
since the smallest entries of z corresponding to xiexact = 0 are unlikely to cross the
threshold λNd

. These properties follow from the fact that for LB-type methods the
solution rapidly approaches the larger contributions over the initial iterations, so that
at step ` the set S corresponds to the smallest (or zero) entries in xexact. Then [∆`G`]

i

for i ∈ S corresponds to the increments of the (small) entries zi` < σ after the �rst `
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(a) Sparse vector recovery, 3 data passes,
‖Ax− b‖2
||b||2

= 0.5248

(b) Compressible vector recovery, 3 data passes,
‖Ax− b‖2
||b||2

= 0.5248

Fig. 13: The model error vs the threshold parameter λ . In blue we see results using
the original LBk method, in green are results for MLB and in red are results for
MLBλ. MLB requires a smaller λ to get the minimum model error in comparison to
both LBk and MLBλ.

iterations, which require approximately Nd iterations to reach the threshold λNd
.

Given that ∆` depends on the method, λNd
is then smaller for the MLB algorithm,

as compared with λNd
for LBk and MLBλ, consistent with the locations of the minima

shown in Figure 13. This di�erence follows from the smaller time step in MLB,
observed above in Figure 4 and Figure 9b. The MLBλ method (Figure 13 in red) has
smaller model error than for LBk regardless of the choice for λ since MLBλ bene�ts
from the elimination of the chattering behaviour, without a reduction of time step for
smaller entries.

An alternative approximation is λNd
≈ Ndt

i
` ‖ ri` ‖∞, following from the obser-

vation that for i ∈ S, one can also characterize the magnitude of [∆`G`]
i in terms

of ∆i
` ‖ AT` ‖ σ. For the test examples we consider here, σ ≈‖ b` ‖−12 ‖ ri` ‖2 for

ri` = A`x
i
`− b` with i ∈ S . Then for ‖ x ‖2= O(1), this alternative gives a reasonable

approximation for Equation (5.1).
In general, the approximation Equation (5.1) is based on S which relies on prior

knowledge of the noise level, usually not available in applications. In our examples,
we have used the normalized residual to approximate the noise, which yields a good
approximation to Equation (5.1) as described above for the alternative approxima-
tion for λNd

. Often in practice the threshold parameter is chosen using some naive
estimations that do not involve the noise level or the number of data passes. These
preliminary results using Equation (5.1) suggest that in the inconsistent setting, there
can be value in approximating the noise level and identifying the desired number of
data passes in order to accelerate convergence without over�tting the noise. Further
details and improvements of the estimation of the parameter λ will be explored in
future work. For example, the approximation in Equation (5.1) suggests an adaptive
approximation to λ that can be used throughout the iterations.

6. Implications for large scale problems. So far, we discussed chatter in
small over-determined but inconsistent toy problems. While this idealized setting has
been widely studied, real life problems such as the motivating problem SPLSσ are
not strictly sparse but rather compressible. In that case, we hope to recover as many
small entries in the tail of the solution as possible, given a �xed but limited number
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(a) Iteration 21 using LBk (b) Iteration 22 using LBk (c) Iteration 23 using LBk

(d) Iteration 21, with MLB (e) Iteration 22, with MLB (f) Iteration 23, with MLB

Fig. 14: The resulting migration image for three consecutive iterations. Panels a)-c)
repeat the results from Figure 2 using the LBk method, where chattering is observed.
Panels d)-f) shows the results using the MLB with the weighted increment of Equa-
tion (3.1). Note that the chattering behaviour of SPLSσ is eliminated using MLB.

of iterations based on subsampling. To give a perspective with regard to the size of
the motivating problem, we solved SPLSσ on a 971 × 359 domain m with ns = 101
di�erent source experiments (or "shots"). Since we solve the PDE problem in a �ne
domain with many more points than in the background model m0 and the number of
"shots", thus the e�ective matrix of the PDE has many millions of rows.

Now we compare the results from Section 2, where LBk was used for the moti-
vating example, with results obtained using MLB for the same problem. Figure 14a,
Figure 14b and Figure 14c show pronounced chattering behaviour when LBk is used,
and it is not possible to resolve the smaller entries. In Figure 14d, Figure 14e and Fig-
ure 14f the chattering behaviour has been eliminated when we use the MLB method.
In the application of these methods, we used a subsampling that touches 10% of the
"shots" in each iteration.

In Figure 15 we compare the resulting migration image at iteration 81 (equivalent
to 8 data passes) for the LBk method and the MLB. The di�erence is indeed quite
visible: qualitatively the image using the LBk method appears washed out, without
the details obtained using MLB. The lack of resolution for LBk is a manifestation of
the stagnated model error, induced by the chattering behaviour. Since MLB elimi-
nates the chattering behaviour, more of the details are resolved, resulting in a reduced
model error.

Similar results to the MLB method can be obtain with the MLBλ modi�cation,
also yielding eliminated chattering behaviour, with more details resolved as well. For
this example the MLBλ was marginally (1/3-1/2 of one data pass) faster in resolving
the details on the model.

7. Conclusions and discussion. Sparse recovery has undoubtedly resulted in
major breakthroughs in the �eld of compressive sensing. Yet straightforward adap-
tation of this technique towards the inversion of large over-determined, inconsistent
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(a) Iteration 81 with the original linearized Bregman algorithm LBk

(b) Iteration 81 with the modi�ed linearized Bregman algorithm MLB with the weighted increment
of Equation (3.1)

Fig. 15: The resulting migration image, using LBk (upper) vs. using MLB (lower).

systems is challenged by stalling in the convergence of the algorithm, thus render-
ing this technique impractical for large-scale problems. By identifying this stalling
behavior as a form of chatter, induced by the interplay between the stochastic dy-
namics of the iterations due to the inconsistency and the thresholding nonlinearity,
we introduce simple counter measures via weighted increments and a entry-speci�c
modi�cation designed to control the chatter and accelerate convergence of the iter-
ations. As a result, we arrive at a formulation capable of inverting extremely large
inconsistent systems encountered in multi-experiment wave-equation based imaging
problems. For each iteration, this type of imaging problem only gives us access to
a few row blocks, which correspond to di�erent source experiments. Despite this re-
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striction, in combining the fast convergence of the linearized Bregman algorithm with
the smart weighted increments that combat chatter, we have demonstrated that our
method solves the problem in a few data passes (epochs).

Even though our inversion problem is essentially linear, its stochastic dynamics
is intricate because there are multiple sources contributing to the �uctuations in
the solution - the inconsistency, the randomized sampling, reminiscent of the widely
employed stochastic gradient descent method, and the thresholding operation related
to the sparsity objective. A critical step in our analysis is isolating the source of the
undesirable chatter in order to remove it without unnecessarily limiting the solution
space over which the algorithm searches. In that sense, our problem is similar to
problems in machine learning where training is conducted with stochastic gradient
descent on neural networks that consist of linear a�ne mappings intertwined with
threshold-like operations. For this reason, we expect the ideas underlying the chatter
counter measures proposed in this paper to extend to the training of (deep) neural
nets.
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